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Abstract

On the basis of exact real arithmetic, we define a naming system for power series in
0. This renders evaluation of some point in C, determing the maximum on a ball
(other geometrical objects are also possible), addition, multiplication, differentiation
and integration computable. The aim of this work is to give a background for a new
datatype for analytic functions which can be implemented in iRRAM.



Chapter 1

Introduction

The following work is based on the model TTE (Type 2 Theory of Effectivity). TTE is a
computational model which gives us a computability notion for exact complex analysis.
For an introduction see [Wei00]. We will use the definitions of ”notation, representation
and naming systems” as in [Wei00]:

Definition 1.0.1.

1. A notation of a set X is a surjective mapping ν :⊆ Σ∗ → X.

2. A representation of a set X is a surjective mapping δ :⊆ Σω → X.

A naming system is either a notation or a representation.

We started this work with the aim of finding a representation of analytic functions f ,
based on the power series expansion of f in different points. We realized that we could
not achive a simple representation in a satisfactional way such that primitive functions
like addition and multiplication are easily computable. So we restricted our approach to
find a representation of power series in 0. For this we will use a suitable restriction of
products of naming systems, which by [Wei00] are itselves naming systems. Therefore we
introduce the basic naming systems for real, complex and sequences of complex numbers,
so we can use these freely (clearly also N,Q) for our naming system.

Definition 1.0.2. The naming system δ for the real numbers is defined as follows: For
all w ∈ Σ∗, we have that δ(w) = x ∈ R iff w codes a sequence of intervals with rational
endpoints (an, bn), s.t. x ∈ (an, bn) for all n and limn→∞ an = limn→∞ bn = x.

The naming system δC for the complex numbers is given by the product [δ, δ] because
we can identify C with R2.

The naming system for CN is given by [δC]ω.

The upper discussion is the most abstract part of this paper. In fact it is just
for the mathematical conscience. This work can also be viewed (and this is the real
purpose of this paper) as a discussion for a datatype for the C++ package iRRAM (A
documentation can be found at [Mue08]) which is based on the exact real arithmetic
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and possesses the datatype REAL for (evidently) real numbers. This datatype REAL
simulates the representation of real numbers of definition 1.0.1 by storing real numbers
with a certain error bound, which can be viewed as a finite prefix of w. The show-
stopper about iRRAM is, if one only use computable functions (of course they have
to be implemented in iRRAM), one can neglect error bounds in any calculation, since
iRRAM adjusts those internally. But the set of computable functions exclude = et
cetera. Another thing to mention is that if we want to render a function f computable,
we only have to find an algorithm which gives, for given x and ε > 0, an approximation
of f(x) up to an error ε. This is in accordance to the theory of exact real arithmetic
and also (clearly) with iRRAM.

In chapter 2 we give some motivation, how we will choose our representation and
eventually its definition. But we have to say that a big part of this representation is
pure intuition.

In chapter 3 we give an algorithm for the evaluation. This was the part with the
most workload and is also the main content of this work. For better understanding we
have split the algorithm into small subtasks. In 3.3 we say some words to the complexity
of the algorithm, but there will be no determination of the running time.

In chapter 4 we will give an ad-hoc definition of shapes and discuss an algorithm
which determines the maximum of a given power series on a shape. This will be the
only time we will use the strong results for analytic functions.

In chapter 5 we will give some algorithms for addition,multiplication,differentiation
and integration. The concatenation of power series was to complicated and no results
have been achieved.
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Chapter 2

Datatype

We want to develop a naming system δp for power series in 0, s.t. we can compute the
evaluation of this power series. In fact the naming system, we will use later, does not
have this feature, but a weaker form of this, i.e. the domain of the evaluation algorithm
for a given power series depends on the name of this power series.

