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Asymptotic Notation and Growth

f(x) = O(g(x)) iff f(x) ≤ cg(x) for a constant c and large x

• Different models of computation

• O(n3) vs. O(n2): n3 will be eventually bigger than 100n2

A polynomial function f(x) = O(nk) for some constant k.

• O(nk) vs. O(2n): 2n will be eventually bigger

• n = 100⇒ 2100 ≥ 1030 is already too large

If an algorithm A has a running time O(2n)...

An algorithm A is efficient if it runs in polynomial time.

• 100n100 vs. 20.01n ?
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Nondeterminism

Now we consider a program with multiple execution paths.

The program returns
true iff one of final
states accepts!

The program makes a
choice for each branch
nondeterministically.
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Composite: given an integer n, decide if n is a composite
number.

1. Choose an integer 1 < i < n nondeterministically.

2. Return true if i divides n. The program returns
true iff there is a divisor!
⇒ Composite ∈ NP

VertexCover: given a graph G and integer k, decide if G
has a vertex cover of size k.

1. Choose k vertices nondeterministically.

2. Return true if the chosen vertex set covers all edges.

S ⊆ V (G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.
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If a nondeterministic algorithm returns true for an instance I,
there exists an execution path that accepts I!

The algorithm can be viewed as a certifier A(s, t) that returns
true for s given a proper certificate t.

• NP is the class of decision problems that have efficient
certifiers.

• NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

A(s, t) is an efficient certifier for a problem if A ∈ P and
there is a polynomial p s.t. s is a YES-instance iff there is a
certificate t satisfying followings:

1. |t| ≤ p(|s|)
2. A(s, t) = true
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Examples Revisited

Composite: given an integer n, decide if n is a composite
number.

1. Choose an integer 1 < i < n nondeterministically.

2. Return true if i divides n. The program returns
true iff there is a divisor!
⇒ Composite ∈ NP

VertexCover: given a graph G and integer k, decide if G
has a vertex cover of size k.

1. Choose k vertices nondeterministically.
2. Return true if chosen vertex set covers all edges.

S ⊆ V (G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

The certifier verifies if i divides n.

The certificate is a divisor of n.

The certificate is a subset of V (G) of size k;
the certifier verifies it is a vertex cover.
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• Composite ∈ P.

• VertexCover 6∈ P if P 6= NP
⇒ VertexCover is really hard.

• Every efficient algorithm (∈ P) is in NP.

• P 6= NP ?
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• Karp reduction: A is many-one reducible to B if an
instance of A can be efficiently converted into an instance
of B.

• Cook reduction: A is Turing reducible to B if A can be
efficiently solvable given an oracle for B.

VertexCover ≤m IndependentSet: If we know
VertexCover is hard, IndependentSet is hard, too!

RealSorting ≤T Halting: Real numbers can be
efficiently sorted given an oracle for Halting.

Selection ≤T Sorting: m-th largest number can be
efficiently selected given an oracle for Sorting.
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VertexCover ≤ IndependentSet

S ⊆ V (G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

S ⊆ V (G) is an independent set for a graph G if there are no
adjacent vertices in S.

VertexCover: given a graph G and integer k, decide if G
has a vertex cover of size k.

IndependentSet: given a graph G and integer k, decide if
G has an independent set of size k.

An instance (G, k) of VertexCover can be converted into
an instance (G, |V (G)| − k) of IndependentSet.

Observation: S is a vertex cover iff V (G) \ S is an
independent set.
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Certificate: an assignment for input variables

Certifier: verify that the output value is true
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Suppose X ∈ NP. Let A be an efficient certifier for X.
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CSAT is NP-complete

CSAT: given a circuit C with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X ≤ CSAT for every NP problem X.

1. CSAT ∈ NP.

Suppose X ∈ NP. Let A be an efficient certifier for X.

s is a YES-instance for X iff there is a certificate t of
size p(|s|) and A(s, t) = true.

Convert A into a circuit for CSAT.

Fill in input values for s and leave t.
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Constructing a Circuit

Lemma. If a turing machine M runs in time t(n), then we can
construct a circuit for M of size O(t2(n)).

• If M terminates in t(n) steps, then it uses at most t(n)
space.

• The contents of a cell in step i + 1 depends only on k = 3
cells and the state of M in step i.

• There are t(n)× t(n) cells to compute.

⇒ simulated by O(|Q||Σ|)k (= O(1) wrt n) gates.
|Q| = number of states, |Σ| = number of alphabets

⇒ a circuit of size O(t2(n)).
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3SAT: Is a given 3-CNF formula satisfiable?

e.g. φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4)
Theorem. 3SAT is NP-complete.

