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Abstract

Consider the problem of approximate function maximization: Given a continuous real func-

tion with domain [0, 1], what is its approximate maximum of absolute error 2−n? More

precisely, we are interested in the complexity of approximating the real functional MAX :

C[0,1] 3 f 7→max0≤x≤1 ∈ R up to a prescribed absolute error 2−n. Regarding the complex-

ity, we examine quantitative and parameterized bounds; that is, the complexity is measured

in parameters of the input function f , e. g., in its Lipschitz constant. For that, we model

the approximation of real functionals by using methods from recursive analysis where com-

putations of functions are black-boxed via function oracles. As an extension, the retrievable

information about a function is defined by protocols. At first, we analyze the mutual simula-

tion of these protocols, their computability and their computational complexity. Second, we

determine the query complexity of approximating the MAX-functional relative to selected

protocols. As a result, the simulation complexity often depends on the function’s Lipschitz

constant and the notion of a modulus of strong unicity. Furthermore, it is necessary to give

the Lipschitz constant to any simulation algorithm as long as non-adaptive information is

concerned. However, no such limitation holds for adaptive information and access to a range

approximating protocol.

Zusammenfassung

Betrachtet sei das Problem der approximativen Maximumswertberechnung: Gegeben eine

reellwertige stetige Funktion über dem Einheitsintervall [0,1], bestimme approximativ ihr

Maximum mit absolutem Fehler 2−n. Genauer interessieren wir uns für die Komplexität

der approximativen Berechnung von MAX : C[0, 1] 3 f 7→ max0≤x≤1 ∈ R mit gegebenem

(absolutem) Fehler 2−n. Wir bestimmen dazu quantitative parametrisierte Schranken, d. h.

Schranken in Abhängigkeit von Parametern der Eingabefunktion wie beispielsweise der

Lipschitz-Konstante. Zur approximativen Berechnung von MAX verwenden wir Modelle und

Methoden aus der berechenbaren Analysis: Die Berechnung einer Funktion wird ausge-

lagert in eine Black Box und einem Algorithmus als Funktionsorakel mitgegeben. Unsere

Erweiterung dieses Modells beschreibt welche Information solch eine Black Box zurück-

geben kann als Protokoll. Wir untersuchen zunächst die gegenseitige Simulierbarkeit dieser

Protokolle, als auch ihre Berechenbarkeit und Berechnungskomplexität. Anschließend wid-

men wir uns der Frage der Anfragekomplexität bezüglich verschiedern Protokolle zur hinre-

ichend genauen Approximation von MAX. Wie sich zeigt hängt die Simulationskomplex-
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ität der Protokolle zumeist von der Lipschitz-Konstante also auch von einem Modul der

starken Eindeutigkeit ab. Bezüglich nicht-adaptiver Information zeigt sich, dass die Lipschitz-

Konstante notwendig ist zur Approximation von MAX. Dies ist hingegen nicht der Fall bei

adaptiver Information bei Zugriff auf ein Protokoll approximierend den Wertebereich einer

Funktion.
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1 Introduction

A significant amount of (mathematical) problems we face on an everyday basis is not dis-

crete, but continuous and as such often require approaches from numerical analysis. Al-

though most numerical methods are sufficient in theory (let aside stability issues), when it

comes to a practical implementation, then every algorithm has to deal with the finite nature

of floating point calculations; even for problems as (seemingly) easy as computing integrals
∫ x

0
f (t) d t or maximum values max0≤t≤x f (t).

At least since 1985 when the standard IEEE floating point1 description has been conceived,

examples of disastrous round-off errors has risen (as, for example, Ménissier-Morain men-

tions and references in [MM05, Section 1.1]). Such examples are not only direct conse-

quences of the (in some cases) insufficient representation of floating point values via man-

tissa, basis and exponent (which causes a non-uniform distribution of ”IEEE-floats” along the

real line), but they could also arise as a lack of a concise mathematical derivation bounding

the intermediate errors during computations. Those are at least one motivation to compute

approximations based on (arithmetical) operations of controlled precision in the field of

exact real arithmetic. Models for exact real arithmetic are intended to bring both worlds to-

gether, that is, to accept the discrete nature of our basic underlying computation model (the

Turing machine) while performing every arithmetical operation with the desired resulting

error in mind. This implies carrying out each intermediate calculation with an at worst sig-

nificantly higher precision than required for the output itself. Moreover, even the input error

now depends on the output error, requiring any system for exact real arithmetic to provide

any input with arbitrarily high accuracy.

Models of computation for exact real arithmetic meet this requirement of providing (count-

ably of even uncountably) infinite information about the inputs. This is achieved through

various approaches. As one of them, the model introduced by Ko and Friedman grants any

approximation algorithm for, say a real function f , access to an oracle φ for the input x ∈ R
1 IEEE 754: Standard for Binary Floating-Point Arithmetic; http://754r.ucbtest.org/standards/

754.pdf. For an introduction in and also a discussion about the difficulties in dealing with floating point
arithmetic, the paper by Goldberg [Gol91] appears to be a valuable starting point.

http://754r.ucbtest.org/standards/754.pdf
http://754r.ucbtest.org/standards/754.pdf
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so that φ returns approximations of x within an arbitrary user-specified accuracy. Their

approach also extends quite naturally to functions of higher type, e. g., to functionals map-

ping real functions to real functions. Having fixed the model with oracle access to the inputs

enables us to talk about classical complexity questions. That is, how many arithmetical oper-

ations as well as queries to the fixed oracle are necessary (at least or at worst, corresponding

to whether we would like to gather lower or upper bounds, respectively) to compute the end

result for the given problem.

Abstract goal, its relevance and related work

Now, to circle back to our “easy problems” like function maximization MAX : [0, X ]→ R 3
f 7→ max0≤t≤X f (t), the motivating question for this thesis sums up as follows: How hard

(in a complexity theoretic sense) is function maximization relative to different oracles, each

encoding a different bit of information about the input function? Due to their relativistic

nature, those bounds then reflect to what degree approximate function maximization de-

pends on properties (of classical analysis) of the input function, thus exploiting parts of

the problem’s inner structure. Besides for parameterized bounds of approximative function

maximization being of theoretic interest, they are also of practical relevance like for concrete

implementations on frameworks like the iRRAM [Mü01] or RealLib [Lam07].

This approach has much in common with the notion of information-based complexity (IBC),

introduced by Traub et al. (see [TWW83, TWW88]). The main difference between IBC and

our approach is that within this thesis, we are not only interested in the minimal amount

of information needed about the input to approximate max f (as typical in IBC), but also

(and in particular) in what concrete analytic properties have influence on the (information)

complexity of function maximization. From the side of computational complexity, Kreinovich

et al. [KLRK98] treat problems like approximating a function’s range which in fact is quite

useful for function maximization. However, like with IBC, their work also does not cover

our specific problem. To the best of our knowledge, neither the former approaches, nor the

work by Ko and Friedman [Ko79,KF82,Ko82,Fri84,Ko91,Ko98] (which worked extensively

in the field of recursive analysis, including function maximization), or others address the

question raised above, the main motivator for this thesis.
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Approach and concrete results

The approach taken to the main question about parameterized bounds for approximative

function maximization splits up into two steps. First, we devise, compare and explore differ-

ent ways (i. e., oracles, denoted as protocols) of accessing an unknown continuous real func-

tion via black-box queries that model the actual computation of f as supported by certified

numerics like interval arithmetic [KLRK98] or the iRRAM [Mü01]. Each of these protocols is

devoted to cover a certain analytic property of its encoded continuous function f . In Chap-

ter 3 we introduce eight of them, namely protocol 0, 1, 2, Y, L, X, Coeff and SLP. Second,

we determine the query complexity of the MAX-functional by varying the attached protocol.

Since each protocol addresses another analytic property, this leads to explicit quantitative

and parameterized both upper and lower bounds on the complexity of MAX. In the following,

we give a brief overview over all protocols and present the results obtained when simulating

the behaviour of one protocol by another. Subsequently, we summarize the results deduced

for MAX’ query complexity.

Our underlying notion of computability is encoded by protocol 0: For every error ε > 0

and every input x ∈ dom( f ) it gives an ε–approximation p ∈ Q to f (x), i. e., | f (x) −
p | < ε. In contrast, protocol 1 does not return an approximation of a single function value,

but a close approximation (measured in the function’s Lipschitz constant L) to all function

values over a prescribed x-interval [(a−1)/2n, (a+1)/2n] as depicted in Figure 1.1. Albeit

their different nature, protocols 0 and 1 turn out to be asymptotically equivalent when the

function’s Lipschitz constant is kept fixed (Theorem 3.2.6).

x

y
f

q = a/2n

p = b/2n ∈

f (q)− 2−n

f (q) + 2−n

y
f

(a− 1)/2n (a+ 1)/2na/2n

B 3 p = b/2n

(1
+

L)
/2

n

Figure 1.1: Schematic of protocols 0 (left) and 1 (right). The output p = b/2n of protocol 0
is contained in an open interval of radius 1/2n around a/2n, where for protocol
1 it is contained in “striped bar” B of elements whose distance to every function
value f (x) on [(a− 1)/2n, (a+ 1)/2n] is less than (1+ L)/2n.
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Protocol Y provides an over-estimation (of relative error) of f ’s image over a prescribed

x-interval. Conversely, given a point q ∈ dom( f ), protocol X provides an (under-)estimated

x-interval (of relative error) centered at q so that f ’s image over that x-interval does not

exceed a prescribed length. These relations are depicted in Figure 1.2. Comparing both

Dm

Dm

Dm+1

Dm

Dm

f

(a− 1)/2n (a+ 1)/2na/2n
J e

xa
ct

J 1 J 2
J 3

Dm

Dm

Dm

f

a/2n

(b
+

1)
/2

m
(b
−

1)
/2

m
b/

2m

I1
I2

Figure 1.2: Schematic of protocols Y (left) and X (right). Protocol Y returns one of the in-
tervals Ji (containing Jexact, the exact function’s range over [(a − 1)/2n, (a +
1)/2n]). In contrast, protocol X returns one of the intervals I j and a point b/2m

so that f (I j) is contained in [(b− 1)/2m, (b+ 1)/2m].

protocols with the formerly introduced protocols 0 and 1 lead to the following results:

(a) The simulation time for protocols 0 and 1 by protocol X is constant (Theorem 3.6.3(a)),

while for protocol Y it is linearly bounded in the function’s Lipschitz constant (Theo-

rem 3.4.7(a)).

(b) The simulation time for protocol Ymod (a slightly modified version of protocol Y) by

protocol 1 depends on the notion of a strong modulus of unicity m(·) which, roughly

said, states that the given function cannot be “too flat”. In addition to m(·), the simu-

lation time for protocol X by 1 also depends on both the desired y-interval length and

f ’s Lipschitz constant, assumed that dom( f ) = [0,1].

Protocol L, like protocol Y, approximates the function’s range, though the relative error now

depends on the function’s Lipschitz constant as opposed to the length of the exact range

as for protocol Y. As it turns out, protocol L is much easier to simulate by protocol 1 than

protocol Y is. When the function’s Lipschitz constant grows, the simulation time becomes

almost constant (Theorem 3.5.3(b)).

Protocol 2 extends protocol 0 such that not only an ε–approximation to f (x) is returned, but

also one for f ′(x). Both protocols Coeff and SLP encode an approximation polynomial for
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f . Their main difference is its representation: Where protocol Coeff returns its coefficients

with prescribed error, protocol SLP on the other hand encodes it as a (finite) chain of basic

arithmetical operations (addition and multiplication), called straight-line program. Given

the fact that the interpolation polynomial which protocol Coeff basically returns is easily

differentiable, we will conjecture that even if f has an L′-Lipschitz continuous first derivative

protocol 2 still remains impossible to simulate.

The precise results are summarized in Table 1.2, modulo the protocol comparisons that

either only left to conjectures or are still open.

Regarding the query complexity to approximate max f relative to different protocols, we

obtain the following results:

(a) Negative results. Having given access to either protocol 0 or 2, max f is not approx-

imable within arbitrary an error ε > 0 without any additional knowledge about f

(Theorems 4.1.1 and 4.1.6). The same result (relative to protocol 2) turns out to be

true even for infinitely differentiable functions (Corollary 4.1.7), but may not extend

further to analytic functions (Conjecture 4).

(b) Positive result. In contrast to the former results, there exists an algorithm relative to

protocol Y that without knowledge of L computes an ε–approximation of max f (with

f : [0, X ]→ R being L-Lipschitz continuous) using up to O ((1+ L ·X ) ·ε) queries and

arithmetical operation.

(c) Positive results. With access to protocol 0, approximating max f within an error ε > 0

takes up to O ((1+L ·X )·ε) queries for L-Lipschitz continuous functions f : [0, X ]→ R
(Theorem 4.1.2) where L is revealed to any simulation algorithm. Exchanging protocol

0 by 2 and posing the restriction of f having an L′-Lipschitz continuous first derivative

(where now L′ is given to any approximation algorithm) results in an upper bound on

the number of queries of O ((1+ L · X ) ·
p
ε) (Theorem 4.1.9).



1
Introduction

13

0 1 Ymod L X

0
— Theorem 3.2.6 0→ 1→ Ymod 0→ 1→ L 0→ 1→ X

O (1) O (1+ 2m(n)−n) O (1+ 1/L) O ((1+ L) · X · 2m(mJ+log(1+L)))

1
Theorem 3.2.6 — Theorem 3.4.7(b) Theorem 3.5.3(b) Theorem 3.6.3(b)

O (1+ L) O (1+ 2m(n)−n) O (1+ 1/L) O ((1+ L) · X · 2m(mJ+log(1+L)))

2
2→ 0 2→ 0→ 1 2→∗ 1→ Ymod 2→∗ 1→ L 2→∗ 1→ X

O (1) O (1) O (1+ 2m(n)−n) O (1+ 1/L) O ((1+ L) · X · 2m(mJ+log(1+L)))

Y
Y → 1→ 0 Theorem 3.4.7(a) — Theorem 3.5.3(a) Y → 1→ X

O (1+ L) O (1+ L) O (1) O ((1+ L)(1+ X · 2m(mJ+log(1+L))))

L
L→ 1→ 0 Theorem 3.5.3(b) Theorem 3.5.3(c) — L→ 1→ X

O (1+ L) O (1+ L) O (1+ 2m(n)−n) O ((1+ L)(1+ X · 2m(mJ+log(1+L))))

X
Theorem 3.6.3(a) X → 0→ 1 X →∗ 1→ Ymod X →∗ Ymod→ L —

O (1) O (1) O (1+ 2m(n)−n) O (1+ 2m(n)−n)

Coeff
Lemma 3.7.2(a) Coeff→ 0→ 1 Coeff→∗ 1→ Ymod Coeff→∗ 1→ L Coeff→∗ 1→ X

O (1) O (1) O (1+ 2m(n)−n) O (1+ 1/L) O ((1+ L) · X · 2m(mJ+log(1+L)))

Table 1.2: Comparison matrix of protocol’s simulation complexity. The obtained result for simulating protocol column by protocol
row, also written as row→ column, is split into two parts. The upper half of each cell states either a chain of simulations
or the respective theorem. In the lower half, the concrete bound is presented.
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Structure

This thesis is now structured as follows. In Chapter 2 we discuss the tools required to an-

swer our main question stated above. They include a comparison of various models of com-

putation, followed by an introduction to (polynomial-time) computability on our model of

choice, the model by Ko and Friedman, and related work, but also overviews on mathe-

matical formulations of information and (in a sense align with that) existing frameworksfor

exact real arithmetic using those methods. In Chapter 3 we define the actual protocols (i. e.,

our way to represent access to real functions) and study both their computational complex-

ity and simulation complexity (i. e., the complexity of simulating one call to some protocol

by another one). Those encodings as black-boxes are used after all in Chapter 4 to finally

approximate real function maximization, followed by concluding remarks and open issues

in Chapter 5.
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2 Fundamentals

Let us start with a quote by Ker-I. Ko from [Ko98]:

It is important to point out that certain critical analytic properties seem to affect

greatly the inherent complexity of a numerical problem.

This works well as a motivation for our approach to pinpoint the complexity of real func-

tionals for reasons we explain in a moment.

As Alan Turing introduced his famous universal model of computation, the Turing machine,

it was intended to deal with discrete problems; that is, with problems which on finite inputs

(composed over a finite set, the so-called alphabet) produce finite outputs (over the same

alphabet).1 While this model works well for the discrete world, it gives rise to a whole lot

of questions when looked at from the angle of continuous problems. Just to name some of

them:

(a) How to represent reals on discrete machines?

(b) How to re-define or extend the notion of computability to reals and real functions?

(c) Are there relations in computability and complexity between the discrete and the

continuous world?

(d) While interesting from a theoretical angle, what about real-world implementations of

existing concepts in real computation?

Both question (a) and (b) will be partially answered tied to specific models of computation

in Section 2.2, whereas we emphasize the mathematically formulation of computations over

the reals rather than addressing the question and comparison of possible representations of

reals. Note that in general, there is no need to restrict a computation model to perform com-

putations over a discrete structure (as opposed to, for example, treating the reals as atomic)

if one only is interested in lower bound results for certain problems. Although concrete

1 We assume familiarity with the standard Turing-computability. If it is new to you, we refer to [AB09,
Chapter 1] for a neat introduction as well as further reading in the subsequent chapters.
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implementations of algorithms are not of our main interest, the conceived lower bounds

should nevertheless be as close as possible to those on existing, real implementations.

Subsequently, in Section 2.3 a certain model, the Ko-model, is discussed in further detail. As

we will see then, it not only has nice properties and is easy enough to describe, but it is also

closely related to a computational model, the Weihrauch-model, for which there are actual

implementations of exact real arithmetic. They are described in short in Section 2.5.

As explained in the introduction, it is the goal of this thesis to conceive parameterized

both lower and upper bounds for a certain maximum operator, namely for MAX( f ) =

maxx∈dom( f ) f (x). (Note that we restrict our analysis of MAX : ([0, X ] → R) → R for fixed

X > 0 to the set of computable functions f with dom( f ) = [0, X ]; the definition of com-

putability and connected questions are discussed tied down to the Ko model in Section 2.3.)

Parameterization here means the search for properties Z of functions f : [0, X ]→ R (e. g., a

fixed Lipschitz constant) wherein the computational complexity of MAX can be measured (in

addition to the input, of course). If the complexity breaks down when Z is fixed instead of

being treated as variable, then the problem (i. e., the respective set of functions) obviously

relies heavily on this particular property. Now we closed the gap to Ko’s observation stated

in the beginning.

To come up with reasonable parameterizations, we take a two-step approach: First we de-

fine protocols; second we use them as oracles to determine the number of queries to them

it takes to approximate MAX( f ) within a prescribed error. Splitting the problem of approx-

imate function maximization into two parts not only is a good idea because it is align with

Ko’s formulation of computation of functionals, but it also allows to analyze the complex-

ity of gathering the information provided by the attached protocols independent from the

problem’s query complexity, examined by varying the attached protocols. Note that the sec-

ond step leads to insights about the critical piece(s) of information (of the input) a problem

depends on, thus exploiting also the problem’s internal structure a little bit further. This

intuition is align with the approach taken by Traub et al. with information-based complex-

ity. In Section 2.1 we examine this field in more detail. For an example of a problems with

(partially) unknown internal structure, consider Bloch’s constant.

Protocols (treated in depth in Chapter 3) are our way of encoding real functions. Clearly,

their continuous nature voids any attempt to uniquely map each real function to a finite

representation. Therefore, our protocols are merely giving approximative information about

their encoded functions. A mathematical formulation of information in connection with real

computation is given in Section 2.1.
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How this chapter is organized

To summarize, in this chapter we discuss the tools required to answer our main question,

formulated in the introduction. It includes a comparison of various models of computation

(Section 2.2) followed by an introduction to (polynomial-time) computability (Section 2.3)

on the model we like to investigate further, the model by Ko and Friedman (Section 2.2.2).

Joining that discussion, we present a brief selection of results (Section 2.4) for and work

related to (Section 2.6) real function maximization based on Ko’s notions. The overview is

completed by Traub’s formulation of (partial) information (roughly speaking, partial infor-

mation about a function is that piece of it used on a discrete machine of finite [or even

countably infinite] running time; cf. Section 2.1) and a glimpse into two of the most impor-

tant implementations (frameworks) for real exact arithmetic (Section 2.5).

2.1 IBC: Information Complexity of Continuous Problems

Information-based complexity (see [TWW83, TWW88]) is a framework for measuring the

complexity of continuous problems when given only partial (or even contaminated) infor-

mation about the problem itself. Similar to computational complexity, the IBC approach

imposes a cost measure on the problem space plus the restriction on any algorithm (using

certain information and running for a finite amount of time before printing the final re-

sult) to read (and therefore to use) only a finite portion of the information about the given

problem. Thus, it is equivalent to say that the algorithm only had access to the “cut-down”

information in the first place. The question captured by the notion of information complex-

ity now is what the, in a sense, smallest possible information is that an algorithm needs to

successfully compute all instances of a given problem.

For instance, consider our maximization problem MAX( f ) =max0≤t≤x f (t) formulated ear-

lier. If the information is comprised of function values f (x i) in a finite amount of points

x i , and the goal is to compute a close approximation to MAX( f ) with some prescribed er-

ror ε > 0, then the question becomes what the minimum number of function evaluations

is needed to compute such a so-called ε–approximation of MAX( f ) over, say, all continuous

functions f : [0,1]→ R.