Furthermore we want addition, multiplication, differentiation and integration to be
computable in this naming system. And if procurable we want to avoid infinite data,
since in implementations they become functions and usually lead to dependencies when
we worke with them:

For example consider the naming system for the real numbers (Cauchy represen-
tation). Let a, b ∈ R be given, this means two procedures which gives us a cauchy
representation of a resp. b. We want to work with c = a + b. If we want to know c up
to a precision ε, we have to query the names of a and b for suitable approximations of
a and b. This function nesting becomes more complex if we use longer terms. One can
think of it, as each number has to know where it comes from.

In contrast therefore the standard naming system for rational numbers is a finite
datatype. If we add two rationals we get a new fraction and it does not matter ”where
it came from”.

2.1 Foregoing consideration

When developing the naming system for power series f(x) =
∑∞

i=0 anx
n we should

also consider how to evaluate these later. For evaluation the use of partial sums seem
appropriate. An evaluation algorithm can look like this:

Scheme of evaluation

1 \\ Contract:

2 \\ Input: Name w of some power series f(x) =
∑∞

i=0 anx
n with

radius of convergence ρ, z ∈ Bρ(0) and some ε > 0.
3 \\ Output: Some real y with |f(z)− y| ≤ ε.
4
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5 Determine with the help of w an M ∈ N s.t.
∑∞

n=M |an||z|n ≤ ε
6 Return

∑M−1
n=0 anz

n

An immediate and reasonable approach is to take the sequence of coefficients an as
one part of the naming system (this is some infinite data) and some bounding function
F for the coefficients, for which we can compute an M ∈ N for a given z in the radius
of convergence of f , s.t.

∑∞
n=M F (n)|z|n ≤ ε, as another. As a first guess we might

take F (n) = 1
ρn with ρ being the radius of convergence of f (assuming it to be finite).

But in general we have |an| > 1
ρn for infinitely many n. We could ”repair” this in two

ways: Use suitable subexponential functions s s.t. |an| ≤ s(n)
ρn , but then we also have to

somehow know the global behavior of s. In the other approach we use an R ≤ ρ and
some constant A s.t. |an| ≤ A

Rn . Then we know the global behavior of our bounding
function, but we can only evaluate z with |z| < R, since for any R < |z| < ρ and M we
have

∑∞
n=M

A
Rn |z|

n =∞.
We will use the second method, to some extend combined with the first, where we

restrict s to be polynomial of the form A + Bn`. This form of s will also be usefull for
differentiation.

2.2 Datatype

Definition 2.2.1. Let f(x) =
∑∞

i=0 anx
n be a power series. We say (R, c,A,B, `,N) is

a name of f if

• R ∈ Q+ \{0},

• c ∈ RN and c(n) = an,

• A,B ∈ Q+; `,N ∈ N and for all n ∈ N with n ≥ N it holds |c(n)| ≤ R−n(A+Bn`).

Remark 2.2.2. The given domains for A,B,R are rather suggestions than necessary. One
could also use as domain for A and B the natural numbers. This would be convenient
for calculating an upper bound for the logarithm of A and B which we could use for
evaluation. And as domain for R we could use the real numbers R.

In fact some algorithms, we will see, produce names (R, c,A,B, `,N), s.t. A,B are
irrational. We can easily fix this by taking suitable rational upper bounds instead of the
calculated A,B.

We intentionally forbid negative A because otherwise easy estimations, we want to
use, would be wrong.

The domain of the evaluation algorithm, we will introduce later, will depend on the
name (R, c,A,B, `,N) of the power series and is given by BR(0). From definition 2.2.1
follows that R ≤ τ , if we set τ as the radius of convergence of f . So one can easily show
that for some power series there is no name for which we can evaluate the series on the
whole area of convergence, even if we allow R ∈ R.
For example, the power series f =

∑∞
n=0 e

√
nxn has radius of convergence ρ = 1 but e

√
n
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growths faster than any polynomial, so we cannot find A,B,N s.t. for n ≥ N it holds
e
√
n ≤ 1−n(A+Bn`).

Another example is g =
∑∞

n=0
1
n!x

n with radius of convergence ρ = ∞, since for any
given name (R, c,A,B, `,N) we can only evaluate the series on a bounded ball.