1. 3SAT ∈ NP.

2. X ≤ 3SAT for every NP problem X.

We know that CSAT is NP-hard.

⇒ CSAT ≤ 3SAT is sufficient.
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Let C be an instance of CSAT.
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3SAT: Is a given 3-CNF formula satisfiable?

e.g. φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4)
Theorem. 3SAT is NP-complete.

Let C be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

3) OR gate

Input value: xi, xj / Output value: xk = xi ∨ xj
⇔ (xk ∨ ¬xi) ∧ (xk ∨ ¬xj) ∧ (¬xk ∨ xi ∨ xj)

1. 3SAT ∈ NP.

2. X ≤ 3SAT for every NP problem X.
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3SAT is NP-complete

3SAT: Is a given 3-CNF formula satisfiable?

e.g. φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4)
Theorem. 3SAT is NP-complete.

Let C be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

4) To make some input variable xi true/false, add xi / ¬xi

1. 3SAT ∈ NP.

2. X ≤ 3SAT for every NP problem X.
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3SAT is NP-complete

3SAT: Is a given 3-CNF formula satisfiable?

e.g. φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4)
Theorem. 3SAT is NP-complete.

Let C be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

1. 3SAT ∈ NP.

2. X ≤ 3SAT for every NP problem X.

5) Replace clauses with 1 or 2 varibles

xi ∨ xj ⇔ (xi ∨ xj ∨ z) ∧ (xi ∨ xj ∨ ¬z)

xi ⇔ (xi∨z∨w)∧(xi∨¬z∨w)∧(xi∨z∨¬w)∧(xi∨¬z∨¬w)



3 - 13

3SAT is NP-complete

3SAT: Is a given 3-CNF formula satisfiable?

e.g. φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4)
Theorem. 3SAT is NP-complete.

Let C be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

Claim: C is satisfiable iff φC is satisfiable.

1. 3SAT ∈ NP.

2. X ≤ 3SAT for every NP problem X.
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VertexCover is NP-complete

S ⊆ V (G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VertexCover: given a graph G and integer k, decide if G
has a vertex cover of size k.

Theorem. VertexCover is NP-complete.

1. VertexCover ∈ NP.

2. 3SAT ≤ VertexCover
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VertexCover is NP-complete

S ⊆ V (G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VertexCover: given a graph G and integer k, decide if G
has a vertex cover of size k.

Theorem. VertexCover is NP-complete.

1. VertexCover ∈ NP.

2. 3SAT ≤ VertexCover

Let φ be a 3-CNF with m variables and k clauses.

1) Variable gadget

x ¬x
For each variable x,
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VertexCover is NP-complete

S ⊆ V (G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VertexCover: given a graph G and integer k, decide if G
has a vertex cover of size k.

Theorem. VertexCover is NP-complete.

1. VertexCover ∈ NP.

2. 3SAT ≤ VertexCover

Let φ be a 3-CNF with m variables and k clauses.

2) Clause gadget

For each clause C = l1 ∨ l2 ∨ l3,

l1

l2 l3

l1

l3l2
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VertexCover is NP-complete

S ⊆ V (G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VertexCover: given a graph G and integer k, decide if G
has a vertex cover of size k.

Theorem. VertexCover is NP-complete.

1. VertexCover ∈ NP.

2. 3SAT ≤ VertexCover

Let φ be a 3-CNF with m variables and k clauses.

Claim: φ is satisfiable iff Gφ has a vertex cover of size
m+ 2k.
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SubsetSum is NP-complete

SubsetSum: given a (multi-)set X of integers and an integer
s, is there a subset of X whose sum equals to s?
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SubsetSum is NP-complete

SubsetSum: given a (multi-)set X of integers and an integer
s, is there a subset of X whose sum equals to s?

e.g. X = {1, 1, 5, 10, 23, 30}, s = 39
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SubsetSum is NP-complete

SubsetSum: given a (multi-)set X of integers and an integer
s, is there a subset of X whose sum equals to s?

e.g. X = {1, 1, 5, 10, 23, 30}, s = 39 YES! {1, 5, 10, 23}
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SubsetSum is NP-complete

SubsetSum: given a (multi-)set X of integers and an integer
s, is there a subset of X whose sum equals to s?

Theorem. SubsetSum is NP-complete.