The subsequent paragraphs are devoted to explain how to adapt IBC so that it fits in the

framework of exact real arithmetic.
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2.1.1 “Classical” IBC

First, we discuss the basic notions in information-based complexity, followed by an exem-

plary translation of our function maximization problem into this framework. Let f be some

problem (a function for instance), and F the problem space (e. g., the set of functions we

are interested in). Then partial (and finite) information N( f ) about f ∈ F is modeled as

a mapping N : F → pow(H) from a problem instance to a finite tuple of information,

where H denotes a set of allowed information with pow(H) being the power set of it. As-

sume S( f ) would be the correct solution of f (with S : F → G being the solution operator)

and A : pow(H) → G an algorithm operating on a given information N( f ), mapping it

to a set of possible outcomes G. Then A provides an ε–approximation of f if and only if

‖A (N( f ))− S( f )‖G ≤ ε (for some fixed norm ‖ · ‖G on G).

For the problem of real function maximization, the solution operator clearly is MAX, where

the problem space F is set (for instance) to all continuous real functions f : [0,1] → R.

With that fixed, both the “information set” H and the “solution set” G are set equal to the

whole real line, i. e., H = G = R.

Information

In detail, information N is defined by a tuple of finitely many mappings Li ∈ Λ with Λ being

the set of permissible information operations. Hence, N( f ) = (L1( f ), . . . , Ln( f )( f )) for some

n( f ) ∈ N. This notation does not impose a connection between the different information

operations (i. e., such a tuple is comprised of independent pieces of information). In such

a case, we say the information N is non-adaptive, and denote it by Nnon if necessary or

not clear by context. (As a side remark, N being non-adaptive implies that n( f ) is actually

independent of f .)

In the presence of adaptive information, the ith information operation depends on the cur-

rent history of information. I. e., N( f ) is given as

N( f ) = (L1( f ), L2( f ; y1), . . . , Ln( f )( f ; y1, . . . , yn( f )−1))

where yi = Li( f ; y1, . . . , yi−1) for 1 < i ≤ n( f ) is the exact information of the ith informa-

tion operation Li . The number n( f ) of information operations is said to be the cardinality
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of information N . For non-adaptive information, we also denote n( f ) by card(N) to empha-

size that the number of information operations is actually independent from the problem

instance.

Cost Measure and Radius of Information

As mentioned, the access to information is priced. For the sake of simplicity we assume in

the following a unit cost model where each access to a piece of information accounts for

one time step. With this set, the worst-case cost of computing an ε-approximation for S on

F on some given information N is defined as

comp(ε) = inf
A

cost(A , N) = inf
A

sup
f ∈F

�

cost(A , f ) + cost(A , N( f ))
�

.

The combinatorial costs (i. e., the actual computations performed to approximate S( f ) based

on information N( f ) about f ) ofA are described by cost(A , N( f )), while the information

cost (time consumed to gather the information) is expressed by cost(A , f ). While the worst-

case computational costs comp(ε) are of interest when analyzing optimal approximation

algorithms, they do not emphasize the information cost. However, as we will see in Chapter

4, the combinatorial costs are (at least on our case) bounded from above by the information

cost when dealing with approximative function maximization.

As mentioned before, and also used in above’s formulation of information and computation

costs, we are interested in the computation of an ε–approximation of S( f ). Although, so

far we have no condition to impose on the information N so that such an approximation

actually exists. The proper notion for the existence of an ε–approximation is called the radius

of information, denoted by r(N). Informally, it measures the radius (in a fixed norm) of the

smallest ball containing all problem instances f ∈ F which lead to the same information

under a fixed information N . Thus, they also result in the same solution, and (consistent

with one’s intuition) an increase in the amount of information might decrease the radius of

such ball. This led to the nice result that for given information N , an ε–approximation exists

if and only if the radius of information satisfies r(N)≤ ε.

This also motivates the definition of an ε-cardinality number

m(ε) =min
N
{card(N) | N such that r(N)≤ ε}.
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It describes the query complexity we like to measure in the framework of IBC. More pre-

cisely, it describes the “smallest” possible information (measured in its cardinality) sufficient

to compute an ε–approximation of S( f ) for all problem instances f . With the combinatorial

costs for computing an ε-approximation of MAX being bounded by the information cost, we

get comp(ε) = O (m(ε)).

2.1.2 Handling Noisy Information

So far, information N( f ) itself is partial, but still exact. For an example, consider N( f ) =

(L1( f ), . . . , Ln( f )( f )) with information operations given as evaluations Li( f ) := f (x i) of

some continuous function f : [0, 1]→ R in pairwise distinct points x i ∈ [0, 1]. In the begin-

ning of this section we posed the aimed connection to exact real arithmetic. To establish such

a connection, the information itself has to be represented with a prescribed error. To express

this intention in terms of our example: Every information N gets attached some error vector
~δ = (δ1, . . . ,δcard(N)) ∈ Rcard(N) such that Li( f ) = f (x i) + δi ∈ D (i. e., Li( f ) = a/2n for

some a ∈ Z, n ∈ N for reasons we explain in the subsequent sections). This concept is called

noisy information.

In the presence of noisy information, the cardinality of N not only depends on f , but also on

the (in general unknown) noise ~δ; see [TWW88, Section 12.2.1, p. 435]. For non-adaptive

information we get the equality N( f , ~δ) = N( f ) + ~δ (where the vector addition is defined

as usual, i. e., componentwise).

Approximation Error and Radius of Information

Let A−1(~z) be the set of exact information underlying some noisy information ~z, i. e., ~z =

~y + ~δ for some exact information ~y and noise ~δ. As an (abstract) example consider

A−1(~z) = {N( f ) | ∃ f ∈ F, ~δ′ ∈ E( f , N) : N( f , ~δ′) = N~z( f ) + ~δ
′ = ~z} (2.1)

with E( f , N) = {~δ′ ∈ Rcard(N) | ‖ ~δ′ ‖∞ ≤ η},

where (2.1) is the general form of A−1(~z), and E( f , N) denotes the set of possible noise
~δ based on N and f . Also note the dependence of information N( f , ~δ) on the noise ~δ.

For non-adaptive information we have the relation N( f , ~δ) = N( f ) + ~δ, where for adap-

tive information we have N( f , ~δ) = N~z( f ) + ~δ. That is, because for adaptive information
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the information operations (and thus the number of them) depend on the history of noisy

information, i. e., Li,~z( f ) = Li( f ; z1, . . . , zi−1). So, N~z( f ) = (L1,~z( f ), . . . , Ln( f ,~δ),~z( f )).

Given the set of exact information A−1(~z) corresponding to some noisy information ~z, the set

of problem instances f ∈ F that have the same information from N ’s point of view is given as

N−1A−1(~z).2 Consequently, the solution operator S operates on this set instead of the whole

problem space F . The resulting set of solution elements, namely SN−1A−1(~z), is equivalent3

to the ε–approximationA (~z) gathered based on the noisy information ~z. Figure 2.1 depicts

a schematic of the overall construction. As a side remark, the combination of N and E in

~z A (~z)

A−1(~z)

N−1A−1(~z) SN−1A−1(~z)

A−1

N−1

S

A

identification

Figure 2.1: Indistinguishable solution elements, resulting from different problem instances
that share the same noisy information ~z.

fact models a protocol Z (that is, an oracle encoding a function f , which we will discuss in

depth in Chapter 3), because Z also gives deterministic information about functions f ∈ F ,

but only with a prescribed error – which is modeled by E.

As mentioned in the introduction, an ε-approximation (on exact and fixed information N)

only exists if ‖A (N( f ))− S( f )‖G ≤ ε. Given instead some noisy information ~z, this can be

rephrased to

‖A (~z)− S( f )‖G ≤ ε ∀ f ∈ SN−1A−1(~z). (2.2)

Hence, informally speaking, the wider the set SN−1A−1(~z) (measured in ‖ · ‖G), the bigger

ε has to be so that an ε–approximation exists (where everything is fixed but the algorithm

A ).

2 As a common abbreviation, by N−1A−1 we actually mean the composition N−1 ◦A−1 where mapping A−1 is
applied first, followed by N−1.

3 Here, equivalency has to be interpreted as follows: Given some noisy information ~z, then for every f ∈
SN−1A−1(~z) we haveA (~z) =A (E( f , N)), i. e., those problem instances result in the same approximation.
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Equation (2.2) motivates the notation of a local radius of (noisy) information of N at ~z,

denoted by r(N , E,~z), and given as

r(N , E,~z) := rad(SN−1A−1(~z)) := inf
g∈G

sup
s∈SN−1A−1(~z)

‖ g − s ‖G .

Accordingly, the (global) radius of (noisy) information is defined as

r(N , E) = sup
(∃ f ∈F) ~z−N~z( f )∈E( f ,N)

r(N , E,~z).

Therefore, an ε-approximation (in presence of noisy information) exists if and only if N

satisfies r(N , E) ≤ ε for fixed E. It is our job to define N , E, and the cardinality n( f ) of N ,

such that r(E, N)≤ ε, where ε is fixed, but arbitrary.

2.1.3 Existing Results

For linear problems (see [TWW88, Section 4.5.1, p. 56]) there are nice results like adaption

of information does not significantly help, and results on optimal information measured in

the radius or diameter of information. Unfortunately, one condition on a problem set to be

called linear is it that S is a linear operator4; which MAX clearly is not.

2.2 Models of Computation

It is one motivator for us both to understand the underlying model of computation and to

choose it wisely because the protocols we examine in Chapter 3 are modeled with an eye

on implementing it on an existing framework like iRRAM or RealLib (see Section 2.5 for a

description).

A computational model is comprised of (a) a given (finite or infinite) alphabet Γ, (b) a

(finite) set of of basic operations available to perform an actual computation, and (c) the

notion of costs attached to each of those operations. In computable analysis (also: recursive

analysis) one is mostly interested in computability questions of numerical problems; that is

(loosely speaking), if there is an algorithm that produces a reasonable approximation (or

even an exact result) to its given problem instance (e. g., a continuous function).

4An operator S : F → G is called linear if S( f + f ′) = S( f ) + S( f ′) for all f , f ′ ∈ F .
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First, we provide a brief glimpse on how computable analysis developed over time; there-

after, we discuss these models in details. The origin of computable analysis dates back to

a paper by Alan Turing [Tur37] where he defined computable real numbers and functions,

thus describing approximative computation over the reals on integer machines (i. e., on

his famous model of Turing machines). Later, Grzegorczyk (1957) used Turing’s notion of

computability to introduce a hierarchy on primitive recursive functions. Ko and Friedman

(1982), and Pour-El and Richards (1989) took that approach and extended it further by

an extensive treatment of complexity questions: How is computable analysis related to dis-

crete complexity theory? How to define, e. g., polynomial-time computability over the reals?

What is the computational complexity of standard problems in numerical analysis, like maxi-

mization, root finding, differentiation and integration? Later on, Weihrauch (1997) not only

came up with sort of a generalization to some of the formerly introduced models, but also

related them, even though it turned out that they are not all equivalent (as opposed to the

situation in discrete complexity theory, where we have the famous Church-Turing thesis;

cf. [AB09, Chapter 1]).

An overview on the history of approaches (including a lot more references) in real compu-

tation (even though it is formulated compared to the Blum-Shub-Smale (BSS) model; see

Section 2.2) can also be found in [BCSS98, Section 1.8]. For a more elaborate (and more

technical) discussion on (the much wider field of) real computation, we refer to [Zie07,

Chapter 2].

2.2.1 TTE / Weihrauch Model

The type-2 model of effectivity (TTE), introduced by Weihrauch in [Wei87], rather is a “host”

for other models (a meta-model for say) than a completely new approach to computable

analysis. It explicitly introduces the notion of naming systems. To describe and understand

the use of naming systems, we first take a look at the most usual form of computations,

represented as partial functions f :⊆ Σ∗ → Σ∗ mapping one word from Σ∗ to another one

from Σ∗, while the actual computation is realized over an alphabet Γ.5 A naming system

now basically is an interpretation (a mapping) from Σ∗ onto the machine alphabet Γ.

For example, consider the field of real numbers R. Elements x ∈ R can be encoded us-

ing decimal fractions. Then, an infinite decimal fraction acts as a name for a real x; e. g.,

5 As usual in computer science, a set Σ∗ is comprised of any character string (word) over Σ of finite length
including the empty word, i. e., Σ∗ =

⋃

n≥0Σ
n.
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3.14159265 . . . is a name for π. In general, in TTE, infinite sequences are used as names for

reals x ∈ R.

A comparison of TTE with several other approaches in computable analysis can be found,

for example, in [Wei00, Section 9].

2.2.2 Ko(-Friedman) Model

In Ko’s model (we may also call it as the Ko-Friedman model due to Friedman’s contribu-

tions) reals are represented by fast converging sequences of dyadic rationals, e. g., by Cauchy

sequences. A real number x ∈ R has such a representation if there is a sequence {dn} of

dyadic rationals dn ∈ Dn where Dn = {q ∈ Q | (∃a ∈ Z) q = a/2n}, so that | dn − x | ≤ 2−n

for all n ∈ N, and it is encoded by a computable function φ : N→ D where φ(n) := dn.

Bottom line, Ko-machines are now basically Turing machines with oracle access to such a

function φ as opposed to getting the real x as a direct input. directly. As a technical detail,

φ does not map n to a dyadic rational dn = a/2n, but to a dyadic rational interval of length

2−n+1 centered at dn, encoded by (dn, n).

Thus, the definition and understanding of the Ko-model leads to the conclusion stated in

[Wei00, Theorem 9.4.3]; namely, TTE and Ko’s model are essentially the same. I. e., Ko-

machines can be effectively simulated by TTE-machines and vice versa. Also see [Wei00,

p. 254], for a reasonable deduction.

2.2.3 Interval Arithmetic

Interval Arithmetic (IA), even if it came from a somewhat different angle than the formerly

presented models, is of interest (especially the book by Kreinovitch et al.; [KLRK98]) be-

cause it brings both worlds together, namely the floating point community with the classical

complexity theoreticians. The field of interval arithmetic is devoted to provide methods for

and unravel the complexity of computing controlled estimates. As an example: given a func-

tion f (x1, . . . , xn) of n real variables, it is considered to be a basic problem of IA to compute

the range of possible values f (I1, . . . , In) = { f (x1, . . . , xn) | x i ∈ Ii} where the inputs are not

exact reals, but intervals describing the set of possible (and erroneous) inputs.

In [KLRK98], they dealed with results about the complexity of polynomial equations with

finitely many and infinitely many roots, for real, rational and even integer valued polyno-

mials. As one result (which in particular is of interest for us) Gaganov proved that even for
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rational functions (i. e., polynomials given by a fraction f (X )/g(X ) of two polynomials with

rational coefficients) the problem of computing the function’s range on some interval with

rational endpoints is, in general, NP-hard.

Embedding IA in this thesis, it does not significantly differ from Weihrauch’s approach. In

both models, we only care about machines holding after a finite amount of time. Therefore,

a TTE-machine could only read and write a finite amount of intervals on its input and output

tape, respectively, so why not only giving the machine the same interval as an input as for

the IA-machine. Then it would act like a machine in interval arithmetic – at least when

considering the relative error approximation.

Kreinovitch et al. have shown (see [KLRK98, Appendix D]) that computing roots is easier

when a function has multiple roots rather than having a unique root. Is an analogous state-

ment also true for maxima, i. e., a function’s maximum is easier to compute when there are

multiple maximum points? In Section 4.2.3 we show that this is not the case; at least when

it comes to compute approximations of maximum values instead of maximum points.

2.2.4 Blum-Shub-Smale (BSS) Model

Compared to, say, the formerly introduced models of Weihrauch and Ko, the BSS-model

merely is a theoretical approach to handle continuous problems over an arbitrary ring R,

e. g., the reals. As a major deviation to those other models we have seen so far, the elements

of such a ring R are assumed to be atomic, thus eliminating the need for a reasonable naming

system.

Nevertheless, there is a connection between BSS machines and the theory of information-

based complexity as already discussed in Section 2.1. As a short recap, in IBC we are in-

terested in the information required about a continuous problem in order to compute a

reasonable approximation of it. There, the information is obtained by use of a given sub-

routine. As usual, the complexity of the respective algorithm solving the given problem is

measured both in the number of arithmetical operations and by how often the subroutine

(to obtain the information) is called. The same measure applies to BSS-machines.
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2.3 Complexity Theory on the Ko-model

In this section we summarize both the basic definitions and results concerning the model by

Ko and Friedman one need to know for the rest of this thesis.

2.3.1 Computable Reals and Real Functions

Reals x ∈ R have to be presented by in a finite way; e. g., by some rational q ∈ Q such that

‖ x − q ‖ ≤ ε for arbitrary ε > 0. There are several representations out there: Encoding by

a sequence of nested intervals (e. g., Weihrauch), by a fast converging sequence of dyadic

rationals (e. g., Ko and Friedman), signed integer representation (e. g., Weihrauch; cf. Sec-

tion 2.2). Besides the fact that Ko’s representation arises quite naturally, he argues that his

representation of reals (defined hereafter) has also been shown to be mostly equivalent to

other formulations of computable reals, but with the addition of further good properties

(cf. [KF82, p. 326]).

Definition 2.3.1 (computable real). Let x ∈ R be an arbitrary real number.

(a) We say, a function φ : N→ D binary converges to x if | x−φ(n) | ≤ 2−n and φ(n) ∈ Dn

(i. e., φ(n) = a/2n for some a ∈ Z).

(b) A real number x is said to be computable if there is a (Turing) computable function

φ : N→ D that binary converges to x .

Based on this definition, the set of rational number clearly is computable, but so are promi-

nent reals (transcendentals!) like π or Euler’s constant, too (cf. [Sko08]). As a counter-

example, a Chaitin constant is a non-computable real number (see, e. g., [CDS02]). In fact,

the set of non-computable real numbers forms a proper subset of all transcendental reals.

Next we define the notion of computable real functions based on the formerly presented

concept of binary converging computable functions.

Definition 2.3.2 (computable real function). A function f : R→ R is computable (or, recur-

sive) if there is a function-oracle TM (OTM) M such that for each x ∈ R and each φ : N→ D
that binary converges to x , the function ψ computed by M with oracle φ binary converges

to f (x).
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Note: We will use the terms “computable” and “recursive” interchangeably. For the definition

of computable reals (and thus, the concept of functions binary converging to them), see

Definition 2.3.1. Without having explicitly mentioned it in the definition of computable

functions, we say, a function f : S→ R with S ⊆ R is computable if it is computable in each

x ∈ S.

When defining computability this way, some simple functions become non-computable like,

e. g., step functions. Although there is literature considering weaker notions of computabil-

ity, so far none of them has been proven to be the notion to use. We accept this restric-

tion to, amongst others, circumvent the need for multi-valued functions. Besides that, this

model (compared to others) preserves the basic properties known from classical analysis

(cf. [KF82, Section 2] for further references). Then the following theorem presents the, if

you will, law underlying this computability concept that computability implies continuity.

Theorem 2.3.3 (computability versus continuity). If f : [0, X ]→ R is computable on [0, X ],

then f also is continuous on [0, X ]. Conversely, if f is continuous on [0, X ], then there is a

set-oracle E ⊆ N such that f is recursive in E.

For the direction of computability implying continuity, the main idea is presented in [Wei00,

Theorem 1.3.4]. For the converse direction, see [KF82, Theorem 2.2].

Intuitively, a function becomes a lot easier to approximate if we have upper and lower

bounds on its slope. Hereinafter, we define both terms more precisely and discuss both their

existence and computability.

Definition 2.3.4 (modulus functions). Let f : [0, X ]→ R be a continuous function.

(a) A function m(·) is called modulus of continuity (of f on [0, X ]) if

(∀x , y ∈ [0, X ])(∀n ∈ N) | x − y | ≤ 2−m(n)⇒ | f (x)− f (y) | ≤ 2−n.

(b) Similarly, a function m(·) is called modulus of strong unicity (of f on [0, X ]) if

(∀x , y ∈ [0, X ])(∀n ∈ N) | x − y |> 2−n⇒ | f (x)− f (y) |> 2−m(n).

In short, computability causes f to have a modulus of continuity m(·). Moreover, m(·) also

is computable; not on arbitrary domains, but on compact ones. That is because on compact

sets, the concepts of continuity and uniform continuity match. The following theorem uses

this observation.
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Theorem 2.3.5 (computability vs. computable modulus of continuity). If f : [0, X ]→ R is

recursive on [0, X ], then f also has a recursive modulus of continuity m(·) on [0, X ].

For a proof, see [KF82, Corollary 2.2.1, p. 331].

Notice that the computability analysis of a modulus of strong unicity is beyond the scope

of this thesis. However, we want to point out that m(·) is monotonically non-decreasing as

implied by its definition:

(∀n, i ∈ N)(∀x , y ∈ R) | x − y |> 2−n > 2−(n+i)⇒ | f (x)− f (y) |> 2−m(n+i)

⇒ (∀n ∈ N) m(n)≤ m(n+ 1).

We use this fact later on, especially in Chapter 3.