5



Chapter 3

Evaluation

For the following section we fix a power series f(x) =
∑∞

i=0 anx
n with name (R, c,A,B, `,N),

A 6= 0, B 6= 0, ` 6= 0 and z ∈ BR(0). Furthermore we will frequently use the notations

q :=
|z|
R

< 1

and

D(M) :=
∞∑

n=M

Aqn +Bn`qn.

In this chapter we want to design an algorithm for determing f(z), we call this the
evaluation algorithm.

As we mentioned above, we treat evaluation for the case A 6= 0, B 6= 0, ` 6= 0. In the
other cases, one can easily adapt the following algorithm. So we will not state that we
treat the case A 6= 0, B 6= 0, ` 6= 0 in the following listings and remarks.

Some general remarks towards the evaluation algorithm have already been made in
remark 2.2.2. We want to add that the algorithm will diverge in iRRAM or will produce
an error, if we want to evaluate f in a point in BR(0)C .

3.1 The evaluation algorithm

3.1.1 Outline of the evaluation algorithm

The general outline of our algorithm will be

Listing 3.1.1.: Outline of evaluation

1 \\ Contract:

2 \\ Input: Name (R, c,A,B, `,N) of some power series

f(x) =
∑∞

i=0 anx
n, z ∈ BR(0) and some ε > 0.

3 \\ Output: Some real y with |f(z)− y| ≤ ε.
4
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5 Get M from listing 3.1.2. \\ Determines an M ∈ N∩[0, N ] s.t.

D(M) ≤ ε; we call this "first step of evaluation"

6 Return
∑M−1

n=0 c(n)zn.

This algorithm just computes an M s.t.

|f(z)−
M−1∑
n=0

c(n)zn| = |
∞∑

n=M

c(n)zn| ≤
∞∑

n=M

|c(n)||z|n ≤
∞∑

n=M

Aqn +Bn`R−n|z|n =: D(M) ≤ ε

and returns

M−1∑
n=0

c(n)zn.

This shows that the algorithm is correct. So it remains to design the first step of
evaluation.

Remark 3.1.1. The M determined in the upper algorithm does not depend on the actual
form of z but on |z|. And for two values z, z′ with |z| ≥ |z′| we have for any M ∈ N

∞∑
n=M

A

(
|z|
R

)n
+Bn`

(
|z|
R

)n
≤ ε⇒

∞∑
n=M

A

(
|z′|
R

)n
+Bn`

(
|z′|
R

)n
≤ ε.

So if one want to determine f(zi) for different zi (1 ≤ i ≤ n ∈ N), one only has to
find a suitable M for maxi |zi|. After that one can take this M to evaluate the different
points in the way like listing 3.1.1. does. This is of special interest when determing the
maximum on shapes.

3.1.2 First step of evaluation

It would be optimal if listing 3.1.2. computes the smallestMbest ∈ N∩[0, N ] s.t. D(Mbest) ≤
ε. We could not develop a formula which gives us such an Mbest. So our approach will
be to approximate this Mbest via binary search and determine whether D(M) ≤ ε or not
for a given M . But since ”≤” is not computable we cannot check for a given M whether
D(M) ≤ ε, so we have to use multivalued decision which can give ”wrong” results. Fur-
thermore, instead of calculating D(M), it might be better to use an easier calculable
upper bound Dup of D. This means that for our binary search we use a predicate C
with C(M) ⇒ D(M) ≤ ε rather than C(M) ⇔ D(M) ≤ ε. So we have to be satisfied
with results for M which are bigger than Mbest.

Listing 3.1.2.: First step of evaluation

1 \\ Contract:

2 \\ Input: Name (R, c,A,B, `,N) of some power series

f(x) =
∑∞

i=0 anx
n, z ∈ BR(0) and some ε > 0.
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3 \\ Output: Some M ∈ [N,∞] ∩ N with D(M) ≤ ε.
4 Get Mup from listing 3.1.3. \\ Determine an Mup ≥ N with

D(Mup) ≤ ε
5 Get Mlow from listing 3.1.4. \\ Determine an Mlow ≥ N with

D(Mlow) ≥ ε or Mlow = N .