1. SubsetSum ∈ NP

2. 3SAT ≤ SubsetSum
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SubsetSum is NP-complete

SubsetSum: given a (multi-)set X of integers and an integer
s, is there a subset of X whose sum equals to s?

Theorem. SubsetSum is NP-complete.

1. SubsetSum ∈ NP

2. 3SAT ≤ SubsetSum

Certificate: a set of integers Y

Certifer: 1) Y is a subset of X and 2) sum of Y equals to s
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SubsetSum is NP-complete

SubsetSum: given a (multi-)set X of integers and an integer
s, is there a subset of X whose sum equals to s?

Theorem. SubsetSum is NP-complete.

2. 3SAT ≤ SubsetSum

1. SubsetSum ∈ NP.

Let φ be a 3-CNF with m variables and k clauses.

Construct integers ti, fi of m+ k digits for each variable xi

m digits correspond to T/F assignment for each variable.

Construct integers aj , bj of m+ k digits for each clause Cj

ti, fi have 1 for i-th digit.
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SubsetSum is NP-complete

SubsetSum: given a (multi-)set X of integers and an integer
s, is there a subset of X whose sum equals to s?

Theorem. SubsetSum is NP-complete.

2. 3SAT ≤ SubsetSum

1. SubsetSum ∈ NP.

Let φ be a 3-CNF with m variables and k clauses.

Construct integers ti, fi of m+ k digits for each variable xi

k digits correspond to satisfiability for each clause.

Construct integers aj , bj of m+ k digits for each clause Cj

ti/fi has 1 for (m+ j)-th digit if xi/¬xi appear in Cj .

aj = bj have 1 for (m+ j)-th digit.
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SubsetSum is NP-complete

SubsetSum: given a (multi-)set X of integers and an integer
s, is there a subset of X whose sum equals to s?

Theorem. SubsetSum is NP-complete.

2. 3SAT ≤ SubsetSum

1. SubsetSum ∈ NP.

Let φ be a 3-CNF with m variables and k clauses.

Claim: φ is satisfiable iff there is a subset of
{t1, f1, · · · , tm, fm, a1, b1, · · · , ak, bk} of sum:

11 · · · 1︸ ︷︷ ︸
m

33 · · · 3︸ ︷︷ ︸
k
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DNF-SAT

DNF-SAT: Is a given DNF formula satisfiable?

e.g. φ = (x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ ¬x2) ∨ ¬x3
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DNF-SAT

DNF-SAT: Is a given DNF formula satisfiable?

• x is a binary variable.

• A DNF formula φ = C1 ∨ C2 ∨ · · ·Ck where
Ci = li1 ∧ li2 · · · ∧ liki for literals lij .

• A literal l is either x or ¬x.

e.g. φ = (x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ ¬x2) ∨ ¬x3
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DNF-SAT

DNF-SAT: Is a given DNF formula satisfiable?

e.g. φ = (x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ ¬x2) ∨ ¬x3
• DNF-SAT ∈ P.
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DNF-SAT

DNF-SAT: Is a given DNF formula satisfiable?

e.g. φ = (x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ ¬x2) ∨ ¬x3
• DNF-SAT ∈ P.

• 3SAT ≤ DNF-SAT
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DNF-SAT

DNF-SAT: Is a given DNF formula satisfiable?

e.g. φ = (x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ ¬x2) ∨ ¬x3
• DNF-SAT ∈ P.

• 3SAT ≤ DNF-SAT

We can convert CNF into DNF as follows:

(a ∨ b ∨ c) ∧ (d ∨ e ∨ f)
= (a ∧ d) ∨ (a ∧ e) ∨ (a ∧ f) ∨ (b ∧ d) ∨ (b ∧ e) ∨ (b ∧ f) ∨
(c ∧ d) ∨ (c ∧ e) ∨ (c ∧ f)

Let φ be a 3-CNF with m variables and k clauses.
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DNF-SAT

DNF-SAT: Is a given DNF formula satisfiable?

e.g. φ = (x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ ¬x2) ∨ ¬x3
• DNF-SAT ∈ P.

• 3SAT ≤ DNF-SAT

We can convert CNF into DNF as follows:

(a ∨ b ∨ c) ∧ (d ∨ e ∨ f)
= (a ∧ d) ∨ (a ∧ e) ∨ (a ∧ f) ∨ (b ∧ d) ∨ (b ∧ e) ∨ (b ∧ f) ∨
(c ∧ d) ∨ (c ∧ e) ∨ (c ∧ f)

Let φ be a 3-CNF with m variables and k clauses.

NOT a polynomial-time reduction!