2.3.2 Polynomial-Time Computability

We define the time complexity of both recursive reals and recursive real functions. According

to classical Turing machines (i. e., those operating on N), the time complexity is defined by

the maximum number of moves6 TM (n) it takes M to produce the output based on arbitrary

inputs (in unary representation) of length n. For function-oracle Turing machines (as in

Definition 2.3.2), the time complexity also incorporates both the time it takes M to write

an n-bit string on the query tape (n steps), and the query to the oracle itself (1 step). The

following definition summarizes notations from [KF82, Section 3].

Definition 2.3.6 (time complexity). (a) A recursive real number x ∈ R has time com-

plexity ≤ T if there is a TM M computing a function φ such that φ binary converges

to x , and the time complexity function TM is bounded above by T .

(b) A recursive real function f : R → R has time complexity ≤ T if there is an oracle

Turing machine (OTM) M computing a function ψ such that ψ binary converges to

f (x) (i. e., |M x(n)− f (x) | ≤ 2−n for all n ∈ N) and the time complexity function TM

is bounded above by T .

6 Here and in the classical Turing machine model, an altering of cell contents incorporates a head movement,
thus allowing us to only count the number of moves. Note that this implies a unified cost model where each
operation counts for one time unit.

This is in contrast to, e. g., the BSS model; see [AB09], Section 16.3, p. 331.
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(c) For X ∈ R>0, let PFC[0,X ] = TIMEC[0,X ](poly) be the set of polynomial-time computable

real functions f : [0, X ]→ R where

TIMEC[0,X ](C ) =

(

f ∈ C[0, X ]

�

�

�

�

�

f is recursive and has time complexity

≤ T for some T ∈ C

)

.

Often, when it is either clear from the context or does not matter, we omit the domain

and instead write TIME(C ) and PF, respectively.

The polynomial-time computability of reals is postponed until Section 2.4.

As we have already seen a connection between computability and a computable modulus of

continuity (cf. Theorem 2.3.5), a similar result holds when the set of functions is restricted

to those being polynomial-time computable.

Theorem 2.3.7. If f : [0, X ]→ R is a polynomial-time computable function, then it also has

a polynomially bounded modulus of continuity m(·).

For a proof, we refer to [KF82, Theorem 3.1].

What we do not know is whether polynomial-time computability of f implies f ′ also to be

polynomial-time computable, or not (assumed that f is differentiable). Nevertheless, below

we state a known relationship between the complexity of f ′ and the modulus function.

Theorem 2.3.8. If f : [0,1] → R is a both continuously differentiable and polynomial-time

computable function, then f ′ also is polynomial-time computable if and only if f ′ has a bounded

modulus of continuity on [0, 1].

For a proof, see [KF82, Theorem 5.2].

2.4 Existing Results on Function Maximization

We start by defining computable real functionals as an extension to the formerly introduced

concept of computable real functions.

Definition 2.4.1 (computable functional). Let F be a real functional which maps real func-

tions to real numbers. We say, F is computable if there is a two-oracle machine MF so that

|M f
F (n)− F( f ) | ≤ 2−n. The oracles are:
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(a) A modulus function m(·) of f on dom( f ); on input n ∈ N it returns how many signifi-

cant bits it needs of x ∈ R to get out an approximation of f (x) within error 2−n.

(b) A function-oracle f ; on inputs n ∈ N and q ∈ Dm(n) it returns a dyadic rational approx-

imation e ∈ Dn so that | e − f (x) | ≤ 2−n for all x ∈ int(q, m(n)) := [q − 2−m(n), q +

2−m(n)].

We say, a computable functional F is polynomial-time computable if for any function-oracle

f whose modulus of continuity m(·) is polynomially bounded7, the computation time of

M f
F is bounded by a polynomial. Given this situation, is MAX polynomial-time computable?

Further, let f : [0, X ] → R be a polynomial-time computable real function. Is, in this set-

ting, max f (polynomial-time) computable? The following theorem summarizes our knowl-

edge.

Theorem 2.4.2. (a) The maximization functional Max is computable over the set of com-

putable functions, but it is not computable in polynomial-time.

(b) The maximum value of a recursive real function again is recursive.

(c) If f is a polynomial-time computable real function, then max f is a polynomial-time

computable real number relative to an NP-oracle.

For actual proofs (or at least plausibility arguments) of above’s theorem we refer to [KF82,

Section 7]. The functional MAX is recursive over the set of recursive functions due to The-

orem 2.4.2(b); just equip TM MMAX with an oracle to f (say, the machine M f computing

f ).

As a marginal note, Ko showed interesting connections between NP-real numbers of tally

sets8 and maxima that could be attained by an arbitrary polynomial-time computable real

function f : R→ R: both sets are equal. This implies a connection (one of several) to clas-

sical complexity theory, namely, for a proven hardness of computing an arbitrary functions

maxima (i. e., in exponential-time) it is necessary to have P 6= NP (Theorem 2.4.2(c); also

cf. [Ko98, Theorems 3.10 and 3.11]). Another connection to the famous P
?
= NP problem

has been shown by Friedman in [Fri84]: Some maximum operators (e. g., MAXh( f ) = h( f ; ·)
with h( f , x) =max{ f (y) | 0≤ y ≤ x}) are mapping polynomial-time computable functions

to polynomial-time computable functions if and only if P= NP.

7 Due to Theorem 2.3.7: If f does not have a polynomially bounded modulus of continuity, then f is
certainly not polynomially-time computable, thus justifying this restriction.

8 A tally set T is a set over a single alphabet, e. g., T ⊆ {0}∗.
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Given a computable real function f ∈ C1[0, X ], a naive approach to approximate max f

goes as follows: Compute the roots ri of f ′, evaluate f in each ri (i. e., mi = M ri
f (·) for some

TM M ri
f ) and finally return maxi mi .

9 The following theorem voids this attempt.

Theorem 2.4.3. (cf. [Ko98, Theorem 3.12]) There is a polynomial-time computable real func-

tion f : [0, X ]→ R that has an uncountable number of roots but none of them is computable.

As a consequence, even in case of f : [0, X ]→ R having a polynomial-time computable first

derivative (see Theorem 2.3.8) there is no algorithm that based on the roots of f ′ (i. e., the

candidates for approximations of max f ) approximates max f within a prescribed error 2−n

for all n ∈ N.

In contrast, all roots of an analytic, polynomial-time computable real function f are polynomial-

time computable (cf. [KF82, Theorem 4.3.2]). But it is conjectured that there is a function

g ∈ C∞[0, 1] such that g is polynomial-time computable, but it has a root that is not a

polynomial-time computable real number. So, as long as the conjecture stands, there seems

to be a complexity gap between real analytic and C∞ functions, not only for differentiation,

but presumably also for approximate function maximization. This assumed gap will be again

of interest in Section 4.1.2.

2.5 Frameworks for Exact Real Arithmetic

While the models discussed in Section 2.2 are (by definition) of theoretical nature, there

are actual implementations present. Below we briefly introduce two of them, namely the

iRRAM and the RealLib; it appears that those two are the most accepted and widespread

approaches as frameworks for exact real arithmetic.

iRRAM

The iRRAM (interactive Real-RAM) (see [Mü01] for an extensive documentation), main-

tained by N. Müller and first introduced in [Mü96], partly implements the type-2 model

of effectivity already discussed in Section 2.2.1. As a framework written in C++, programs

for the iRRAM are also written in plain C++ syntax with the extension of pre-defined data

9 Note that there is a difference between approximating the root and computing an approximative root; in
the first case we have | x −φ(n) | ≤ 2−n (which is computable due to Theorem 2.4.2(b)), where in the second
case it is | f (φ(n)) | ≤ 2−n (which is not necessarily close to the real root; see [Ko98], Section 3.4.1).
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types (actually objects) like REAL and DYADIC. For a glimpse of how real exact arithmetic

is achieved, consider the representation of reals. A real number x ∈ R gets assigned a name

(an enclosure, i. e., an arbitrary (infinite) sequence of [not necessarily nested] rational in-

tervals) J = ((li , ui))i=0,1,... out of %−1(x), where % is a partial surjection % : J∞ → R
with J := {(l, u) ∈ Q×Q | l ≤ u}. Thus, a computation actually becomes a multi-valued

function mapping one interval sequence to another one (maybe even in a non-deterministic

fashion).

RealLib

As B. Lambov mentioned in [Lam07], designing a framework for exact real arithmetic re-

quires a balancing between providing a user-friendly interface on the one hand side (it

should behave as and [even more important] “feel” like standard floating point arithmetic)

and elevating the user’s understanding of controlled precision arithmetic (by providing a

comprehensive set of tools) on the other hand side; in short, a light but sufficiently complex

framework. Loosely speaking, in RealLib the interface is split up into two parts. The first

one matches those of iRRAM, while the second one specifically is aimed to hide all the com-

plexity of dealing with representations and multi-valued functions on the costs of a worse

performance.

A model is said to be type-2 if it is align with the theory of computable real functions by

machines with oracle access to the function’s argument(s) like in Ko and Friedman’s model

(see Section 2.2.2. Thus, it is a basic requirement for a model to be called type-2 to provide

a method of gathering the arguments with arbitrary precision; or, to phrase it differently,

the full information about them must be present, even if it is not fully utilized in any compu-

tation. Therefore, both RealLib and iRRAM are not type-2 implementations, but only type-1

(cf. [Lam07, Section 6.3]). This is because in both models neither is full information stored

about reals nor is full information present.

2.6 Related Work

As pointed out in former sections, there has been some groundwork done on the question

of the computational complexity of maximization, mostly by Ko and Friedman (cf. [KF82,

Fri84]). But as Bernard of Chartres famously wrote back in the twelfth century, they also

stood on the shoulders of titans, with the titans are including Turing, Grzegorczyk, Pour-El,
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Richards, Kreitz and Weihrauch. The main result of Ko and Friedman’s research (concerning

maximization) clearly is the relation to the famous P
?
= NP question in discrete complexity

theory; that is, P 6= NP is necessary for a super-polynomial lower bound on the computation

of MAX( f ). Or, as phrased in Theorem 2.4.2(c), if MAX( f ) is polynomial-time computable

for every polynomial-time computable real function f : [0,1]→ R, then we get P = NP out

of it. This fact is obtained by examining its proof. In there, Ko and Friedman constructed an

NP-set U relative to which a simple binary search suffices to compute max( f ) on [0, 1].

Friedman took their work further in [Fri84], but contributed rather a different formulation

of real computation and proved it to be equivalent to their former approach than providing

new results on the still open question, namely, whether P 6= NP also is sufficient to prove

MAX( f ) non-polynomial-time computable.

In this Master’s Thesis we do not intend to change the whole game by conclusively prov-

ing approximate function maximization to be either easy (i. e., computable in polynomial

time) or hard (by proving the NP-oracle necessary for Theorem 2.4.2(c)). Instead, we are

interested in the analytic properties of computable functions that (presumable) make func-

tion maximization such a difficult problem. The gained knowledge is then used to deduce

parameterized both lower and upper bounds, whereas the complexity of obtaining the pa-

rameters itself can (and is) analyzed independently. Both parts of this two-step approach

are examined and discussed in detail in the subsequent chapters 3 and 4.

2.7 Notation

We both summarize the notation seen so far and introduce new notation needed for the

subsequent sections. The set of dyadic rationals is denoted by D = {q ∈ Q | (∃a ∈ N)(∃n ∈
Z) q = a/2n}, and its restriction to those of precision n by Dn = {d ∈ D | d = a/2n}.

To maintain readability of both definitions and results when encoding functions by protocols,

we use the following conventions (for one-dimensional functions): (a) On the x-axis, dyadic

rationals are denoted by q ∈ D, precisions by n ∈ Z and intervals by I , while (b) along the

y-axis, we denote dyadic rational by p ∈ D, precisions by m ∈ Z, and intervals by J . While

for higher dimensional functions f :⊆ Rk → R, k ≥ 2, the conventions are still valid, we

extend them by using the vector notation. That is, e. g., ~q instead of q.
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As on the Ko-model, reals are essentially encoded by infinite sequences of dyadic rational

intervals, the following notions are introduced to ease their use. Thus, let [a, b] ⊆ R be

some interval.

• center or midpoint of [a, b]: mid([a, b]) = (a+ b)/2;

• length/size of [a, b]: len([a, b]) := b− a;

• radius of [a, b]: rad([a, b]) := len([a, b])/2= (b− a)/2;

• precision of [a, b]: pcs([a, b]) := log(1/rad([a, b])) =− log(b− a) + 1.

Example: We often talk about intervals int(q, n) := [q− 2−n, q+ 2−n] with dyadic rational

endpoints q−2−n, q+2−n ∈ D. The center of int(q, n) is q, where the length becomes 2−n+1.

The radius rad(int(q, n)) is 2−n, where the precision is n.

Given a closed interval I = [a, b], we denote its endpoints by I and I , i. e., I = [a, b] =

[I , I].
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3 Protocols: Approximate Real Functions

In this chapter we describe the internals of our so-called protocols. To recall, a protocol is a

black-box modeling the actual computation of some real-valued function; we introduce eight

of them, prove their existence (if not obvious) as well as their computability, computational

complexity and simulation complexity (i. e., their relation to the other protocols) as far as

possible.

3.1 Introduction to Protocols and Protocol Simulation

Protocols are one way to say, at this instant, we do not care about how to compute the

information we need for an algorithm to approximate the function maximization. But since

we also focus on the implementational aspects of our approach, at some point we do have

to care about our protocols internals. More precisely, we will deal with (a) each protocol’s

computational complexity, and (b) its simulation complexity. By the second phrase (namely,

the simulation complexity) we mean the amount of queries to some protocol A in order

to simulate another protocol B. As simple as it sounds, there is a certain aspect in this

notion that has to be carefully examined: the information shared between both protocols.

For protocols A and B there is some information NA and NB, respectively, that can be used

by any algorithm. But what information is given to an algorithm that simulates B by A?

It could be as simple as, say, the summation of both information (i. e., NA ∪ NB), but also

NA ∩ NB, or even (NA • NB)∪ N is possible for some set operation • and information N that

is independent of NA and NB (but maybe dependent on both protocols, i. e., the additional

information N given to a simulation algorithm for B by protocol A is described by a mapping

sim-inf : proto× proto→ information). The respective choice of information is individually

detailed in each result.

In combination with the computational complexity of our protocols, we get a better picture

of the overall complexity of approximate function maximization in the following sense:

While some protocol A might be useful to determine the maximum of a function more easily
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(e. g., for the reader), a second protocol B might have a significantly lower complexity. Then,

if the simulation complexity allows it (i. e., by replacing A through a simulation by B, the

overall complexity of simulating A by B is still not (significantly) higher than applying A

directly), we could simply choose the protocol of the least overall complexity to apply it to

the approximate function maximization problem. Therefore, we get a parameterized (in the

information used) and quantitative upper bound on its complexity.

Notice that this approach might be applicable also to other problems with partially (or even

completely) unknown, or at least very difficult internal structure, to get some insights what

(information) causes a high complexity.

A Protocol Overview

In the following sections we are about to examine different kinds of protocols, each of them

revealing some particular information about the encoded function.

Protocols 0 and 1 (Section 3.2) are, more or less, small deviations of Definition 2.3.2; as we

will prove, their computability is easy to obtain. Protocol 2 (Section 3.3) extends protocol 0

such that it not only returns approximations of f , but also of f ′. The additional information

about f first derivative might hopefully help to approximate MAX( f ) more easily, but (at

worst) on the cost of its computational complexity; we have already provided and argument

for that in Theorem 2.3.8.

Where protocol L (Section 3.5) reveals the function’s Lipschitz constant (hence an upper

bound of the size of each y-interval), both protocol Y (Section 3.4) and X (Section 3.6) are

providing (in some sense) “tight” approximations of y- and x-intervals, respectively; see

Table 3.2 for a more precise description.

While both protocol Coeff and SLP (Section 3.7) root from a numerical analysis point of view

(i. e., approximation of functions by interpolation polynomials), protocol SLP is particularly

motivated to provide a more compact encoding of polynomials as, for example, is used in

algebraic complexity theory.

Notes on Simulation Complexity

Given two protocols A and B, the simulation of protocol B by A is denoted by A→ B. With

this notion, Figure 3.1 depicts the structural (or, say, quantitative) results obtained in the

remainder of this section.
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Protocol Short description of what it computes

Protocol 0 Dyadic rational 2−n–approximation of f

Protocol 1 Dyadic rational (1+ L) · 2−n–approximation of f

Protocol 2 Dyadic rational 2−n–approximation of both f and f ′

Protocol Y Given (q, n) ∈ Dn×Z, compute not-too-large 2−m–approximation

(m ∈ Z) of f |int(q,n)

Protocol L 4 · L · (b− a)–approximation of any y-interval f ([a, b])

Protocol X Given (q, mJ ) ∈ Dn×Z, compute a not-too-small 2−m–approximation

(p, nI) ∈ DmJ
×Z such that f (int(q, nI))⊆ int(p, mJ )

Protocol Coeff Dyadic rational approximations to coefficients ai ∈ R, where polyno-

mial
∑

i aiX
i approximates f within a prescribed error 2−n

Protocol SLP Straight line program Π for f so that the polynomial encoded by Π

approximates f within a prescribed error 2−n

Table 3.2: Short descriptions (modulo details) of each protocol examined in this thesis.

In contrast, the qualitative results are summarized in Table 1.2. As Figure 3.1 suggests,

most entries are not obtained by direct results (i. e., results of direct comparisons), but by

use of transitivity. Those results are indicated by entries of form A→∗ C , i. e., there is an

(intermediate) protocol B so that A→ B→∗ C or A→∗ B→ C .

Also, both direct and transitive results on simulation complexity help to ease the analysis of

protocol’s computational complexity. That is, let protocol A be polynomial-time computable,

and the simulation A→∗ B be polynomially bounded. Then protocol B also is polynomial-

Figure 3.1: Overview of (direct) results regarding protocol’s simulation complexity
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time computable in the information NA used to compute protocol A as well as in the infor-

mation NA→∗B used in the simulation of protocol B.

As part of the simulation of a certain protocol, it often is required to compute a dyadic

rational of some fixed precision m ∈ Z, while in the respective proofs we will often come

up with a dyadic rational p̃ ∈ D of lower precision m̃ ∈ Z, m̃ < m. We denote the minimal

distance between p̃ ∈ Dm̃ and its most nearby neighbor in Dm by d(p̃,Dm) =minp∈Dm
| p̃−p |.

This distance is always bounded by 0≤ d(p̃,Dm)≤ 2−(m+1).

3.2 Protocols 0 and 1

The first protocols we like to examine are (in a sense) immediate formulations of real func-

tion computability: While protocol 0 provides rational dyadic approximations of function

values in single dyadic rational points, protocol 1 on the other hand provides close approx-

imations for f ’s image on a whole interval with dyadic rational endpoints on the cost of a

possible higher approximation error measured, amongst others, in f ’s Lipschitz constant.

Definition 3.2.1 (protocol 0). Let f : R → R be a continuous function. Given an integer

n ∈ Z and a dyadic rational q ∈ Dn as inputs, protocol 0 returns a dyadic rational p ∈ Dn

satisfying

f (q)− 2−n < p < f (q) + 2−n.

Protocol 1 is well-defined in the sense that there always exists at least one point p ∈ Dn such

that p ∈ ( f (q)−2−n, f (q)+2−n), because the distance of two consecutive points p1, p2 ∈ Dn

(which is 2−n) does not exceed the length of the open interval ( f (q) − 2−n, f (q) + 2−n).

Moreover, this interval contains at most two dyadic rational points of precision n. To see

why, consider the minimum distance between three or more points of precision n: It is at

least 3 · 2−n, which exceeds the length of ( f (q)− 2−n, f (q) + 2−n) by more than 2−n. Both

cases are depicted in Figure 3.2. Protocol 0 easily extends to higher dimensions, where

intervals are replaced by the more general term of hypercubes.

Definition 3.2.2 (protocol 0, d-dimensional version, d ∈ N). Given a continuous function

f : Rd → R, along with inputs n ∈ Z and ~q ∈ Dd
n. Then, a d-dimensional version of protocol

0 returns a point p ∈ Dn satisfying

f (~q)− 2−n < p < f (~q) + 2−n.
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ya−1
2n

a
2n

a+1
2n

f (q)− 2−n f (q) + 2−n

(a) one dyadic rational point of Dn

is contained

ya−1
2n

a
2n

a+1
2n

f (q)− 2−n f (q) + 2−n

(b) two dyadic rational points of Dn

are contained

Figure 3.2: Well-definedness of protocol 0: The interval ( f (q)− 2−n, f (q) + 2−n) contains
either one or two rational dyadic points in Dn.

In contrast to protocol 0, the approximation error for protocol 1 is measured not only in

the input precision n ∈ Z, but also in the (global) Lipschitz constant of f . Since continuity

in general does not imply Lipschitz continuity (only the other way around; for an example,

consider
p

x on [0,1]), the set of functions to define protocol 1 on is restricted to those

functions being Lipschitz continuous with a given and known, but arbitrary constant L > 0.

The general definition of a d-dimensional version of protocol 1 (in comparison to Definition

3.2.2) requires it specify what we mean by Lipschitz continuity in higher dimensions. There-

fore, a function f : Rd → R is L-Lipschitz continuous with constant L > 0 if | f (~x)− f (~y) | ≤
L · ‖~x − ~y‖∞ holds for all real-valued d-tuples ~x := (x1, . . . , xd), ~y := (y1, . . . , yd) ∈ Rd ,

where ‖~x‖∞ :=max1≤i≤d |x i| denotes the maximum norm.