6 while(Mup 6= M ) do {

7 M := dMup+Mlow

2 e
8 if(C(M)){ \\this implies D(M) ≤ ε
9 Mup := M

10 }else{

11 Mlow := M
12 }

13 }

14 Return M

3.1.3 How to calculate Mup

Listing 3.1.3.: How to calculate Mup

1 \\ Contract:

2 \\ Input: Name (R, c,A,B, `,N) of some power series

f(x) =
∑∞

i=0 anx
n, z ∈ BR(0) and some ε > 0.

3 \\ Parameter: w ∈ N \{0}
4 \\ Output: Some Mup ∈ [N,∞] ∩ N with D(Mup) ≤ ε.
5 Mup := dmax{N,
6 ln(2)

− log2(
ε
2
)−log2(1−q)+log2(A)

1−q ,

7
2`
1−q ,

8
w ln2(2)e
w ln(2)e−1

− log2(
ε
2
)−log2(1−q)+log2(2B)+` log2(w`)−` log2(1−q)

1−q }e
9 Return Mup

Remark 3.1.2. In fact d·e is not computable, but if we use a multivalued version which
either returns d·e or d·e+ 1, this becomes computable.

This algorithm works with any parameter w ∈ N \{0}. We want to dicuss which w
would be the best one. Since w only occurs in

w ln2(2)e

w ln(2)e− 1

− log2(
ε
2)− log2(1− q) + log2(2B) + ` log2(w`)− ` log2(1− q)

1− q
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we want to minimise this expression. If we use the abbreviations

E =
`

1− q

F =
− log2(

ε
2)− log2(1− q) + log2(2B)

1− q

r =
w ln(2)e− 1

w ln(2)e

and relax r ∈ (0, 1), then this task becomes to minimise the expression

min
r∈(0,1)

g(r) :=
ln(2)

r
(E log2

(
E

ln(2)e(1− r)

)
+ F ).

E is positive. The minimum exists iff e log(2) ≤ E2
F
E . Using Lamberts W-Function

[RMCJ96] we can give a formula for the point rmin where the minimum is attained

rmin = 1 +

(
W−1(−

ln(2)

E2
F
E

)

)−1
.

Since W−1(x) goes to −∞ when x goes to 0. rmin goes to 1 if E,F increase to ∞. But
on the other hand for fixed E,F g(r) goes to ∞ if r goes to 1, but plots of r suggest
that this growth is rather slow. So values of r = 0.8 or r = 0.9 seem appropriate,
which correspond to values for w in {2, . . . , 6} (Which is a purely heuristic reasoning).

If e log(2) > E2
F
E than g(r) goes to −∞ if r goes to 0, but again plots suggest that in

this cases the values g(0.8), g(0.9) are also small. If one does not like this heuristic, one
can make a database with precomputed w for given values of E and F .

3.1.4 How to calculate Mlow

Listing 3.1.4.: How to calculate Mlow

1 \\ Contract:

2 \\ Input: Name (R, c,A,B, `,N) of some power series

f(x) =
∑∞

i=0 anx
n, z ∈ BR(0) and some ε > 0.

3 \\ Parameter: w ∈ N \{0}
4 \\ Output: Some Mlow ∈ [N,∞] ∩ N with Mlow = N ∨D(Mlow) ≥ ε
5 if(q ≤0.1

1√
2

+ 0.1){

6 Mlow := bmax{N,
7

ln(2)q
1−q (− log(ε)− log2(1− q) + log2(A))}c

8 Return Mlow

9 }else{

10 Mlow := bmax{N,
11

2
2+
√
2

− log2(ε)−log2(1−q)+log2(A)
1−q ,

9



12
2

2+
√
2

− log2(ε)−log2(1−q)+log2(B)+` log2(`)− 1
log2(2+

√
2)
` log2(1−q)

1−q }c
13 Return Mlow

14 }

Remark 3.1.3. Regarding max and min, it holds the same as in remark 3.1.2.
It is quite easy to construct a correct algorithm for the upper contract (use the

projektion on N). We will not discuss in which regard our algorithm is better than a
trivial one. In fact the proof of the correctness of the upper algorithm in section 3.2.2
does implicitly carry such a discussion.