Definition 3.2.3 (protocol 1). Let f : Rd → R be an L-Lipschitz continuous function. When

given an integer n ∈ Z and a d-tuple ~q := (q1, . . . , qd) ∈ Dd
n as inputs, then protocol 1 returns

a single dyadic rational p ∈ Dn, satisfying

f (~x)− (1+ L) · 2−n < p < f (~x) + (1+ L) · 2−n (3.1)

for all ~x := (x1, . . . , xd) ∈ Rd with ~q− 2−n ≤ ~x ≤ ~q+ 2−n. I. e., ~x lies in the d-dimensional

hypercube spanned by the diagonal vertices ~q− 2−n and ~q+ 2−n.

Here, the following notation is introduced:

~q− 2−n := (q1− 2−n, . . . , qd − 2−n),

and ~q− 2−n ≤ ~x if and only if qi − 2−n ≤ x i for all i = 1, . . . , d.

Loosely speaking, the dyadic rational approximation p ∈ Dn is taken from a (d + 1)-dimen-

sional hypercube (a “strip” in case of d = 1) of height (in y-direction) ≤ (1 + L) · 2−n+1
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so that p’s distance to every point ~y ∈ int(~q, n) is less than (1+ L) · 2−n. Also, for a better

understanding about the relation to protocol 0, a side-by-side comparison of both protocol

is provided in Figure 3.3.

q− 2−n q+ 2−nq

(a) Point p, protocol 0’s approximation
for f (q), is contained in the shaded
area.

q− 2−n q+ 2−nq

<∆

(b) Point p, protocol 1’s approximation for f in
the blue interval, is contained in the shaded
area; ∆ := (1+ L) · 2−n.

Figure 3.3: Comparison of protocols 0 and 1 (for d = 1): Protocol 1 does not get a single
d-tuple ~q ∈ Dd

n as an input (like for protocol 0), but a whole hypercube, spanned
by diagonal vertices ~q− 2−n and ~q+ 2−n.

Below we prove the well-definedness of protocol 1 and its connection (regarding simulata-

bility) to protocol 0.

Lemma 3.2.4. Protocol 1 exists for arbitrary Lipschitz-continuous functions. More precisely,

given an L-Lipschitz continuous function f : Rd → R, there is a point p ∈ Dn satisfying (3.1)

for every integer n ∈ Z and every point ~q ∈ Dd
n.

Proof. We only have to show that there is a point p ∈ Dn lying in the (uncountable) inter-

section of all intervals ( f (~x)− (1+ L) · 2−n, f (~x) + (1+ L) · 2−n) for all ~x ∈ int(~q, n). This

can be restated as

�

f (~y) + (1+ L) · 2−n
�

−
�

f (~x)− (1+ L) · 2−n
�

≥ 2−n+1

for ~x , ~Y ∈ int(~q, n)with f (~x)≥ f (~y), i. e., the intervals ( f (·)−(1+L)·2−n, f (·)+(1+L)·2−n)

are overlapping just enough to contain at least one point p ∈ Dn. So:

�

f (y) + (1+ L) · 2−n
�

−
�

f (x)− (1+ L) · 2−n
�

≥ 2 · (1+ L) · 2−n− L · 2−n+1

= 2−n+1

As a consequence of above’s proof, we get a relationship between precision n and the Lip-

schitz constant L on one side, and the difference between f ’s minima and maxima on any

hypercube int(~q, n), ~q ∈ Dd
n, on the other.
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Proposition 3.2.5. Given an L-Lipschitz continuous function f : Rd → R, and a hypercube

int(~q, n) where n ∈ Z, ~q ∈ Dd
n. Then max f |int(~q,n)−min f |int(~q,n) ≤ (1+ L) · 2−n+1.

The proof actually is a consequence of f being L-Lipschitz continuous. Instead, we argue

using the definition of protocol 1. First define

J :=
⋂

~x∈int(~q,n)

( f (~x)− (1+ L) · 2−n, f (~x) + (1+ L) · 2−n)

and note that by Lemma 3.2.4 the set J ∩Dn is non-empty, thus implying the existence of

a dyadic rational p ∈ Dn coherent with protocol 1. Again, using the definition of protocol 1,

this fact can be restated as

J 6= ; ⇒ 0≤
�

min f |int(~q,n)+ (1+ L) · 2−n
�

−
�

max f |int(~q,n)− (1+ L) · 2−n
�

which concludes the proof of above’s proposition.

Theorem 3.2.6. Let f : Rd → R be an L-Lipschitz continuous function. Then protocols 0 and

1 are asymptotically equivalent when keeping L constant.

Proof. Simulation 1→ 0: Given a precision n ∈ Z and a dyadic rational ~q ∈ ([0, X ]∩Dn)d ,

protocol 1 returns a dyadic rational p ∈ Dn so that | f (~x)− p | < (1+ L) · 2−n holds in all

~x ∈ int(~q, n), thus also for ~x = ~q. Query protocol 1 with precision ñ := n+ 1+ dlog(1+ L)e
and dyadic rational ~q, then it returns a dyadic rational p̃ ∈ Dñ such that

| f (~q)− p | ≤ | f (~q)− p̃ |+ | p− p̃ |< (1+ L) · 2−ñ+ 2−(n+1) ≤ 2−n

for p ∈ Dn with | p − p̃ | = d(p̃,Dn). Returning p now simulates a query of protocol 0 by

using only one call to protocol 1.

Simulation 0 → 1: For the converse simulation, we have to ensure that for inputs ~q ∈
([0, X ] ∩ Dn)d and n ∈ Z, the simulation algorithm returns a dyadic rational p ∈ D such

that (a) it is of precision n and (b) it satisfies | f (~x)− p |< (1+ L) · 2−n for all ~x ∈ int(~q, n).

For that, set y = min f |int(~q,n) and y = max f |int(~q,n). Denote the dyadic rational returned

by protocol 0 when queried with precision n and dyadic rational ~q ∈ Dn by p. It satisfies

| f (~q)− p |< 2−n and also is of precision n. We instantly observe

| y − p | ≤ | y − f (~q) |+ | f (~q)− p |< L · 2−n+ 2−n = (1+ L) · 2−n.
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The same holds for | y − p |. Figure 3.4 also gives a graphical proof.

x

g(x) = L · x + c

fictitious function f

int(~q, n)

~q

p ∈
y

y

= L · 2−n
< (1+ L) · 2−n

Figure 3.4: Schematic for simulation of protocol 1 by 0. There is no need to split up
x−interval int(~q, n) because the dyadic rational returned by protocol 0 already
obeys the definition of protocol 1.

Computational Complexity

Protocol 0. If f is a (polynomial-time) computable function, then protocol 0 also is (polynomial-

time) computable because, loosely speaking, protocol 0 is only a protocol formulation of a

(polynomial-time) computable real function; its definition can be restated as

(∀x ∈ [0, X ])(∀φ)(∀n ∈ Z) | x −φ(n) | ≤ 2−n

⇒
�

Mφ(n) ∈ Dn and |Mφ(n)− f (x) | ≤ 2−n
�

with φ(n) ∈ Dn encoding the input q ∈ Dn.

Protocol 1. As shown in the proof of Theorem 3.2.6, it only takes a constant amount of

queries to protocol 0 in order to approximate f (x) for all x ∈ int(~q, n) within a prescribed

error 2−n as long as both the dimension d and the Lipschitz constant L is fixed. Thus,

in combination with the (polynomial-time) computability of protocol 0, protocol 1 also is

(polynomial-time) computable.
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3.3 Protocol 2

The idea behind protocol 2 goes as follows: Equip protocol 2 with the ability to return ap-

proximations of finitely many derivatives of f in a given dyadic rational point. As described

in Section 2.4, the computability of f ′ in combination with the ability to compute its roots

could (in some situations) actually help to compute functional MAX( f ). In this section, we

lay out the ground work, before we use it in Section 4.1.2 to analyze the query complexity

of approximating MAX( f ) when given access to protocol 2.

Definition 3.3.1 (protocol 2). Let f : R → R be a continuously differentiable function.

Given an integer n ∈ Z and a point q ∈ Dn as inputs, protocol 2 returns points p, p′ ∈ Dn

satisfying

f (q)− 2−n < p < f (q) + 2−n, and

f ′(q)− 2−n < p′ < f ′(q) + 2−n.

The existence of such dyadic rationals p, p′ ∈ Dn directly follows from earlier discussions on

protocol 0.

Simulation Complexity

It is obvious that, for example, protocol 0 can be simulated by only using a constant number

(here: exactly one) of queries to protocol 2, thus yielding a whole chain of further simula-

tion results; cf. Table 1.2 or Figure 3.1. The hard problem about simulating protocol 2 by

another protocol is the need to come up with an (at least local) approximation of f ′. A naive

approach would go like this (when attempting to simulate protocol 2 by queries to protocol

0):

Protocol 0 evaluates f on some rational open ball around q, say on Bδ(q) for

some to-be-determined δ > 0, in 2n∗ many points (n∗ ∈ N for the sake of sim-

plicity), computes an interpolation polynomial h for f based on them, and sym-

bolically differentiates and finally evaluates h in q.

Several questions are coming up using this method: (a) What degree does such a polynomial

has to have? (the evaluation time highly depends on the number of coefficients); (b) How

do we have to choose δ and n∗?; (c) How to circumvent the typical adversary argument for

interpolation polynomials? Those and related questions will be postponed until Section 3.7
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where we explicitly analyze the simulation of protocol 2 by (the yet undefined) protocol Co-

eff that returns dyadic rational coefficients of an approximation polynomial for real-valued

function f .

As we will see in the following: Unless we restrict our analysis to continuously differentiable

computable real functions f with compact domain and the extension of f ′ having a com-

putable modulus of continuity on dom( f ), the first derivative f ′ is not even computable.

Computability and Computational Complexity

Theorem 2.3.8 states that, roughly speaking, if we restrict the set of functions f : S → R
(with compact domain S ⊆ R) to those being (polynomial-time) computable, then protocol

2 is (polynomial-time) computable if and only if f ′ has a (polynomially bounded) recursive

modulus of continuity over the whole domain. While this is an upper bound result on the

(polynomial-time) computability for protocol 2, it also has been shown in [KF82, Theorem

5.1] that there is a polynomial-time computable function f which is nowhere differentiable

on [0,1]. Moreover, Ko proved (in [Ko91, Theorem 6.4], extending a result from [Myh71])

that there even is a polynomial-time computable differentiable real function f : [0, 1]→ R
such that f ′(d) is not computable for any dyadic rational d ∈ D. Thus, without the re-

striction on f ’s modulus of continuity being computable, protocol 2 in general is not even

computable.

At least one further positive result is known (cf. [Ko91, Corollary 6.3]): If f : [0,1] → R
polynomial-time computable and at least two times continuously differentiable, then f ′ also is

polynomial-time computable. In general, the first k−1 derivatives of f are polynomial-time

computable if f ∈ Ck[0, 1] and polynomial-time computable itself.

3.4 Protocol Y

Protocol Y will be formulated in a way such that it implicitly delivers information about

the local Lipschitz constant1 of a function f . To actually define protocol Y, we only consider

locally non-constant functions. Loosely speaking, the image of locally non-constant functions

varies in its function values on arbitrarily small open ball on the whole domain. The reasons

for the restriction to such functions are explained right after their definition.

1 A function f :⊆ R→ R is said to have a local Lipschitz constant L > 0 at x ∈ dom( f ) if there is a δ > 0 so
that (∀y ∈ dom( f )) | x − y | ≤ δ⇒ | f (x)− f (y) | ≤ L · | x − y |.
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Definition 3.4.1 (locally non-constant functions). A continuous function f : R→ R is said

to be locally non-constant if f is non-constant on every open ball around x where x ∈ R;

i. e.,

(∀x ∈ R) (∀ε > 0) (∃y ∈ Bε(x)) such that | f (x)− f (y) |> 0

where Bε(x) = {z ∈ R | | x − z |< ε} denotes an open ball around x of radius < ε.

The restriction to locally non-constant functions is motivated by the following fact: Given

an arbitrary continuous function f : R → R and an interval [a, b] ⊆ R, then in general

there is no notion of a smallest dyadic rational interval int(p, m) containing f ([a, b]), e. g.,

in case of f |[a,b] = 0. In this situation, the precision m would have to go up to infinity in

order to justify the notation of int(p, m) being the smallest dyadic rational interval of that

kind. Respecting the restriction to locally non-constant functions, the following definition

now describes in details what we want to understand by “smallest”.

Definition 3.4.2 (most suitable interval). Let f : R → R be a locally non-constant L-

Lipschitz continuous function, and int(q, n) be a sub-interval of R, where n ∈ Z and q ∈ Dn.

Furthermore, let int(p, m) be an interval with m ∈ Z and p ∈ Dm. We say, int(p, m) is most

suitable for f on int(q, n) if and only if the following conditions hold:

(a) The image of f on int(q, n) is contained in int(p, m), i. e., f (int(q, n))⊆ int(p, m);

(b) The interval int(p, m) can not be refined, i. e., f (int(q, n)) 6⊆ int(p̃, m+ k) for all k ≥ 1

and all p̃ ∈ Dm+k.

Condition (b) of Definition 3.4.2 provides an upper bound on the precision of a most suitable

interval for continuous functions f : R → R and input intervals int(q, n) along the x-axis.

Besides that, condition (b) also requires a most suitable interval (denoted as J suit to be

located on the grid of dyadic rationals; that is, its endpoints have to be of the same precision,

say m. Moreover, interval J suit is required to be of length 2−m+1, so the endpoints can not

be arbitrarily far away while, by contrast, providing them with high accuracy.

Since f (int(q, n)) does not have to lie perfectly on the grid, there are situations in which

J suit might nearly have twice the size of f (int(q, n)). As an example, let f : [0,1] → R
be an arbitrary locally non-constant function. Further assume that 2−(m+2) < max f |[a,b] −
min f |[a,b] < 2−(m+1) for some m ∈ Z and some sub-interval [a, b] of [0, 1]. This assumption

does not imply that some y-interval of length 2−(m+1) (i. e., int(p, m+2) for some p ∈ Dm+2)

is most suitable for f on [a, b]. This situation is depicted in Figure 3.5.
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(a+ 1)/2m = (2a+ 2)/2m+1

(2a+ 1)/2m+1

a/2m = 2a/2m+1

(2a− 1)/2m+1

(a− 1)/2m = (2a− 2)/2m+1

f

max[a,b] f

min[a,b] f

2−(m+2) < •< 2−(m+1)

Figure 3.5: Rasterization around f ([a, b])

There, int(a/2m, m+ 1) would be a most suitable interval because

(a) f (int(q, n))’s length exceeds 2−(m+2), but it is bounded from above by 2−(m+1);

(b) no interval of precision m+ 2 contains f (int(q, n)).

Note that the second property is not true in general. For a slightly modified example where

f (int(q, n)) actually is contained in an interval of precision m+ 2, see Figure 3.6.

(2a+ 1)/2m+1

2a/2m+1

(2a− 1)/2m+1

interval int(2a/2m+1, m+2)
contains f (int(q, n))

f

Figure 3.6: Moving f (int(q, n)) may yield a more precise most suitable interval

The following two lemmata justify the definition of a most suitable interval by proving its

existence and uniqueness.

Lemma 3.4.3 (existance of J suit). Given a locally non-constant continuous function f : R→
R, and an x-interval int(q, n) with n ∈ Z and q ∈ Dn. Then there exists a non-refinable y-

interval J suit := int(p, m) containing f (int(q, n)).

Proof. We state a proof by contradiction. Assume that for some m̃ ∈ Z (chosen as m̃ ≥
pcs( f (int(q, n))) − 1) there is a sequence (int(p(k), m̃ + k − 1))k of nested intervals (i. e.,

int(p(k+1, m̃+k)⊆ int(p(k), m̃+k−1) for all k ≥ 1) such that f (int(q, n))⊆ int(p(k), m̃+k−1)

for all k ≥ 1. This is equivalent to say that for our situation, there is no most suitable interval.
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Note that such midpoints p(k) do exist; simply choose them to have minimal distance to the

center of f (int(q, n)), i. e., | p(k)−mid( f (int(q, n))) |= d(mid( f (int(q, n))),Dm̃+k−1). Hence,

f (int(q, n))⊆
�

⋂

k≥1

int(p(k), m̃+ k− 1)
�

=: J .

Independent of how the sequence of nested intervals evolves, J becomes a degenerate

interval. This leads to an immediate contradiction since we assumed that f is locally non-

constant. So there must be a number k0 ∈ N such that f (int(q, n))⊆ int(p(k0−1), m̃+k0−2),

but f (int(q, n)) 6⊆ int(p(k), m̃+ k − 1) for all k ≥ k0. Then int(p, m) with m := m̃+ k0 − 2

and p := p(k0−1) ∈ Dm̃+k0−2 is a candidate for a most suitable interval.

It remains to prove that int(p, m) (with p = p(k0−1)) is non-refinable, i. e., that there are no

other values Dm′ 3 p′ 6= p with m′ = m+ 1 so that f (int(q, n)) ⊆ int(p′, m′). However, this

follows directly by our choice of midpoints of having the minimal distance to the center of

f (int(q, n)).

Lemma 3.4.4 (uniqueness of J suit). Given a function f : R→ R, and an x-interval int(q, n)

with n ∈ Z and q ∈ Dn. Furthermore, let int(p, m) be a y-interval with f (int(q, n))⊆ int(p, m)

that cannot be refined. Then int(p, m) is unique with this property.

Proof. First, let p ∈ D be of the form p = a/2m for some a ∈ Z. Assume that there is another

non-refinable y-interval int(p̃, m) different from int(p, m), where f (int(q, n)) ⊆ int(p̃, m)

and p̃ := (a ± 1)/2m.2 W. l. o. g., let p̃ = (a + 1)/2m; the other case follows by the same

argument. Since, by our assumption, both y-intervals int(p, m) and int(p̃, m) are containing

f (int(q, n)), we get

f (int(q, n))⊆
�

int(p, m)∩ int(p̃, m)
�

,

which implies

f (int(q, n))⊆ [p, p+ 2−m] = int((2a+ 1)/2m+1, m+ 1) =: J .

The gained intervalJ is of precision pcs(J ) = m+1< m= pcs(int(p, m)), but int(p, m)was

assumed to be non-refinable. We get a contradiction to our assumption, proving int(p, m) to

be unique.

2 In (the fictitious) case of | p− p̃ |> 2−m, the intersection of their respective intervals would be either empty
or a degenerate interval. Either way, this cannot happen because f (int(q, n)) is supposed to be contained in this
intersection. Therefore, p̃ := (a± 1)/2m are the only possible values for p̃.
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For the restricted case of f : [0,1] → R being 1-Lipschitz continuous, the image of f on

some interval I ⊆ [0, 1] can be nicely bounded:

Proposition 3.4.5. Given a dyadic rational interval int(q, n)⊆ [0,1] with n ∈ Z and q ∈ Dn.

Then, for every 1-Lipschitz continuous function f : [0, 1] → R, there exists a dyadic rational

p ∈ Dn−1 such that f (int(q, n)) ⊆ int(p, n− 1). Furthermore, there are functions for whom

such a y-interval int(p, n− 1) cannot be refined.

Now we have everything together to actually define protocol Y.

Definition 3.4.6 (protocol Y). Let f : R→ R be a locally non-constant continuous function.

Given an integer n ∈ Z and a dyadic rational q ∈ Dn, protocol Y returns an integer m ∈ Z and

a dyadic rational p ∈ Dm. Let J := int(p, m) be the interval described by the outputs, and

J suit = int(psuit, msuit) the most suitable interval for f on int(q, n). Then interval J (a) has to

be “not-too-small”, i. e., msuit − 1 ≤ m ≤ msuit, and (b) p ∈ Dm has to be chosen such that

J suit ⊆ J .

Dm

Dm

Dm+1

Dm

Dm

f

q− 2−n q+ 2−nq ∈ Dn J e
xa

ct
J s

ui
t

J 1
J 2

Figure 3.7: Schematic of protocol Y; possible choices Ji of the to-be-returned y-interval and
their relation to J suit.

Figure 3.7 depicts the choice protocol Y has about the returned y-interval and its relation

to J suit. As a side note, having an interval J of less than twice the length as of the most

suitable interval J suit for f on an x-interval I implies len(J) < 4 · len( f (I)). As opposed

to the computation of the most suitable interval, this relaxation is introduced to enable

protocol Y to be at least computable. We treat this problem and choice at the end of this

section.
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Simulating Protocol Y by 1 and vice versa

There are two choices: We could either measure the simulation complexity in some shared

information about both protocols, or the one we will now discuss. Assume we want to

simulate protocol Y by an appropriate (and yet to be determined) number of queries to

protocol 1. From protocol 1, the function’s Lipschitz constant L can be retrieved and used

by the “simulation algorithm”. When exchanging both protocols, a simulation algorithm for

protocol 1 with access to protocol Y does not have this information about L; in fact, now

there is no shared information to measure the simulation complexity in; in short, (N1→Y ∩
NY→1) = ;.

To circumvent this problem, we equip the simulation algorithm with additional information

about the function (e. g., about its moduli), and study the simulation complexity in those

additions.

Theorem 3.4.7. Let f : [0, X ] → R (for some arbitrary, but fixed X > 0) be a Lipschitz

continuous computable real function with Lipschitz constant L > 0. Then the following bounds

hold for the mutual simulation of protocols 1 and Y.

(a) For the additional restriction on f being locally non-constant, simulating protocol 1 takes

O (1+ L) queries to protocol Y.

(b) In addition, let f have both a modulus of continuity m(·) and a modulus of strong unicity

m(·). Also, let int(q, n), q ∈ Dn∩[0, X ], be some x-interval. Then it takes O (1+2m(n)−n)

queries to simulate a modified version of protocol Y on int(q, n) by protocol 1 where it is

allowed to return a y-interval which has at most four times the size of the most suitable

interval.

Proof of Theorem 3.4.7, simulation of protocol 1 by Y. The simulation algorithm for protocol

1 receives as inputs a precision n ∈ Z and a dyadic rational q ∈ Dn, where it has to compute

a dyadic rational p ∈ Dn such that | f (x) − p | < (1 + L) · 2−n for all x ∈ int(q, n). On

the other side, protocol Y (which the simulation algorithm has given access to) requires an

x-interval (say, int(q̃, ñ)) as an input, and returns values m̃ ∈ Z and p̃ ∈ Dm̃ that satisfy

(a) J suit ⊆ int(p̃, m̃) and (b) msuit − 1 ≤ m̃ ≤ msuit. Recall that msuit was defined in protocol

Y as msuit =max{k ∈ Z | ∃p ∈ Dk : f (int(q̃, ñ))⊆ int(p, k)}.

Denote min f and max f on int(q, n) by y and y , respectively. As mentioned, protocol 1

imposes a restriction on its output p ∈ Dn which has to be checked for all x ∈ int(q, n).

Using f ’s continuity, this can be rephrased as (1) | y − p |< (1+ L) · 2−n plus (2) | y − p |<
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(1 + L) · 2−n. If both conditions are met, then they also hold for all intermediate points

y ≤ y ≤ y .

It is the challenge of this simulation to determine a suitable p ∈ D of the right precision.

This task is split up into two parts: First, partition interval int(q, n) into 2ñ−n equally-sized

intervals int(q̃i , ñ), where ñ has to be suitably large. Second, recombine the resulting y-

intervals to get a dyadic rational p ∈ Dn coherent with protocol 1.

x

int(q, n)

int(q1, ñ) int(q2, ñ) int(q3, ñ) int(q4, ñ)

f (int(q4, ñ))J suit
4

J4

p̃4

J1

p̃1

J2

p̃2

J4

p̃3

p̃

(y + y)/2

Figure 3.8: Connection between introduced variables for proving the simulation complexity
of protocol 1 by access to protocol Y. As an example, the given interval int(q, n)
is partitioned into four sub-intervals int(qi , ñ) whose respective approximative
y-intervals (obtained by protocol Y) are denoted by Ji .

We start by conceiving both an upper and lower bound for ñ based on parameters known to

the simulation algorithm. For that, let p̃i and m̃i be values obtained from protocol Y when

queried with intervals int(q̃i , ñ), and denote the resulting interval int(p̃i , m̃i) by Ji . Also set

p̃ := maxi p̃i , p̃ := mini p̃i and p̃ := (p̃ + p̃)/2 ∈ Dm̃+1. Accordingly, let m̃ := mini m̃i and

m̃ :=maxi m̃i . Figure 3.9 depicts the connection between these variables.

Now ñ has to be chosen large enough so that p̃ has a close dyadic rational neighbor of

precision n whose distance to each y ∈ f (int(q, n)) differs at most by the tolerance allowed
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in protocol 1, i. e., p̃ is guaranteed to satisfy max{| y− p̃ |, | y− p̃ |}+d(p̃,Dn)< (1+ L) ·2−n.

Combining f ’s Lipschitz continuity with the definition of protocol Y implies

len(Ji) = 2−m̃i+1 < 4 ·
�

max f |int(q̃i ,ñ)−min f |int(q̃i ,ñ)

�

≤ 4 · L · 2−ñ+1. (3.2)

Also, we have max{| y − p̃ |, | y − p̃ |} < L · 2−n + 2−m̃+1. This is due to y ≤ p̃+ 2−m̃+1 and

y ≤ p̃+ 2−m̃+1 implying

| (y + y)/2− p̃ | ≤ (y + y)/2− (y + y − 2−m̃+2)/2≤ 2−m̃+1.

Set ñ := n+ 3+ dlog(1+ L)e. Then by Equation (3.2) we get

max{| y − p̃ |, | y − p̃ |+ d(p̃,Dn)< L · 2−n+ 4 · L · 2−ñ+1+ 2−(n+1)

< (1+ L) · 2−n.

To conclude, when the function’s Lipschitz constant L is known by the algorithm, then ñ can

be chosen as above and therefore a provably suitable dyadic rational p ∈ Dn is computable

that is coherent with the definition of protocol 1.

In fact, the second part of Theorem 3.4.7 is more complicated to prove than the converse

situation because now, we have to compute a “close enough” y-interval without actually

knowing about the exact one (i. e., about f (int(q, n))). So, at first, it seems unclear what

“close enough” might mean to a simulation algorithm when the subject itself is not given

(i. e., the exact interval). In the following proof, we will resolve this problem by heavily

relying on both the modulus of continuity m(·) and the modulus of strong unicity m(·). To

use both concepts, the set of functions for which such a simulation is provably possible is

restricted to computable functions having (at least) computable moduli m(·) and m(·).

Proof of Theorem 3.4.7, simulation of protocol Y by 1. The simulation algorithm (we will de-

vise here) receives as inputs both a precision n ∈ Z and a dyadic rational q ∈ Dn, and

computes a precision m ∈ Z as well as a dyadic rational p ∈ Dm so that int(p, m) is a y-

interval consistent with protocol Y. I. e., msuit − 1 ≤ m ≤ msuit for msuit = max{k ∈ Z | ∃p ∈
Dk : f (int(q, n))⊆ int(p, k)}. As proposed, the algorithm has access to protocol 1 so its sim-

ulation of protocol Y can rely on dyadic rational approximations of f in a finite amount of

breakpoints.

The basic idea behind the proof goes as follows:
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int(q, n)

int(q̃1, ñ) int(q̃2, ñ) int(q̃3, ñ) int(q̃4, ñ)

≤ (1+ L) · 2−ñ

p̃1 ∈

p̃2 ∈

3 p̃3 p̃4 ∈

p̃ ∈

p̃ ∈

Figure 3.9: Information given by protocol 1 (when partitioning int(q, n) into pairwise dis-
tinct sub-intervals int(q̃i , ñ)) that can be used to simulate a protocol Y query. The
shaded areas are the ranges of possible dyadic rationals p̃i ∈ Dñ which approxi-
mate f (int(q̃i , ñ)) coherent with protocol 1.

(a) Split the given x-interval int(q, n) into 2ñ−n equally sized intervals int(q̃i , ñ). (For

future reference, ñ will depend on n as well as the moduli m(·) and m(·), i. e., on f ’s

“steepness”.)

(b) Apply protocol 1 to each interval int(q̃i , ñ); the respective results are denoted by p̃i ∈
Dñ.3

(c) Devise non-refinable m ∈ Z and p ∈ Dm so that (i) J ⊆ int(p, m) with J := [p̃− (1+
L)·2−ñ, p̃+(1+L)·2−ñ], (ii) [y , y]⊆J , but also (iii) 1.5·len(int(p, m))< 2·(y− y).4

Note that the last point (c) is the hardest one for reasons explained prior to this proof.

Notation: y :=min f |int(q,n), y :=max f |int(q,n), p̃ :=mini p̃i , p̃ :=maxi p̃i . Also, we express

the Lipschitz constant as special modulus of continuity. For that, set m(n) := n + log(L).

Then, by definition of the modulus of continuity,

| x − y | ≤ 2−m(ñ) = 2−(ñ+log(L))⇒ | f (x)− f (y) | ≤ L · 2−m(ñ) = 2−ñ

for all x , y ∈ [0, X ] and n ∈ Z

3 Remember that by definition of protocol 1 we get | f (x)− p̃i | < (1+ L) · 2−ñ for all x ∈ int(q̃i , ñ) and all
i = 1, . . . , 2ñ−n.

4 The interval J returned by protocol Y is allowed to be at most two times larger than the most suitable
interval J suit, whereas J suit itself has (in every situation) less than two times the size of [y , y]. Relating J and
[y , y] leads to len(J)< 2 · (y − y).
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If ñ is chosen so that

1.5 · (1+ L) · 2−ñ+2 ≤ 0.5 · 2−m(n), (3.3)

then condition (c)(iii) also is satisfied. Moreover, Equation (3.3) makes sure that the approx-

imation error (the difference between the exact y-interval’s length y − y and the length of

our computed approximation J ) is small enough (. . . ). This is, on the one hand, due to

len(J ) = p̃− p̃+ (1+ L) · 2−ñ+1 < y − y + (1+ L) · 2−ñ+2, (3.4)

inferred by the weak relationship | (y − y)− (p̃− p̃) |< (1+ L) · 2−ñ+1 between len([y , y])

and len([p̃, p̃]), and on the other hand a result of the modulus of strong unicity

(∀x , z ∈ int(q, n)) 2−m(n) < | f (x)− f (z) | ≤ y − y . (3.5)

More precisely, Equation (3.4) provides the lower estimation for Equation (3.3), while Equa-

tion (3.5) provides the upper one:

1.5 · len(J )
(3.4)
< 1.5 · (y − y + (1+ L) · 2−ñ+2)

(3.3)
≤ 2 · 2−m(n)

(3.5)
< 2 · (y − y).

By definition of m(·), term (1+L)·2−ñ+2 can be rewritten as (1+2m(ñ)−ñ)·2−ñ+2. So, bottom

line, for ñ to satisfy (3.3) it has to be chosen so that the following inequality holds:5

min{ñ, 2 · ñ−m(ñ)} ≥ m(n) + log(12). (3.6)

Let int(t, k), t ∈ Dk, be a non-refinable interval, i. e., there are no other values k′ > k

and t ′ ∈ Dk′ so that [y , y] ⊆ int(t ′, k′), which implies int(t, k + 1) ⊂ [y , y] ⊆ int(t, k).

We differentiate between two cases. First, assume [y , y] = int(t, k). This implies J suit =

int(t, k). Combined with 1.5 · len(J ) < 2 · len(J suit) we get J ⊂ int(t, k− 1). Since t ∈ Dk

might not be of precision k − 1 we have to choose a close neighbor t̃ ∈ Dk−1 so that J ⊂
int( t̃, k−1), but then we finally have found a dyadic rational interval which is coherent with

the modified definition of protocol Y, allowing an interval which has at most four times the

size of the most suitable interval.

5 Notice that the constant terms − log(1.5), −2 and − log(0.5) of (3.6) appearing as (. . . )− log(1.5)− 2 ≥
(. . . )− log(0.5), are combined to log(12) on the right hand side.
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For the second case assume [y , y] ⊂ int(t, k). Because of int(t, k + 1) ⊂ [y , y] we get

J suit = int(t, k), so the rest goes as analogous to the first case.

As has been proven above, an at most four times too large y-interval approximation (com-

pared with J suit) is computable under the given conditions. However, the original version of

protocol Y only allowed an approximation of at most twice the length of J suit. This observa-

tion combined with the inability of any simulation algorithm to compute an upper bound

on the approximation error so that J is guaranteed to be not too large gives credit to our

following conjecture.

Conjecture 1. No deterministic simulation algorithm for protocol Y relative to protocol 1 is

capable to return a y-interval that obeys the original definition of protocol Y.

Computational Complexity

Theorem 2.3.7 only provides an upper bound on the length of the encoding of a y-interval

J ,6 but no lower bound.

In 1981, Gaganov showed (cf. [KLRK98, Theorem 3.1]) that computing an absolute ε–

approximation of f (int(q, n)) (for some x-interval int(q, n)) is NP–hard. To compute an

absolute ε–approximation means to come up with (dyadic) rational endpoints y , y ∈ D
so that 0 ≤ f (int(q, n))− y ≤ ε and 0 ≤ y − f (int(q, n)) ≤ ε. However, it does not apply

to our problem of computing an approximative y-interval with a relative (and unknown

explicitly) error that depends on the exact interval’s length.

Whether or not the proof of Gaganov’s statement (see [KLRK98, p. 47]) can be adapted to

also cover protocol Y is open by now. However, we have obtained complexity results for

the modified version of protocol Y (for now denoted by Y∗) while analyzing its simulation

complexity, namely: For locally non-constant computable real functions f : [0, X ] → R,

protocol Y∗ is (exponential-time) computable if f has a (polynomially-bounded) computable

modulus of strong unicity.

6 To recall: polynomial-time computability of f implies the existence of a polynomially-bounded modulus
of continuity for f .
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Figure 3.10: Schematic of protocol L. A y-interval Jpossible returned by protocol L has to
satisfy len(Jpossible)< 4 · L · len(Jexact) and Jexact ⊆ Jpossible.

3.5 Protocol L

For the definition of protocol Y we restricted the set of functions to those being locally non-

constant because constant functions would have made it impossible to define a most suitable

interval. By definition of protocol L we will trade this restriction for a (significantly) higher

worst-case bound on the length of y-intervals returned by protocol L.

Definition 3.5.1 (protocol L). Let f : R→ R be an L-Lipschitz continuous function. Given

a precision n ∈ Z and a dyadic rational q ∈ Dn, protocol L returns a precision m ∈ Z
and a dyadic rational p ∈ Dm so that (a) f (int(q, n)) ⊆ int(p, m), and (b) len(int(p, m)) <

4 · L · len(int(q, n)).

The definition is visualized in Figure 3.10. The existence of protocol L on the other hand is

a direct consequence of f ’s Lipschitz continuity.

Lemma 3.5.2 (existance of protocol L). Given an L-Lipschitz continuous function f : R→ R,

and a dyadic rational x-interval int(q, n) where n ∈ Z and q ∈ Dn. Then there is a dyadic

rational y-interval int(p, m) satisfying Definition 3.5.1.

Proof. Set m := pcs( f (int(q, n))), and m̃ := bm − 1c. Fact: There is a p ∈ Dm̃ so that

|mid( f (int(q, n)))− p | ≤ 2−(m̃+1). Then f (int(q, n)) is contained in int(p, m̃) and we get

len(int(p, m̃)) = 2−m̃+1 < 2−m+3 = 4 · len( f (int(q, n)))

≤ 4 · L · len(int(q, n)).

Note that neither the Definition nor this Lemma imply uniqueness regarding such a y-

interval int(p, m).
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Simulation Complexity

We introduced Protocol L by motivating it as a relaxed version of protocol Y. The simulation

costs of that relaxation are analyzed below.

Theorem 3.5.3. Let f : [0, X ] → R (with an arbitrary, but fixed X > 0) be a Lipschitz

continuous computable real function with Lipschitz constant L > 0. Then the following bounds

apply.

(a) One query to protocol Y suffices to simulate protocol L.

(b) The simulation of protocol 1 requires linearly many queries (in L) to protocol L, where

for the simulation of protocol L by protocol 1, O (1+ 1/L) queries are sufficient.

(c) In addition, let f have both a modulus of continuity m(·) and a modulus of strong unicity

m(·). Then, the simulation of the modified (relaxed) version of protocol Y requires at

most polynomially many queries (in m(·) and m(·)) to protocol L.

Proof of Theorem 3.5.3, simulation of protocol L by Y. Since protocol L is a less restrict ver-

sion of protocol Y, one query to protocol Y suffices to simulate L. Let int(q, n) be the input

to and int(p, m) the answer of protocol Y. Then

len(int(p, m))≤ 2 · len(J suit)< 4 · len( f (int(q, n)))≤ 4 · L · len(int(q, n)),

so interval int(p, m) is consistent with protocol L.

Proof of Theorem 3.5.3, simulation 1↔ L. The simulation of protocol 1 by L will be dis-

cussed in the subsequent proof. For now we only prove the counter direction. For that, let

int(q, n) be a given x-interval and L > 0 be the function’s Lipschitz constant. This proof

now follows the idea applied before: First, partition int(q, n) into smaller intervals int(q̃i , ñ)

where ñ is set as ñ= n+2+ log((1+ L)/L). Querying protocol 1 with these intervals results

in y-intervals int(p̃i , ñ) so that | f (x)− p̃i |< (1+ L) · 2−ñ for all i and x ∈ int(q̃i , ñ).

Set J := [mini p̃i − (1 + L) · 2−ñ,maxi p̃i + (1 + L) · 2−ñ]. This immediately results in

(a) f (int(q, n)) ⊆ J and (b) len(J ) < | f (int(q, n)) |+ 4 · (1+ L) · 2−ñ ≤ 2 · L · | int(q, n) |.
This concludes the proof since the search for close-enough values m ∈ Z and p ∈ Dm so that

J ⊆ int(p, m) is not only easy, but also results in an interval int(p, m) of at most twice the

size of J .
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Proof of Theorem 3.5.3, simulation of protocol Y by L. Instead of proving L → Y directly, we

prove L → 1 and use 1→ Y . To simulate protocol 1 we have to compute a dyadic rational

p ∈ Dn so that | f (x)− p |< (1+ L) · 2−n for all x ∈ int(q, n).

We define δ and δ as in Figure 3.11 as the maximum distance between f (int(q, n)) and

f (int(q, n)), and the midpoint of the hypothetical y-interval int(p, m), respectively. Both δ

and δ are bounded by

(y + y)/2≤max{δ,δ} ≤ 2−m < 4 · L · 2−n. (3.7)

exemplary function f

int(q̃i , ñ)

f (int(q̃i , ñ)) int(p̃i , m̃i)

p̃i
δ̃i

δ̃i

Figure 3.11: Simulating protocol 1 by L: Relation of δ̃i and δ̃i to a y-interval int(p̃i , ñ),
returned by protocol 1.

Consequence: Partition int(q, n) into pairwise distinct intervals int(q̃i , ñ), where we choose

ñ as ñ := bn+ 3+ log(1+ L)c. Same problem as with most of the other protocols: Choose

interval int(p, m) so that (a) p ∈ Dm, (b) [mini p̃i − 2−m̃i , maxi p̃i + 2−m̃i] ⊆ int(p, m), and

(c) int(p, m) satisfies condition (b) of Definition 3.5.1. Combining Equation (3.7) with the

choice of ñ bounds δ̃i and δ̃i (the worst-case distances between a midpoint p̃i and both

endpoints of the exact y-interval f (int(q̃i , ñ))) from above by

max{δ̃i , δ̃i}
(3.7)
≤ 2−m̃i < 4 · L · 2−ñ ≤ 4 · L · 2−(n+3+log(1+L)) < 2−(n+1) (3.8)

for all i. It is easy for an algorithm to choose p and m based on some interval J̃ :=

[mini p̃i − 2−m̃i , maxi p̃i + 2−m̃i] so that (a) len(int(p, m))≤ 2 · len(J̃) and (b) J ⊆ int(p, m).
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As mentioned in (a), when choosing int(p, m), the size of this interval at most doubles com-

pared to J̃ . Thus, Equation (3.8) implies

max{δ,δ} ≤ 2 · len(J̃)< 2−n < (1+ L) · 2−n

for all Lipschitz constants L > 0. Hence, it takes O (1 + L) many queries to protocol L to

simulate one protocol 1 query.

Computational Complexity

By setting m(n) = n+ log(L), the modulus of continuity is nothing less than the general-

ization of f ’s Lipschitz constant. As we know from Theorem 2.3.5, computability of f also

implies computability of m(·). Consequently, by definition of computable functions, protocol

L also is computable for all L-Lipschitz continuous computable functions when m(n) is set

as proposed above.

3.6 Protocol X

Roughly speaking, when given a continuous function f : R→ R, along with the center of a

(yet to be determined) x-interval I and the length of a y-interval J , protocol X returns the

position of J and a not-too-small interval I so that f ’s image on I is contained in J , i. e.,

f (I)⊆ J . Figure 3.12 depicts this situation.

Jp ∈ D

I

q ∈ D

Figure 3.12: Schematic of Protocol X

Analogous to Protocol Y, the requirement on I being “not-too-small” is defined by compari-

son with the most-suitable interval I suit = int(qsuit, nsuit): We say, interval I is “not-too-small”

if and only if (a) I ⊆ I suit and (b) pcs(I) ≤ pcs(I suit) + 1. However, when adapting the defi-

nition of the most-suitable interval from protocol Y, it essentially collapses to the maximum-
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sized rational interval centered at q ∈ Dn whose image under f is contained in J , i. e., there

is a unique precision nI ∈ Z to that f (int(q, nI))⊆ J .

Definition 3.6.1 (protocol X). Let f : R → R be a continuous function. Given a dyadic

rational q ∈ Dn and an integer mJ ∈ Z, protocol X returns a dyadic rational p ∈ DmJ
and

an integer nI ∈ Z. Let I := int(q, nI) and J := int(p, mJ ) be those two intervals described

by above’s parameters. Then (a) f (I) ⊆ J , and (b) interval I has to be “not-too-small”, i. e.,

nsuit ≤ nI ≤ nsuit+ 1 with nsuit :=min{ñ ∈ Z | (∃p̃ ∈ DmJ
) f (int(q, ñ))⊆ int(p̃, mJ )}.

It is crucial for the understanding of protocol X to recognize the tight relation between the

midpoint p ∈ DmJ
and length of I suit. Even if p is exchanged by one of its closest neighbors

(i. e., p→ p± 2−mJ ), len(I) might be significantly smaller (e. g., in case of steep functions)

compared to the most suitable x-interval I suit, based on the original p.