3.1.5 How to compute C

For C we give two algorithms. The first one uses an explicit formula forD(M), the second
one uses a simplified estimation. We define the computable multivalued predicate

a ≤δ b :=

{
true if a ≤ b
false if a ≥ b− δ

.

Listing 3.1.5.: First version of C

1 \\ Contract: \\ Input: Name (R, c,A,B, `,N) of some power

series f(x) =
∑∞

i=0 anx
n, z ∈ BR(0), some ε > 0 and M ∈ N.

2 \\ Output: Boolean value B s.t. B ⇒ D(M) ≤ ε

3 D := A qM

1−q +B qM

1−q ·
(
M ` + q

∑`−1
n=0

(
`
n

)
Mn

(1−q)`−n ·
∑`−k−1

i=0

〈
`− n
i

〉
qi
)

\\ for〈
n
k

〉
see definition 3.2.9

4 Return D ≤ ε
2
ε

Listing 3.1.6.: Second version of C

1 \\ Contract:

2 \\ Input: Name (R, c,A,B, `,N) of some power series

f(x) =
∑∞

i=0 anx
n, z ∈ BR(0), some ε > 0 and M ∈ N.

3 \\ Output: Boolean value B s.t. B ⇒ D(M) ≤ ε
4 D := A qM

1−q +B qM

1−q ·
(
M ` + q`!

(1−q)`
∑`−1

n=0
((1−q)M)n

n!

)
5 Return D ≤ ε

2
ε

Remark 3.1.4. The local variable D in listing 3.1.5. actualy is the exact value of D(M).
In 3.1.5. D is just an upper bound on D(M).

10



3.2 Correctness of evaluation algorithm

3.2.1 Correctness of listing 3.1.3.

We start with a lemma.

Lemma 3.2.1. For q ∈ (0, 1), ` ∈ N and M ≥ 2`
1−q it holds

∞∑
n=M

qnn` ≤ 2qMM `

1− q
.

Proof. The bound holds for ` = 0. We assume that ` ≥ 1. Then
∞∑

n=M

qnn` =

∞∑
n=M

qn − qn+1

1− q
n` =

∞∑
n=M

qn

1− q
n` −

∞∑
n=M

qn+1

1− q
n`

=
∞∑

n=M

(
qn

1− q
n` − qn+1

1− q
(n+ 1)`

)
−

∞∑
n=M

(
qn+1

1− q
n` − qn+1

1− q
(n+ 1)`

)

=
qM

1− q
M ` +

q

1− q

∞∑
n=M

qn((n+ 1)` − n`).

Now we want to develop a suitable bound for (n+ 1)`−n`. By the mean value theorem
we have

(n+ 1)` − n` ≤ max{`x`−1 : x ∈ [n, n+ 1]}(n+ 1− n) = `(n+ 1)`−1.

The term (n+1
n )`−1 is decreasing in n. Solving for n yields: For n ≥

`−1
√
q

1− `−1
√
q (We set

0
√
q = 1 and x

∞ = 0, then the results also hold for ` = 1) we have(
n+ 1

n

)`−1
≤ 1

q
⇔ (n+ 1)`−1 ≤ n`−1

q
.

Now we want to show that each n ≥M fullfils the upper condition on n. The next fact is
quite cumbersome to prove, but needs no insight: By differentiation we get that 1−q

1− `−1
√
q

is decreasing and with L’Hospital that limq→1
1−q

1− `−1
√
q = `−1 and hence 1−q

1− `−1
√
q ≤ `−1.

So

M ≥ 2`

1− q
≥ `− 1

1− q
≥ 1

1− `−1
√
q
≥

`−1
√
q

1− `−1
√
q
.