Lemma 3.6.2 (protocol X, existance and uniqueness). For every parameterization as in the

definition of protocol X, there is an x-interval I suit, and it is unique.

Proof. (a) Existence. More precisely, requiring p ∈ D to be at least of precision mJ is both

sufficient and necessary for I suit to exist. Set

f −1(int(p, mJ )) :=
⋃

[a,b]⊆[0,X ]
f ([a,b])⊆int(p,mJ )

[a, b]

for some p ∈ D. So the statement can be rephrased as the search for a precision nI ∈ Z
so that int(q, nI)⊆ f −1(int(p, mJ )). If p is chosen to be at least in DmJ

, then the union

of all intervals
⋃

p∈DmJ
int(p, m j) entirely covers the y-axis. Furthermore,

len(int(p, mJ )∩ int(p± 2−mJ , mJ )) = 2−mJ (3.9)

is no degenerate interval.7 Thus, in combination with f being a continuous function,

there is a precision nI so that int(q, nI)⊆ f −1(int(p, mJ )).

As for the necessity of p being of precision m for some m≥ mJ , it is easy to check that

for any other choice m< mJ and p ∈ Dm, the intersection in (3.9) becomes degenerate

or even empty.7

7This is an important fact: If the interval in (3.9) were degenerate, i. e., a single real, then the precision nI

would go up to infinity – which is neither allowed, nor representable.
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(b) Uniqueness of I suit. Decrease nI (i. e., enlarge x-interval I) then we get nI − 1 <

min{k ∈ Z | f (int(q, k)) ⊆ int(p, mJ )}, or in other words: f (int(q, nI)) ⊆ int(p, mJ ) (
f (int(q, nI − 1)). Thus, this nI is unique since the midpoint q is fixed.

Simulation Complexity

As we prove below, protocol X is powerful enough to simulate the “easy” protocol 0, but also

not too hard itself so there exists a simulation algorithm relative to protocol 1 for X.

Theorem 3.6.3. Let f : [0, X ]→ R (for an arbitrary, but fixed X > 0) be a computable real

function.

(a) The simulation of protocol 0 requires only one query to protocol X.

(b) Assume that f is L-Lipschitz continuous and also has a computable modulus of strong

unicity m(·). Then the number of queries to protocol 1 in order to simulate a call to

protocol X with precision mJ ∈ Z and dyadic rational q ∈ Dn is bounded by O ((1+ L) ·
X · 2m(mJ+log(1+L))).

Proof of Theorem 3.6.3, simulation of protocol 0 by X. Given a continuous function f and in-

puts n ∈ Z, q ∈ Dn, a dyadic rational p ∈ Dn has to be determined so that | f (q)− p | < 2−n

(coherent with protocol 0). On the other side, protocol X requires as an input the size of a

y-interval J of precision mJ , and in return we get the size of an x-interval around q that is

contained in J .

Set mJ := n + k, k ∈ N, where the exact value (or range) for k is yet to be determined.

Providing protocol X with this information gives us a dyadic rational p ∈ Dn+k. Observe that

| f (q)− p | ≤ 2−(n+k) because f (q) ∈ int(p, n+ k) and rad(int(p, n+ k)) = 2−(n+k).

Remaining problem: For k > 0, the midpoint p of J might not be in Dn, so instead of

returning p, the simulation algorithm has to choose a close neighbor p̃ ∈ Dn with | p− p̃ | ≤
2−(n+1). This sums up to

| f (q)− p̃ | ≤ | f (q)− p |+ | p− p̃ | ≤ 2−(n+k)+ 2−(n+1)

< 2−n for k ≥ 2.

To conclude, it requires only one query to protocol X to come up with a dyadic rational

p̃ ∈ Dn as above that simulates the answer of protocol 0.
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The second conjectured simulation, namely the one of protocol X by protocol 1, takes a little

more effort to be proven because we have both to find a dyadic rational on the y-axis and

not-too-small interval on the x-axis, whereas any choice of the former affects the latter.

Proof of Theorem 3.6.3, simulation of protocol X by 1. Given mJ ∈ Z and q ∈ Dn, we have to

describe a procedure that computes a dyadic rational p ∈ DmJ
and a precision nI ∈ Z by

only using protocol 1 and arithmetical operations such that p and nI obey the definition of

protocol X.

The proof goes as follows: First, determine a bound on the size of the smallest x-interval we

have to consider as being one protocol X might return. Second, determine the smallest slope

possible for f on [0, X ] \
⋃

(a,b)⊂I(a, b) (where I is the x-interval from step 1); this bound

depends on f ’s modulus of strong unicity. Third, partition [0, X ] into smaller sub-intervals of

length 2−ñ+1. Here we have to take care that ñ is chosen reasonably large, making the error

introduced by protocol 1 on y-interval approximations smaller than the minimum slope

(as computed in the second step). At last, check for the sequence of increasingly smaller

y-interval approximations (returned by protocol 1) for the first y-interval that both “lies on

the grid DmJ
” and is of size ≤ 2−mJ+1.

The whole approach is iterative. Thus, let n(0) be the precision of the smallest x-interval

around q that covers [0, X ]; that is (at worst), n(0) := −dlog(X )e. For all subsequent itera-

tions we set n(i+1) := n(i) + 1 for i ≥ 0. By convention, let I (i) := int(q, n(i)) with associated

approximative y-interval J (i) (obtained from protocol 1), where the exact y-interval is de-

noted by J (i)exact (that is, J (i)exact = f (I (i))). More precisely, let I (i) = ˙⋃
j=1,...,`i

int(q(i)j , ñ). Query

protocol 1 with every x-interval int(q(i)j , ñ) and denote the resulting dyadic rationals by p(i)j .

Then J (i) := [min j=1,...,`i
p(i)j − (1+ L) · 2−ñ, max j=1,...,`i

p(i)j + (1+ L) · 2−ñ].

As outlined in the beginning, we start by determining a bound on the smallest x-interval

that could possibly obey the definition of protocol X. The Intermediate Value Theorem (IVT)

in combination with f being L-Lipschitz continuous implies the existence of an index ι ∈ N
such that len( f (int(q, n(ι−k)))) ≥ 2−mJ+1, but len( f (int(q, n(ι)))) < 2−mJ+1 for every q ∈ D
and k = 1, . . . , ι. It holds L ·2−n(ι)+1 < 2−mJ+1 if and only if n(ι) > mJ + log(L). The iterative

construction of n(·) yields ι > mJ + dlog(1+ L · X )e, an upper bound on ι. Consequently, I suit

cannot be smaller than int(q, n(ι)). Moreover, ι is computable.

Now that we have a found a bound for ι, we can also bound the minimum slope for f

on X := [0, X ] \
⋃

(a,b)⊂I (ι)(a, b) = [0, q − 2−n(ι)] ∪ [q + 2−n(ι) , X ]. We denote this bound

by M := c ·maxi=0,...,ι m(n(i)) for some constant c > 1. Having both ι and M allows us to
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J (1)exact J (1)J (2)exact J (2)

DmJ

DmJ

DmJ

DmJ+1

DmJ+1

Figure 3.13: Basic obstacle to overcome when simulating protocol X by protocol 1: A small
change in the length of the y-interval approximation may result (e. g., for very
flat functions) in a significant change in the length of the approximated x-
interval I . Thus, we have to provide very tight approximations J (i) for J (i)exact so
that | len(J (i))− len(J (i)exact) |<< 2−m(·).

define the precision ñ (which, in turn, specifies in how many sub-intervals we partition X ).

Set ñ > M + dlog(1+ L)e, then it satisfies (1+ L) · 2−ñ < 2−M (i. e., the error introduced

by protocol 1 is neglectable compared to the minimal slope of f on X ; this will be of

importance later).

The procedure to compute p and nI has two phases: First, determine a “small-enough” y-

interval approximation; second, shrink that approximation so that is “lies on the grid DmJ
”.

In detail, perform the following steps for i = 1, . . . , ι until the procedure stops.

(a) Query protocol 1 with x-interval J (i) and assume that J (i−1) is already given.

(b) Check if len(J (i−1))> 2−mJ+1 ≥ len(J (i)).8 If so, go to the step (c); otherwise, go back

to step (a).

(c) Search for the smallest k ≥ 0, and a dyadic rational p ∈ DmJ
such that J (i+k) ⊆

int(p, mJ ), but J (i+k−1) 6⊆ int(p, mJ ).

The value found for k satisfies J (i+k−2)
exact 6⊆ int(p, mJ ). Then, p is the dyadic rational along the

y-axis and int(q, n(i+k)) the not-too-small x-interval that obey protocol X. Reasons:

8 Note that the y-interval approximations are nested because J (i) ≤ J (i)exact + (1+ L) · 2−ñ < J (i)exact + 2−M <

J (i−1)
exact < J (i−1); similar holds for the respective lower endpoints.



3.6 Protocol X 63

• J (i+k−2)
exact 6⊆ int(p, mJ ) is due to

len(J (i+k−2)
exact )> len(J (i+k−1)

exact ) + 2−M+1 > len(J (i+k−1)
exact ) + (1+ L) · 2−ñ+1

> len(J (i+k−1))> 2−mJ+1;

• The first exact y-interval possibly contained in int(p, mJ ) is J (i+k−1)
exact . This fact uses

the former point plus the choice of k as being minimal for the conditions in step (c).

Hence, either I (i+k−1) or I (i+k) is the most suitable x-interval. By choosing nI := i+ k

we are guaranteed to have captured an x-interval of at least half the size of the most

suitable one.

• The dyadic rational p is the one we searched for (i. e., the one protocol X itself would

have come up with) because it satisfies f (I (i+k)) = J (i+k)
exact ⊆ J (i+k) ⊆ int(p, mJ ) due to

step (c).

This concludes our proof.

Computability and Computational Complexity

As we know, protocol 1 is (polynomial-time) computable whenever f : [0, X ] → R is

(polynomial-time) computable due to the result of simulation 0→ 1. Hence, a similar result

holds for protocol X: If f : [0, X ] → R is (polynomial-time) computable and has a com-

putable (polynomially bounded) modulus of strong unicity, then protocol X is (polynomial-

time) computable. Whether the computability of m(·) is necessary or not for protocol X to be

at least computable is, so far, unknown. However, above’s proof (regarding the simulation

1→ X ) gave some good arguments that this might be true: Without the knowledge of M it is

unclear how to choose ñ so that the approximation error is still insignificantly small, much

smaller than the grid DmJ
. Recall that it does not suffice to determine M solely based on

mJ because for “almost constant” (i. e., very flat) functions, the most suitable interval I suit

might vary vastly in length for even seemingly insignificant changes on the approximation

error. The following conjecture now formulates our belief.

Conjecture 2. Protocol X is not (polynomial-time) computable unless f has a (polynomially-

bounded) computable modulus of both continuity and strong unicity.
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3.7 Protocols Coeff and SLP

In algebraic complexity theory, a straight line program (SLP) is a directed acyclic graph

(DAG) whose inner nodes labeled with the arithmetical operations addition and multiplica-

tion, while the leaves have attached either scalars of some field, or variables (cf. [AB09, Sec-

tion 6.1, Note 6.4]).

It is clear how to evaluate such an SLP. Moreover, an SLP directly allows us in a natural

way to evaluate a polynomial by an in-order tree-walk. Since we are also interested in

keeping the length of our representations small (i. e., at most polynomial in the input size;

here: precision of q ∈ Dn, namely n ∈ Z), an SLP gives us nice features like the existence of

polynomial-sized SLPs for some polynomials when actually dealing with exponentially many

coefficients. As an example, consider (((X + c1)2+ c2)2+ . . . )2 or (even simpler) X 2n
.

We get this nice feature of SLPs for the cost of easy accessibility of the encoded polynomial’s

coefficients. As one implication, we are inable to differentiate the encoded polynomial sym-

bolically, since this would require to construct it first. Given an arbitrary SLP of polynomial

size, this might cause the construction algorithm to take exponentially long, as explained

above. As we have seen in Section 3.3: In general, providing a good approximation even

only to f ’s first derivative is hard. So gaining back the ability of easy differentiability (i. e.,

symbolic differentiability) on costs of a large(r) representation is the motivation for protocol

Coeff. Informally speaking, it returns dyadic rational approximations to the coefficients of

the approximating polynomial.

Now, we first give a brief discussion on both protocol SLP and Coeff, followed by their ac-

tual definition. For protocol SLP, demanding that it always returns an SLP of smallest size

amongst SLPs being representations of approximation polynomials for f would presumably

be too restrictive (cf., e. g., protocol Y for a similar argument). Therefore, the computed

SLP is allowed to be larger in its representation by a constant factor, compared to the min-

imum sized SLP. For protocol Coeff, we do not need such a requirement since a polynomial

is uniquely determined by its coefficients (at least for fields of characteristic 0). For the re-

mainder of this section, any norm without subscript denotes the sup-norm over a function

space, i. e., ‖ f − g ‖ := supx | f (x)− g(x) |.

Definition 3.7.1 (protocols Coeff and SLP). Given a continuous function f : R→ R, aside

with an integer n ∈ Z.

(a) Let ϕn =
∑d

i=0 aiX
i ∈ R[X ] (for some d ∈ N0 and real coefficients ai ∈ R) be a

2−n–approximation of f , that is, ‖ f − ϕn ‖ ≤ 2−n. Further, let be given a precision
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k ∈ Z. Then protocol Coeff returns dyadic rational approximations bi ∈ D so that

| ai − bi | ≤ 2−k for all i = 0, . . . , d.9

(b) Let Πn be a (not necessarily minimum-sized) straight-line program for f , i. e., Πn

encodes10 some real polynomial ϕn ∈ R[X ] so that ‖ f − ϕn ‖ ≤ 2−n. Then protocol

SLP returns Πn.

Protocol Coeff is visualized in Figure 3.14. The existence of both protocols is treated in the

computability subsection.

x

y

f

0 1

ϕ(n) ∈ R[X ] 2−
n

ψ(n, k) ∈ D[X ] 2−
n
+
(d
+

1)
·2
−

k

Figure 3.14: Schematic for protocol Coeff. It returns a polynomial ψ(n, k) of some degree d
with rational coefficients. The exact coefficients are coming from a polynomial
ϕ(n) with real coefficients where ‖ f −ϕ(n)‖ ≤ 2−n.

Simulation Complexity

First we state the obvious.

Lemma 3.7.2. (a) One query to protocol Coeff suffices to simulate protocol 0.

(b) Simulating protocol Coeff takes one query to protocol SLP, but at worst exponential time

to construct the polynomial’s coefficients.

Statement 3.7.2(a) requires any simulation algorithm to evaluate the approximation poly-

nomial ϕn+1 once in q, whereas both n ∈ Z and q ∈ Dn are inputs. Let p̃ = ϕn+1(q) and

9 The requirement | ai − bi | ≤ 2−k on each bi ∈ D implies that requiring bi ∈ Dk is not a restriction, but an
alternative definition of protocol Coeff.

10 An SLP is a special kind of a directed acyclic graph (DAG), so encoding an SLP with n nodes has space
complexity O (n2).
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choose p ∈ Dn so that | p − p̃ | = d(p̃,Dn). Then | p − f (q) | ≤ | p − p̃ | + | p̃ − f (q) | =
2−(n+1)+ 2−(n+1) = 2−n.

Statement 3.7.2(b) holds because a straight-line program of polynomial length has (in

worst-case) an exponential degree. Thus, computing (i. e., actually writing down) the co-

efficients of ϕn for protocol Coeff consumes at worst exponential many steps.

Now let us take a look at a presumably much harder problem: Approximating differentiation

relative to protocol Coeff. A naive attempt could go as follows. Like in [Ko91, Definition

8.1(a)], protocol Coeff is nothing more than a computable function ψ : Z×Z → D∗ that

on integers n and k returns dyadic rational coefficients b0, . . . , bd ∈ D with | bi − ai | ≤ 2−k.

Thus, the approximation error is bounded from above by

‖ f −ψ(n, k)‖ ≤ 2−n+ 2−k · (d + 1),

assuming dom( f ) = [0,1]. To bound the approximation error of f ′, let hn ∈ R[X ] be the

exact approximation polynomial (i. e., the interpolation polynomial with real coefficients:

hn(X ) =
∑d

i=0 ai · X i). Furthermore, denote by ψ′(n, k) and h′n the symbolic differentiation

of ψ(n, k) and hn, respectively. Then the approximation error of f ’s first derivative can be

bounded by

‖ f ′−ψ′(n, k)‖ ≤ ‖ f ′− h′n ‖+ ‖h′n−ψ
′(n, k)‖ ≤ ‖ f ′− h′n ‖+

d
∑

i=1

i · 2−k · |X i−1 |

< ‖ f ′− h′n ‖+ (d + 1)2 · 2−(k+1);

sadly, ‖ f ′ − h′n ‖ is unknown. As we know from Section 3.3, requiring f ′ to have a polyno-

mially bounded modulus is equivalent to say that f ′ itself is polynomial-time computable

for all polynomial-time computable real functions f . Thus, for instance, requiring f ′ to be

L′-Lipschitz continuous would be too restrictive.

Open Question. Is there a less restrictive property than a polynomially bounded modulus

so that differentiation is computable relative to protocol Coeff?

Computability and Computational Complexity

So far, we said nothing about the feasibility of both protocols. For example, given some

continuous function f : R→ R, does a polynomial ϕn ∈ R[X ] exist such that ‖ f −ϕn ‖ ≤
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2−n? As a first step, the Weierstraß Approximation Theorem (WAT) proves the existence of

such an approximative polynomial with real coefficients.

The gap between the “classical” (real) version of the WAT and, say, a recursive version of

it, will be closed by approximating the coefficients for ϕn itself (as done in the definition

of protocol Coeff); that is, we propose the existence of a computable function ψ(n, k) that

computes dyadic rational approximations for the coefficients of each polynomial ϕn within

a prescribed error 2−k. The following definition states that in detail.

Definition 3.7.3 (computable sequence of polynomials). A sequence of real-valued poly-

nomials {ϕn}n (commonly represented by ϕn(X ) =
∑d(n)

i=0 an,iX
i) is computable if there is a

computable function ψ such that ψ(n, k) = (bn,1, . . . , bn,d(n)) is a sequence of dyadic ratio-

nals bn,i ∈ D with |an,i − bn,i| ≤ 2−k for all n ∈ Z and 1≤ i ≤ d(n).

In [Ko91, Section 8], computable sequences of real-valued polynomials as in Definition 3.7.3

are called strongly computable. Consequently, weak computability was also introduced, where

the difference corresponds to our protocols Coeff and SLP: Where for strong computability of

a polynomial sequence we had to find a computable function approximating the coefficients,

for weak computability it suffices to come up with a straight-ine program Πn for each input

n ∈ Z so that Πn is a 2−n-approximation to its respective function.

Now having established the foundation for both protocol Coeff and SLP, their well-definedness

(i. e., existence) is established by the recursive version of WAT.

Theorem 3.7.4 (recursive version of WAT). (Pour-El & Caldwell, 1975.) Given a computable

real function f : R→ R, there is a computable sequence of real-valued polynomials {ϕn}n such

that ‖ f −ϕn‖ ≤ 2−n for all n ∈ Z.

Note that because strong computability implies weak computability, the recursive version of

WAT proves the existence of protocol SLP as well.

Having established that a computable sequence {ϕn}n always exists for every error bound

2−n, are there also relations to the complexity of f ? E. g., does polynomial-time computabil-

ity of f implies polynomial-time computability of {ϕn} (and vice versa)? Ko has answered,

if you will, both questions with a positive as well as a negative result (cf. [Ko91, Section

8.1]); they summarize as follows: For every exponential-time (polynomial-time) computable

function f : [0, 1] → R there is a strongly exponential-time (weakly polynomial-time)

computable sequence of real-valued polynomials {ϕn}n such that ‖ f − ϕn‖ ≤ 2−n for all

n ∈ N0.
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In contrast to those positive results, it also has been proven that the statement when given

a polynomial-time computable function (in general) does not hold when switching from

weakly to strongly polynomial-time computability. Or to say it differently: For functions

f ∈ PF, protocol SLP is always polynomial-time computable, while protocol Coeff in general

is not.
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4 Query Complexity: Approximate Real Function

Maximization

So far, we have stated existing results for approximate function maximization and also in-

troduced protocols aimed to provide access to different analytic properties of the functions

they encode. In this chapter we now analyze approximate function maximization for real

type-2 functions, i. e., for algorithms with access to (certain) function oracles, namely to the

formerly introduced protocols. In detail, especially lower and upper bounds on the query

complexity relative to various protocols are examined.

This chapter is organized as follows. First, the information (i. e., the choice of protocol

queries) is restricted to be non-adaptive. As it turns out in Section 4.1, this restriction cor-

responds to an absent of certain analytic properties of the input like the Lipschitz constant.

We analyze it for both protocol 0 (Section 4.1.1) and protocol 2 (Section 4.1.2). Secondly,

information is again allowed to be adaptive in Section 4.2. To exemplify how adaption helps

when no analytic information about the input itself is present (like, as mentioned before,

the Lipschitz constant) or not even existent, we first examine an adaptive algorithm relative

to protocol Y (Section 4.2.1), followed by an example how this algorithm handles a typical

adversary function (Section 4.2.2). At last, the example is generalized to functions with a

bounded (but unknown to the algorithm) number of maxima in Section 4.2.3.

4.1 Query Complexity w. r. t. Non-Adaptive Information

To recall, information is said to be non-adaptive if the same information operations Li(·) are

used throughout all functions f ∈ F (cf. Section 2.1 for the notation). This means in context

of protocol 0 and 2: an algorithm makes a deterministic choice of dyadic rational points qi

(independent of the input function f ) in which it queries for approximations of f (qi) (for

protocols 0 and 2) and f ′(qi) (only for protocol 2). As a result of this section we will see

that, given non-adaptive information, no algorithm is capable to approximate max f up to
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an error ε > 0 unless it is presented with further information (like f ’s Lipschitz constant) in

addition to approximations of f (qi) (and f ′(qi)).

4.1.1 Bounding Real Function Maximization Using Protocol 0

We start by proving the proposed necessity of information in addition to that provided by

protocol 0.

Theorem 4.1.1. No deterministic algorithm relative to protocol 0, presented with a computable

real function f : R→ R, is capable of approximating max f |[0,X ] on any interval [0, X ] ⊆ R
(X > 0) up to an error ε > 0 if no further information about f is available.

Proof. This fact basically relies on the inability of any algorithm to decide whether an ap-

proximation for f in some (rational dyadic) point q is close enough to the function’s actual

maximum (i. e., if an approximation p satisfies | p −max f |[0,X ] | < ε). To bound the error

between computed values and f ’s actual maximum, an algorithm must at least be able to

bound the slope of f restricted to some closed interval with dyadic rational endpoints.

For this, let f ≡ 0, and construct a piecewise linear function g as follows: For whatever

dyadic rational points q1, . . . , q` (qi < qi+1, and assume that q0 := 0, q`+1 := 1) an algorithm

A chooses to query protocol 0 with, set

g((qi + qi+1)/2) := ε for all i = 0, . . . ,`,

g(qi) := 0 for all i = 0, . . . ,`+ 1.

This construction is illustrated in Figure 4.1. Then, for algorithm A , the functions f and

g

f ≡ 0

ε

0
q1 q2 q3 q4

Figure 4.1: Adversary argument: indistinguishable functions f and g, constructed based on
the midpoints chosen by algorithmA

g are indistinguishable, but the difference between g(qi) and max g is not less than ε, i. e.,

| g(qi)−max g |= ε for all i = 0, . . . ,`+ 1.
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The “technique” used in above’s proof is an adversary argument; based on whatever choices

an algorithm makes, try to construct a function that specifically for those choices is (a) indis-

tinguishable from the original input function, but (b) differs greatly in some major aspects.

For our purposes of approximating a function’s maximum, the adversary function will often

differ in its maximum value from the original input function.

In contrast to this negative result, the problem of function maximization becomes decidable

relative to protocol 0 if (as we show hereafter) the set of functions is restricted to Lipschitz

continuous functions whereas the Lipschitz constant L > 0 is known by the algorithm.

Theorem 4.1.2. Let L > 0 be an arbitrary but given Lipschitz constant. There exists an algo-

rithm A that computes an approximation of max f |[0,X ] on the grid Dn for any input n ∈ N,

X > 0 and L-Lipschitz continuous function f : [0, X ] → R up to an error ε := 2−n by using

at most O ((1+ L · X ) · 2n) queries to protocol 0. I. e., such an algorithm A returns a dyadic

rational p ∈ Dn such that | max f |[0,X ]− p |< ε.

Note that Theorem 4.1.1 showed that it is crucial for such an algorithm A to know about

f ’s Lipschitz constant L. Without knowledge of L, algorithm A in general is unable to

determine when it has reached the given error bound.

Proof. Let 2` (w. l. o. g., ` ∈ N) be the maximum number of queries available, and set m :=

bpcs([0, X ])c (recall that pcs([0, X ]) = − log(X ) + 1). We split the interval [0, X ] into 2`

equally-sized intervals and take their midpoints, denoted as q1, q2, . . . , q2` ∈ Dm+`+1.1 Note

that by having pairwise distinct and equally-sized intervals, covering [0, X ] entirely, the

distance between each pair qi , qi+1 of consecutive midpoints is minimized. This also implies

having the smallest upper bound on | max f |int(qi ,m+`+1)− f (qi) | for all i = 1, . . . , 2`.

Since we neither know max f |int(qi ,m+`+1) nor f (qi), we have to bound them by using pro-

tocol 0 and f ’s Lipschitz continuity. For that, let pi be a point returned by protocol 0 when

queried with qi and precision t :=max{n+1, m+`+1}, and set y i := f (qi)+ L ·2−(m+`+1).

Then,

| max f |int(qi ,m+`+1)− pi | ≤ | y i − pi | ≤ L · 2−(m+`+1)+ 2−t , (4.1)

which gives us an easier-to-handle upper bound we can check on being less than ε. Now we

are able to prove the proposed upper bound on the number of queries.

1 Splitting [0, X ] into 2` intervals, as described, causes each interval to be of length X/2` = 2−(− log(X )+`),
i. e., the interval’s endpoints are of precision − log(X )+`. Hence, the midpoints are of precision − log(X )+`+1.
In order to avoid real-valued precisions, we replace − log(X ) + 1 by m.
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First assume that L · X ≤ 1. Then ` is given as log((1+ L · X ) · 2n), which can be estimated

by − log(X ) + n+ 1 by using our assumption (namely L · X ≤ 1). Now we get our proposed

upper bound:

y i − pi < L · 2−(`+1)+ 2−t

≤ L · 2−(m+n+2)+ 2−(n+1) ≤ L · X · 2−(n+2)+ 2−(n+1)

≤ 2−n.

It remains to prove the upper bound on the number of queries in case of L ·X > 1. Therefor,

we reduce this case to the first one by splitting the interval [0, X ] into smaller parts, each of

length X̃ , such that L · X̃ ≤ 1. For that, set X̃ := X/(L · X ).

The analysis in case 1 now tells us that, because of L · X̃ ≤ 1, the error in each interval of

length X̃ is less than 2−n whenever we are using up to (1+ L · X̃ ) · 2n queries to protocol

0. Since we have roughly L · X intervals of length X̃ , the amount of queries sums up to be

L · X · (1+ L · X̃ ) ·2n, which asymptotically is the same as (1+ L · X ) ·2n (simply use how we

have set X̃ ). This concludes the proof.

Note that above’s proof implicitly provides an algorithm satisfying Theorem 4.1.2. Moreover,

this algorithm can be proven to be optimal, i. e., the proposed number of queries is optimal

(modulo constant factors).

Corollary 4.1.3. The algorithm of Theorem 4.1.2 is optimal for all positive integers n ∈ N,

intervals [0, X ] ⊆ R and L-Lipschitz continuous functions f : R → R in the sense that the

upper bound O ((1+ L · X ) · 2n) for approximating max f |[0,X ] relative to protocol 0 matches

the lower bound.

Proof. Denote by M the number of queries available (as proposed in Theorem 4.1.2). Any

algorithmA ′ using M queries, that does not distribute its dyadic rational points qi (used to

query protocol 0 with) equally along the x-axis, is vulnerable using the formerly introduced

adversary technique. Plausibility argument: Since A ′ distributes its queries not equally,

there are two subsequent queries qi , qi+1 of distance > 2−(n+log(M)). Now construct an ad-

versary function g with g(qi) = g(qi+1), but g((qi + qi+1)/2) = g(qi) + 1/2 · L · |qi − qi+1 |.
Using the minimality of M , we get | g(qi)−max g | ≥ 2−n. Note that the optimality of M

follows by an analysis of the proof for Theorem 4.1.2.



4.1 Query Complexity with respect to Non-Adaptive Information 73

As it turns out, the result from Theorem 4.1.2 extends quite naturally from R to the d-

dimensional space Rd attached with the maximum norm ‖ · ‖∞.

Theorem 4.1.4. Similar to Theorem 4.1.2, there is an algorithm that needs up to O ((1+ L ·
X )d ·2nd) queries to a d-dimensional version of protocol 0 in order to derive an approximation

of max f |[0,X ]d up to an error ε := 2−n.

Proof. The argument for proving this Theorem is similar to the one already seen back when

we proved Theorem 4.1.2, but with midpoints of intervals being replaced by the more gen-

eral term of midpoints of d-dimensional hypercubes. Figure 4.2 emphasizes the new situa-

tion by comparing it with the one-dimensional situation.

q1 q2 q2`

0 X midpoints q(i,k) for k = 1, . . . , 2`

midpoints q(k, j)

for k = 1, . . . , 2`

(0, 0)

(0, X )

(X , 0)

(X , X )

Figure 4.2: Example comparing how we split up the space (and, therefore, where to take
the midpoints from to call protocol 0 with) in the original version of protocol 0
(on the left) and in our d-dimensional extension, here for d = 2 (on the right).

Let {~qν}|ν |≤2`d be the set of midpoints of 2`d equally-sized d-dimensional hypercubes. Note

that the indices of our midpoints are written in multi-index notation, with |ν | := ν1+· · ·+νd

for every index ν = (ν1, . . . ,νd) ∈ Nd . Then, by choosing ` and t as in the proof of Theorem

4.1.2, it holds (similar to statement (4.1)) that

| f (~q)− pν |< | f (~q)− f (~qν) |+ 2−t ≤ L · ‖~q−~qν‖∞+ 2−t

< L · 2−(m+`+1)+ 2−t (4.2)

for all ~q ∈ int(~qν , m+ `+ 1), and pν returned by querying protocol 0 with ~qν and precision

t. Inequality (4.2) can now be bounded above by 2−n for both L · X ≤ 1 and L · X > 1. This

Theorem now follows by using that we split [0, X ]d into 2`d equally-sized hypercubes, and

putting in our choice of `.
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4.1.2 Bounding Real Function Maximization Using Protocol 2

So far, we examined both the existence and optimality of algorithms for approximating func-

tion maximization relative to protocol 0. Henceforth, we analyze the connection between

real function maximization and differentiation. More precisely, an algorithm is allowed ora-

cle access to protocol 2 to approximate max f ; this is step one. In the second step we provide

the algorithm with further information about its input function f . But first, we state some

facts needed for later results.

Lemma 4.1.5. Some facts concerning differentiability and Lipschitz continuity.

(a) A differentiable function is L-Lipschitz continuous if and only if its first derivative is

bounded by L.

(b) Every continuously differentiable function f : R→ R has a bounded first derivative.

(c) Let f : R→ R be differentiable, and let f ’s derivative be L′-Lipschitz continuous. Then,

for every pair x , x ′ ∈ R where x ≤ x ′, f (x ′) is contained in a closed interval with

endpoints f (x) + (x ′− x)( f ′(x)∓ L′(x ′− x)).

Proof. (a) Only if. With f being differentiable and L-Lipschitz continuous on [0, 1], it

immediately follows that | limh→∞( f (x + h)− f (x))/h | ≤ L for all x ∈ (0, 1). Hence,

f ′ is bounded.

If. Let L > 0 be chosen in a way such that | f ′(x) | ≤ L for all x ∈ [0, 1]. Given some

points x , y ∈ [0, 1] with x < y , the Mean Value Theorem tells us that we can always

find a point ξ ∈ [x , y] satisfying f (y)− f (x) = f ′(ξ)(y − x). By taking the absolute

value on both sides and using | f ′(ξ) | ≤ L, it follows that f is L-Lipschitz continuous.

(b) Follows by using the Extreme Value Theorem.

(c) With f being continuously differentiable on [0, 1], we can use Taylor’s Theorem to

get a characterization of f (x ′),

f (x ′) = T0(x
′) + R0(x

′) = f (x)(x ′− x)0+
f ′(ξ)

1!
(x ′− x), (4.3)
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where ξ is some point in [x , x ′]. (Note that the remainder term has been taken in

Lagrange form.) By using that f ′ is supposed to be L′-Lipschitz continuous, we can

provide lower and upper bounds f ′ at point ξ:

| f ′(ξ)− f ′(x)| ≤ | f ′(x ′)− f ′(ξ)|+ | f ′(ξ)− f ′(x)| ≤ L′(x ′− ξ) + L′(ξ− x)

= L′(x ′− x).

Solving above’s equation with respect to f ′(ξ), we get that

f ′(ξ) ∈ [ f ′(x)− L′(x ′− x), f ′(x) + L′(x ′− x)]. (4.4)

Combining Equation (4.3) with (4.4) now proves the statement.

Similar to the former section (algorithms with non-adaptive information relative to protocol

0) we observe that without additional information about the input function, max f might

not even be computable.

Theorem 4.1.6. No deterministic algorithm is capable of approximating max f |[0,X ] relative

to protocol 2 on each interval [0, X ] ⊆ R (X > 0) and for each continuously differentiable

function f : R→ R up to an error ε > 0 without having any additional knowledge about the

function itself.

Proof. We prove this theorem by an adversary argument (like we did for Theorem 4.1.1).

First, let q1, . . . , q` be dyadic rational midpoints of pairwise distinct intervals that entirely

cover [0, X ]. W. l. o. g., assume qi < qi+1 and let ni ∈ N be the smallest integer such that

qi ∈ Dni
for all i = 1, . . . ,`. Now we construct a piecewise linear non-zero adversary function

g with g(bi ± 2−ni ) = g ′(bi ± 2−ni ) = 0 in breakpoints bk := qk − 2−nk , b`+1 := 1 (i =

1, . . . ,`+ 1, k = 1, . . . ,`), and

g ′(x) :=











0, x ∈ {qi − 2−ni , qi , qi + 2−ni}

(−1)i · L′ · 2−(ni+1), x = qi − 2−(ni+1)

(−1)i+1 · L′ · 2−(ni+1), x = qi + 2−(ni+1)

and

g(x) :=

∫ x

0

g ′(t)d t.
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Our construction is depicted in Figure 4.3. It implies that g ′|[qi ,qi+1] is bounded by Li :=

L′ · 2−(ni+1). Note that at this point, L′ is still undefined; we will choose it at the end of this

proof to complete the adversary argument.

g

q0− 2−n0 q0

q1− 2−n1

q1 q2− 2−n2

g ′

∆x
∆y
= L′

Figure 4.3: Adversary function g, constructed to mislead any approximation algorithm for
max f |[0,X ] relative to protocol 2.

Lemma 4.1.5(a) then implies that both g and (−g) are max1≤i≤`{Li}-Lipschitz continuous,

because

g(qi) = (−1)i · Li = (−1)i · L′ · 2−(ni+1)

for all i = 1, . . . ,`.

Recall that it was part of the Theorem’s statement that any algorithm trying to approximate

g ’s maximum up to an error ε > 0 has to do it without having any knowledge about L′ or

L. Finally, by choosing L′ appropriately, we can cause g ’s or (−g)’s maximum to be greater

than ε. Hence, the approximation of any algorithm would be insufficient (i. e., too large).

For that, let L′ ≥ ε · 2ni0+1, where i0 ∈ {1, . . . ,`} satisfies ni0 = max1≤i≤`{ni}. Then the

maximum of either g or −g on [0, X ] is bounded from below by ε,

max
¦

g|[0,X ], (−g)|[0,X ]

©

= L′ · max
1≤i≤`

{Li} ≥ L′ · 2−(ni0+1)

≥ ε,

but both g and −g are indistinguishable from the zero function, leading an algorithm to an

insufficient approximation of either g ’s or (−g)’s maximum.
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Surprisingly enough, this result even holds for smooth functions (i. e., functions that are

infinitely differentiable).

Corollary 4.1.7. Theorem 4.1.6 can be extended to functions f ∈ C∞(R).

However, to this point, we did not succeed to extend this result also to analytic functions,

but there appears to be a gap in computability (not only in this setting, but in general)

between smooth and analytic functions after all.

Definition 4.1.8 (real analytic functions; cf. [KP02]). A function f : V → R, with V ⊆ R
being an open subset, is said to be real analytic in x ′ ∈ R if there is an open neighborhood

U ⊆ V , such that the power series
∑∞

m=0 am(x − x ′)m converges to f (x) for every x ∈ U .

Moreover, f is said to be real analytic if it is real analytic in every point x ′ ∈ V .

This suspicion formulates as follows, but should be interpreted as an open question rather

than as a firm belief.

Conjecture 3. There is a deterministic algorithm relative to protocol 2, receiving a real

analytic function f : R→ R as its input, that is capable of approximating max f |[0,X ] on any

interval [0, X ] ⊆ R up to an arbitrary error ε > 0 without further information about the

function f .

Proof of Corollary 4.1.7. We construct a mollifier to prove this corollary; concrete, use

g : [−1, 1] 3 x 7→ sy · exp
�

−
1

1− (sx · x)2

�

with sx and sy being scaling factors for the x- and y-axis, respectively. This function is

C∞ and Lipschitz continuous with Lipschitz constant 0.75 · sy < L < 0.8 · sy . Set the

x-scaling factor as sx := 2n whenever g should be restricted to be g|[q−2−n,q+2−n]. Then

f ′|[q−2−n,q+2−n] := g ◦ (x 7→ x − q) for x ∈ [q− 2−n, q+ 2−n]. Note that each interval

[q− 2−n, q+ 2−n] might have its own scaling factors sx and sy , dependent on the interval’s

length.

The function f we have constructed can now be used as in the proof of Theorem 4.1.6 to

prove this Corollary.

Note that real analyticity implies smoothness, thus in particular continuity.
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In contrast to the negative results discussed so far, there are positive results, too, stating that

max f is computable relative to protocol 2 with less queries than needed in the respective

result where only oracle access to protocol 0 was given.

Theorem 4.1.9. Let L′ > 0 be an arbitrary but given Lipschitz constant. There exists an

algorithm A that computes an approximation of max f |[0,X ] on the grid Dn for any input

n ∈ N, X > 0, and f ∈ C1([0, X ]) with f ′ being L′-Lipschitz continuous up to an error

ε := 2−n by using both O ((1+ L′ · X ) ·2n/2) arithmetical operations and queries to protocol 2.

Proof. We first describe the idea behind the proof, using a typical adversary argument. By

using at most (1+ L′ ·X ) ·2n/2 queries int(qi , ni) to protocol 2 (modulo constant factors), the

worst thing that can happen is that when distributing them (the associated dyadic rationals

q1, q2, . . . ) equally along [0, X ] (like in the proof of Theorem 4.1.2), then f ’s first derivative

will only differ from the zero function2 within (qi − 2−ni , qi) and (qi , qi + 2−ni ). (Note that

it is essential for the worst-case analysis to let f ′ be zero in all mid- and endpoints of our

chosen intervals int(qi , ni); otherwise we could discard some intervals in the first place by

simply comparing how f ′ behaves in some points.) Figure 4.3 visualizes this intuition.

Set m := pcs([0, X ]) and ñ := bm+ log((1+ L′ · X ) · 2n/2)c = m+ n+ k for some k ∈ R. So

2dñ−me is the maximum number of intervals with dyadic rational endpoints we can divide

[0, X ] into. The Lipschitz continuity of f ’s first derivative now tells us that | f ′(q̃i)− f ′(qi) | ≤
L′ · 2−ñ, where q̃i := (qi + qi+1)/2. Using this result, statement (c) of Lemma 4.1.5 now

implies a bound on f (q̃i), i. e.,

f (q̃i)≤ f (qi) + (q̃i − qi) · ( f ′(qi) + L′ · (q̃i − qi)). (4.5)

We conclude:

| f (q̃i)− pi |
(?)
< | f (q̃i)− f (qi) + 2−(n+1) |
(4.5)
≤ (q̃i − qi) · ( f ′(qi) + L′ · (q̃i − qi)) + 2−(n+1)

= L′ · 2−ñ+1+ 2−(n+1)

≤ 2−n.

Notice that f ′(qi) = 0 as explained before. It is another technical (but noteworthy) detail

that for each point qi we use a second call to protocol 2, but this time with precision n+ 1

in order to get pi ∈ Dn+1. This fact is used in (?).

2 We use the term “zero function” for the function on the real line mapping every input to zero.
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The theorem now follows by distinguishing the cases L′ · X < 1 and L′ · X ≥ 1, whereas the

latter one can be reduced to the first one.

Above’s result and proof raises the question if knowledge about higher derivatives implies a

smaller upper bound on the number of queries needed to protocol 2.

Conjecture 4. In contrast to Corollary 4.1.7, the knowledge about both approximations of

higher derivatives and the Lipschitz constant of higher derivatives (assuming f (k) actually

is Lipschitz continuous) might help do reduce the upper bound result on the number of

queries to protocol 2 (cf. Theorem 4.1.9) even further.

Protocol 2 can be extended to functions f : Rd → R just like we did for protocol 0 (recall

Definition 3.2.2). Then Theorem 4.1.9 leads to insights we state below.

Corollary 4.1.10.

(a) As for Theorem 4.1.9, the upper bound on the number of queries extends to O ((1+ L′ ·
X )d · 2dn/2) when

considering continuously differentiable functions f : Rd → R with their first derivative

being L′-Lipschitz continuous.

(b) The algorithm imposed by the proof of Theorem 4.1.9 has exponential running time when

applied to constant functions.

4.2 Query Complexity w. r. t. Adaptive Information

To recall, information is said to be adaptive if the information operations Li(·) depend on

the input function f ∈ F (cf. Section 2.1). Phrased differently, an approximation algorithm

interacts at run-time with its oracle and is able to adapt his questions based former received

answers. In this section we analyze how adaption helps to approximate max f if no other

information is available than such provided by the attached oracle.

4.2.1 Using Protocol Y: Convergence and Query Complexity

This section is devoted to the question about the minimal number of queries to protocol

Y any approximation algorithm requires to compute a 2−n–approximation for an arbitrary
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L-Lipschitz continuous functions f : [0, X ]→ R, and the number of queries evolves asymp-

totically, i. e., for n→∞? Both questions will be examined based on Algorithm 4.1.

Algorithm 4.1: Computing a dyadic rational 2−n–approximation of max f
Input: Locally non-constant L-Lipschitz function f : R→ R, error bound n ∈ Z
Output: A dyadic rational p ∈ Dn such that int(p, n) contains max f

Set int← (q(0), n(0)) with q(0) := 2−n(0) , n(0) =−dlog X e+ 1;1

for i← 1 to∞ do2

Cut every interval in int exactly in half, and let int then again be the resulting set of3

intervals;

For every interval in int, ask protocol Y for the associated range-approximating4

y-interval;

Let J∗ be a y-interval having the greatest lower endpoint amongst all y-intervals;5

Discard every y-interval with its upper endpoint being strictly less than J∗;6

if all remaining y-intervals are at least of precision n+ 1 then7

return a y-interval int(p, n), entirely covering all remaining y-intervals;8

We introduce some notation necessary for the following discussions. Given the ith iteration

of Algorithm 4.1, the midpoint of the `th x-interval of precision n(i,`) will be denoted by

q(i,`) ∈ D. Since the remaining x-intervals will be cut exactly in half in every iteration,

the precision n(i,`) becomes n(0) + i for all i ∈ N0. As an abbreviation (and to ease the

notation a little bit) denote the precision of all x-intervals in the ith iteration by pcsi (here:

pcsi = n(0)+ i).

Let y-intervals int(p(i,`), m(i,`)) be defined in the same way as done for the x-intervals. Based

on this notation, Figure 4.4 depicts the resulting x- and y-intervals after three iterations of

Algorithm 4.1 for some fictitious function f : [0, 1]→ R.

Proposition 4.2.1. Given a locally non-constant L-Lipschitz continuous function f : [0, X ]→
R, as well as the y-interval J∗ of step 5 satisfying J∗ = max`{int(p(i,`), m(i,`))}. Then, every

y-interval int(p(i,`), m(i,`)) with int(p(i,`), m(i,`))< J∗ does not contain max f .

Fixed the notation, it now becomes easy to see why step 6 of the algorithm is correct (thus

also proving above’s proposition). Assume that in the ith iteration there are two y-intervals

J1 and J2 (those are the exact intervals we do not know about), where their dyadic rational

approximations returned by protocol Y are denoted by int(p1, m1) and int(p2, m2), respec-
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tively, thus they satisfy Ji ⊆ int(pi , mi) for i = 1,2. Assume that int(p1, m1) > int(p2, m2),

then this implies max f ≥ J1 > J2. Hence, J2 can be safely discarded.

Sometimes, when the discussion does not depend on a concrete iteration i, we omit the first

index in the two-part superscript of intervals, e. g., p(`) instead of p(i,`).

0 0.25 0.5 0.75 1
0

0.125

0.25

0.375

0.5

int(q(2,2), m(2,2))

int(q(3,6), m(3,6))

int(p(0,1), 1) = [0,1]

int(p(1,1), 2)

int(p(2,1), 3)

int(p(2,2), 3)

int(p(3,3), 4)

int(p(3,4), 4)

Figure 4.4: Intervals, computed by Algorithm 4.1 after three iterations for some function f

What we are interested in is the number of queries to protocol Y in Algorithm 4.1 given

some error bound n ∈ Z. The following theorem now states that Algorithm 4.1 actually

stops after finitely many iterations. This proves in combination with former and also later

results the algorithm’s correctness.

Theorem 4.2.2. Algorithm 4.1 converges for every locally non-constant L-Lipschitz continuous

function f : [0, X ]→ R and every precision n ∈ Z, i. e., it stops after finitely many iterations.

Proof. Let f ∈ L–L[0, X ] and n ∈ Z be given, and assume that Algorithm 4.1 does not

converge on this inputs. Then there is a y-interval represented by (p(i,`), m(i,`)) that will

not neither be refined nor discarded in further iterations. W. l. o. g., let us assume that m(i,`)

does not get worse either3, i. e., m(i+ j,∗) 6> m(i,`) for all j ≥ 1, where m(i+ j,∗) is a precision

returned by protocol Y when queried with a sub-interval of int(q(i,`), pcsi). Consequently,

3 Informally speaking, protocol Y has some freedom to choose the size of the interval int(p, m) to be re-
turned. Where in the ith iteration interval int(p, m)might be tight (that is, matching the most suitable interval),
the (i + 1)th iteration might result in an interval which size exceeds the most suitable one’s by the (maximal)
factor of 2.
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m(i,`) = m(i+ j,∗) for all j ≥ 1. Clearly, there are boundaries (recap that protocol Y provides

an interval that is less than four times too large than the exact one)

len( f (int(q(i+ j,∗), pcsi+ j)))≤ len(int(p(i+ j,∗), m(i+ j,∗)))

< 4 · len( f (int(q(i+ j,∗), pcsi+ j)))

on the length of f (int(q(i+ j,∗), pcsi+ j)), yielding

1/4 · len(int(p(i+ j,∗), m(i+ j,∗))) = 2−(m
(i,`)+1)

< len( f (int(q(i+ j,∗), pcsi+ j))).

Furthermore, len( f (int(q(i+ j,∗), pcsi+ j)))≤ L ·2−pcsi+ j+1 because f is assumed to be Lipschitz

continuous with constant L > 0. This leads to an immediate contradiction; just choose j ∈ N
such that pcsi+ j ≥ m(i,`)+ 2+ log(L).

The following lemma states additional building blocks, proving in combination the correct-

ness of Algorithm 4.1.

Lemma 4.2.3. Given a locally non-constant function f ∈ L–L[0, X ].

(a) There are at most two remaining y-intervals of every precision m ∈ Z after each iteration

of Algorithm 4.1.

(b) (Existence of the y-interval in step 8) Let there be ` ≥ 1 remaining y-intervals after

some steps of Algorithm 4.1, represented by (p(1), m(1)), . . . , (p(`), m(`)). Furthermore, let

m∗ =mini=1...`m(i). Then there is a tuple (p, m) with m= m∗−1 and p ∈ Dm such that

int(p, m)⊇
⋃`

i=1 int(p(i), m(i)).

Proof. We prove both statements separately.

(a) This follows immediately by the argument already seen in the proof of Lemma 3.4.4:

If there were three or more

non-discarded y-intervals, all of precision m with midpoints p(1), . . . , p(`) where `≥ 3,

then f (int(q, n)) (for some q ∈ Dn) must be contained in the intersection of all these

intervals, i. e.,

f (int(q, n))⊆
⋂̀

i=1

int(p(i), m) =: I .



4.2 Query Complexity with respect to Adaptive Information 83

If ` > 3, then I clearly is empty, where for ` = 3, I becomes a degenerate interval,

yielding f to be constant on int(q, n); a contradiction since f is supposed to be locally

non-constant.

(b) Clearly,
⋂`

i=1 int(p(i), m(i)) is neither empty nor a degenerate interval, implying m∗ <

∞. It is also clear that there are at most two y-intervals with m(i) = m( j) = m∗ > 0

for i 6= j. (The details are stated in case (a).) W. l. o. g., let p(i) > p( j) if there actually

are two such intervals. Set m := m∗ − 1 and p := p(i) − 2−m. Then, int(p, m) ⊇
⋃`

i=1 int(p(i), m(i)).

Theorem 4.2.4. Given a locally non-constant L-Lipschitz continuous function f : [0, 1]→ R.

Then, after finitely many iterations of Algorithm 4.1, at least one interval along the y-axis can

be discarded.

Proof. Given arbitrary x , y ∈ [0, 1] where x 6= y , and two x-intervals int(q, n), int(q′, n) of

the same precision with

(a) x ∈ int(q, n), y ∈ int(q′, n) and

(b) int(q, n)∩ int(q′, n) is either empty or a degenerate interval, i. e., int(q, n)∩ int(q′, n) ∈
{;, {ζ}} for some ζ ∈ R.

If | f (x) − f (y)| =: δ > 0 then skip the next part. In case of | f (x) − f (y)| = δ = 0, we

set γx := min{|x − int(q, n)|, |x − int(q, n)|} and γy := min{|y − int(q′, n)|, |y − int(q′, n)|}.
Observe that because of x 6= y , at most one of both variables can lie in the intersection of

int(q, n) and int(q′, n) (only if it is a degenerate interval, of course). We get three cases:

(a) δ = 0, but γ∗ > 0 for both variables: Remember that f is assumed to be locally non-

constant, which can be expressed as

(∀a ∈ [0, X ]) (∀ε > 0) (∃b ∈ Bε(a)∩ [0, X ]) such that | f (a)− f (b)|> 0. (4.6)

Choosing ε = γy yields a new variable y ′ with y ′ ∈ int(q′, n) and | f (x)− f (y ′)| > 0.

For the sake of simplicity, denote the new variable y ′ by y again.

(b) δ = 0 and γ∗ = 0 for exactly one variable (W. l. o. g., let y be the one with γy = 0):

Simply apply the argument of the first case to x .

(c) δ = 0 and γ∗ = 0 for both variables x and y: Since both variables match an endpoint

of their associated intervals, but at most one of them can lie in the intersection, the

distance between x and y is at least 2−n+1, i. e., the length of at least one interval of
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precision n. Hence, by choosing ε = 2−n+1 and applying statement (4.6) to variable

y we get a new variable y ′. This new variable y ′ is either contained in int(q′, n) or

in a direct neighbor whose intersection with int(q, n) also is empty or a degenerate

interval. W. l. o. g., let int(q′, n) again denote this interval containing y ′.

Now we have | f (x)− f (y)| = δ > 0. W. l. o. g., let f (x) > f (y). Because of δ being greater

than zero we can find a natural number N ∈ N where 2 · 2−N < δ.4 Furthermore, there are

midpoints p, p′ ∈ DN satisfying

(a) f (int(q, n)) ⊆ int(p, N) and f (int(q′, n)) ⊆ int(p′, N) (it might be necessary to shrink

intervals int(q, n) and int(q′, n) a little bit);

(b) (p− 2−N )− (p′+ 2−N ) = int(p, N)− int(p′, N) = δ− 2−N+1 > 0;

(c) int(p, N)∩ int(p′, N) = ; as a consequence of point 2.

Hence, finitely many separations along the x-axis yield at least one interval along the y-axis

that can be discarded.

4.2.2 Concrete Query Complexity: Periodic Hat Function

Based on the notions introduced and results stated so far, we will analyze a specific kind of

function: the periodic hat function. These are interesting functions since we identified them

as perfect adversary functions when using non-adaptive information, but more importantly,

they work as such for adaptive information as well. In general, a periodic hat function

contains k equally sized distinct hats that entirely cover the interval [0,1]. For the sake of

simplicity, we restrict our analysis to periodic hat functions having exactly 2k hats. Denote

them by fk. Figure 4.5 illustrates how such a function fk evolves.

1

single hat

0 2/2k+1 4/2k+1 6/2k+1 8/2k+1

α

α+ 1/2k+1

Figure 4.5: Periodic hat function fk comprised of exactly 2k hats

4This argument only holds for f on [0,1], but not necessarily on [0, X ].
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Given an x-interval int(q, n) and a function f ∈ L–L[0, X ], there are only finitely many

y-intervals int(p, m) containing f (int(q, n)) entirely (because the precision m is at least

−(dlog X e+ 1); see the discussion at the beginning of Section 3.4). Hence, there is a mid-

point pmax being the greatest amongst all associated to y-intervals that entirely contain

f (int(q, n)), and has less than four times the size of f (int(q, n)). Similarly, define pmin as

being the smallest midpoint amongst all such y-intervals.

We will use the existence of such midpoints pmin and pmax to argue about the number of

discardable intervals along the y-axis.

periodic hat function fN

int(q(i,1), i+ 1)

int(q(i,`), i+ 1)

f (int(q(i,1), i+ 1))

f (int(q(i,`), i+ 1))

p(i,1)min

p(i,`)max

δ

Figure 4.6: Minimal distance δ between two consecutive y-intervals of maximum length

Figure 4.6 gives an example of midpoints p(i,1)min and p(i,`)max . The y-intervals associated to these

midpoints are assumed to be of maximal length and to have a maximum overlap with each

other (that is, δ gets minimized). Later (in Lemma 4.2.6(a)) we will see that the x-interval

int(q(i,`), i+ 1) can be safely discarded if δ ≥ 2−(i−2).

Theorem 4.2.5. Given a precision n ∈ Z, and the periodic hat function fk (consisting of 2k

hats). Then Algorithm 4.1 has to query protocol Y at most











1, n≤ 0

2n+1− 2, 1≤ n< k+ 3

(2k+4− 2) + (2k+1 · ` · 7), n= k+ 3+ ` for `≥ 0.

times to compute an 2−n–approximation of max fk.

Technical detail: Even in case of n≤ 0 we must query protocol Y one time to locate fk([0, 1])

on the y-axis.
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To simplify the proof of Theorem 4.2.5 we scale the right half of a single hat of fk along the

y-axis from [ f (0), f (0) + 2−(k+1)] to [0,1]. (Note that all hats of fk are equally sized and

of length 2−(k+1).) Hence, we are actually arguing about the right half of the single hat of

f0. This also allows us to skip the start-up of Algorithm 4.1, i. e., the number of iterations

i′ = i+ (k+ 1) with i ≥ 1 reduces to i (because of k = 0).

Lemma 4.2.6. Given a periodic hat function fk. The following statements pose conditions in

which intervals become discardable.

(a) Let int(p(i,`), m(i,`)) be a y-interval after (sufficiently many) iterations i ∈ N of Algorithm

4.1, where ` ∈ {2, . . . , 2i}. Then, this y-interval can be discarded if | p(i,1)min − p(i,`)max | ≥
2−(i−2).

(b) Let i ≥ 3. Then, | p(i,1)min − p(i,7)max | < 2−(i−2), but | p(i,1)min − p(i,`)max | ≥ 2−(i−2) for all ` =

8, . . . , 2i . I. e., the intervals int(q(i,`), i+ 1) for all `= 8, . . . , 2i can be discarded.

Proof. The first statement merely is a remark, therefore we only prove the second one.

At first we state that p(i,8)max > p(i,`)max for all ` = 9, . . . , 2i . This follows directly with the right

half of a single hat being strictly decreasing, and by the definition of pmax.

As stated before, we scale a single hat along the y-axis to [0,1]. Furthermore, let the right

half of such a single hat cover [0, 1] entirely. (Note that this is actually no restriction.)

Now, under this assumptions, we can prove Lemma 4.2.6. The first x-interval (namely

int(q(i,1), i + 1) = [0, 2−(i+1)+1]) is of precision i + 1, and the most suitable interval exactly

matches f (int(q(i,1), i + 1)). The midpoint p(i,1)min is of precision (i + 1)− 2, because it is the

smallest amongst all midpoints associated to a y-interval both covering f (int(q(i,1), i + 1))

and having at most times the length of the most suitable one (thus, less than four times the

length of the exact interval int(q(i,1), i+ 1)). Hence, q(i,1)min can be calculated as

p(i,1)min = 1− 2−(i+1)+2 = (2i − 2)/2i .

In order to calculate p(i,`)max we use that the lower endpoint of the most suitable interval for

int(q(i,`), i+ 1) matches (2i − `)/2i . This immediately yields

q(i,7)max = (2
i − 7)/2i + 2−(i+1)+2 = (2i − 23+ 21+ 20)/2i

and q(i,8)max = (2
i − 8)/2i + 2−(i+1)+2 = (2i − 23+ 21)/2i .
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Hence, the distances between q(i,1)min and q(i,`)max for ` ∈ {7,8} turn out to be

|q(i,1)min − q(i,7)max |= 3/2i < 4/2i = 1/2i−2

and |q(i,1)min − q(i,8)max |= 4/2i ≥ 4/2i = 1/2i−2.

Finally, applying the first part of this lemma concludes the proof.

Findings

Approximating max fk for periodic hat functions fk is linear in the desired precision n (so

that | max f − p |< 2−n) if k is kept constant. Otherwise the presented algorithm relative to

protocol Y first has an exponential start-up in k before switching over to linear growth in n

and k.

4.2.3 Generalization: Query Complexity by Bounded Number of Maxima

Lemma 4.2.7. It exists a locally non-constant L-Lipschitz continuous computable real function

f : [0, X ]→ R so that Algorithm 4.1 requires O (1+ L · X ·2n) queries to protocol Y in order to

compute an 2−n–approximation of max f .

Proof. We prove this lemma by constructing a locally non-constant L-Lipschitz continuous

computable real function f that evolves closely to max f (i. e., all function values are con-

tained in [max f − 2−n, max f ] with δ > 0 but arbitrarily small), and has M <∞ (global)

maxima. Figure 4.7 depicts the overall construction which is closely related to the example

of periodic hat functions discussed earlier in Section 4.2.2.

Algorithm 4.1 (executed without the knowledge about f ’s Lipschitz constant L) splits the

set of x-intervals in half and queries again protocol Y during the search for discardable y-

intervals until the union of the remaining y-intervals is of length < 2−n, indicating that a

2−n–approximation of max f is found. This search forms a binary tree of x- and y-intervals.

Since the number of nodes (thus, the number of queries to protocol Y) in such a tree is

bounded by the number of leaves, we restrict our attention to the latter one. As always, the

x-intervals (on the leaf level) are denoted by int(q̃i , ñ) (for a to-be-determined precision ñ),

while the respective answers obtained from protocol Y are denoted by int(p̃i , m̃i).
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x

y
max f

2−(n+δ) 2−n/2

2−n/2
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p̃ i
,m̃
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int(q̃i , ñ) int(q̃ j , ñ)

Figure 4.7: At worst, the parameterized complexity of MAX relative to protocol Y is indepen-
dent of number of maxima M <∞.

The maximum is guaranteed to be reached as soon as 2−n/(8 · L) = 2−ñ, resulting in ñ ≥
n+3+ log(L). Thus, [0, X ] is partitioned (on leaf level) into X/2−ñ+1 = L ·X ·2n+2 intervals,

resulting in an overall number of queries of O (1+ L · X · 2n).

It is one consequence of Lemma 4.2.7 that the upper bound on the number of queries is

independent of f ’s number of maxima M . But is the same conclusion correct for the lower

bound as well?

Conjecture 5. A lower bound for approximate function maximization relative to protocol Y

is independent of the number of (global) maxima of a function.
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5 Conclusion

In this thesis we used the notion of parameterized complexity to characterize the (simulation

and compuational) complexity of real functions and functionals in terms analytic properties.

These include the Lipschitz constant, moduli functions m(·) and m(·) (if existent), and also

the number of maxima of a given function. In general, finding those (and other) parameters

that influence the parameterized complexity was one of the challenges of our presented

approach. In this section we summarize the claims and open issues that surfaced in both the

analysis of protocols and the computational complexity of MAX.

(a) Parameters. We showed the necessity of, e. g., the function’s Lipschitz constant to de-

scribe the complexity of MAX more precisely. Nevertheless, are there further parame-

ters influencing its complexity?

(b) Modulus of strong unicity. Given a (polynomial-time) computable real function f with

compact domain. Then, under what conditions, does a) f has a modulus of strong

unicity, and b) when is it computable (and polynomially bounded)? Also there are

questions concerning the connection to previously introduced concepts; e. g., how is

the modulus of strong unicity related to locally non-constant functions as required for

the existence of protocol Y?

(c) Lower bounds on computational complexity. While a bounded modulus of continuity

is necessary to bound the computation time of protocols Y and X, it is not so clear

if the same is true for a modulus of strong unicity. Also the question whether the

requirement of a computable modulus of strong unicity is too restrictive demands for

an answer.

(d) Simulation complexity. (How) Are protocols Coeff and, say, protocol 2 related? As

pointed out in the end of Section 3.7, at this point it is unclear if there is a computable

function ν : Z→ Z such that for every n ∈ Z, a 2−ν(n)–approximation (obtained from

protocol Coeff) suffices to simulate one query to protocol 2 made with input precision
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n. As also raised, is there a less restrictive property than a polynomially bounded

modulus of continuity so that differentiation is computable relative to protocol Coeff?

(e) Locally non-constant functions. Is it a good idea (or even possible) to also apply proto-

col Y to arbitrary functions f by adding some random (and neglectable) noise g to it

such that f + g is locally non-constant?

There is one more concern we like to address separately. As the reader might have noticed,

both protocol X and protocol Y impose no restriction on precision of their to-be-returned

dyadic rationals. So in general, the computation time is unbounded in the input precision;

not in some artificial and rare cases, but also for extremely simple functions. Just con-

sider functions that become arbitrary flat for protocol Y, and arbitrarily steep for protocol X.

Within this thesis we accepted this problem even though it prevents both protocols from be-

ing implemented (on, e. g., the iRRAM) unless one restricts himself to only “well-behaved”

functions, namely those where there is a connection between the input and output preci-

sion.

Analysing and answering the problems stated above will not only lead to a more coherent

picture, but pave (part of) the way of uniform bounds for real functionals. . . . door opener

for numerical analysts.
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