So we have
∞∑

n=M

qnn` ≤ qMM `

1− q
+

q

1− q

∞∑
n=M

qn
`

q
n`−1

≤ qMM `

1− q
+

`

1− q

∞∑
n=M

qn
n

M
n`−1

≤ qMM `

1− q
+

`

(1− q)M

∞∑
n=M

qnn`.

11



We substract `
(1−q)M

∑∞
n=M qnn` and get

∞∑
n=M

qnn`(1− `

(1− q)M
) ≤ qMM `

1− q
.

And now by M ≥ 2`
1−q

∞∑
n=M

qnn`
1

2
≤ qMM `

1− q
.

Another lemma:

Lemma 3.2.2. Let E > 0, F ∈ R, w ∈ N \{0} and x > 0 with

x ≥ w ln(2)e

w ln(2)e− 1
(E log2(wE) + F ).

Then

x− E log2(x)− F ≥ 0.

Proof. We will show a stronger result, that is: for any C > 1 and r ∈ (0, 1) and x > 0
with

x ≥ 1

r
(E logC(

E

ln(C)(1− r)e
) + F )

we have

x− E logC(x)− F ≥ 0.

Now let C = 2 and r = w ln(2)e−1
w ln(2)e and we have the assertion of the lemma. Now we proof

the claim:
Define the function f : R+ → R by

f(x) = x− E logC(x)− F.

We have f ′(x) = 1 − E
ln(C)

1
x and f ′′(x) = E

ln(C)
1
x2

, so f is convex. We define y :=
E

ln(C)
1

1−r > 0 and h := 1
r (E logC( E

ln(C)
1

1−r )+B− E
ln(C)

1
1−r ), then y+h = 1

r (E logC( E
ln(C)(1−r)e)+

F ) which is the bound of the claim. So for any x of the claim we have x > 0 and x ≥ y+h.
Furthermore

f(x) = f(y + (x− y) ≥ f(y) + f ′(y)(x− y)

since f is convex and x, y > 0. So by x− y ≥ h

f(x) ≥ f(y) + f ′(y)h = 0.

This proofs the claim.

12



Remark 3.2.3. The upper lemma calculates just one step of the Newton method on the
convex function f(x) = x − E log2(x) − F starting at a point y at which f has slope
w ln(2)e−1
w ln(2)e .

With the next corollary we can finally proof the correctness of 3.1.3.

Corollary 3.2.4. Let 0 < q < 1, ε > 0 and A,B ∈ R+ \{0} and `, w ∈ N \{0}. Then
for M ∈ N holds

M ≥ max{
− log( ε2)− log2(1− q) + log2(A)

− log2(q)
,

2`

1− q
,

w ln(2)e

w ln(2)e− 1

− log( ε2)− log2(1− q) + log2(2B) + ` log2(w`)− ` log2(− log2(q))

− log2(q)
}

⇒
∞∑

n=M

Aqn +Bn`qn ≤ ε.

Proof. We fix some M fullfiling the upper condition. Since M ≥ 2`
1−q we can apply

lemma 3.2.1 and the formula for geometric series

∞∑
n=M

Aqn +Bn`qn ≤ A qM

1− q
+B

2qMM `

1− q
.

So it suffices to show that both addends of the upper inequality are less or equal ε
2 .

We start our analysis with the first addend. Since q 6= 0 we get by easy transformation

− log( ε2)− log2(1− q) + log2(A)

− log2(q)
≤M ⇒ A

qM

1− q
≤ ε

2
.

And since M fullfils the upper condition, the first addend is less or equal ε
2 .

Now let us look at the second term. Some transformations yield

0 ≤M − `

− log(q)︸ ︷︷ ︸
=:E

log2(M)−
− log( ε2)− log2(1− q) + log2(2B)

− log2(q)︸ ︷︷ ︸
=:F

⇒ 2Mup
qMM `

1− q
2 ≤ ε

2
.

And by lemma 3.2.2 with E and F indicated as above, we have

M ≥ w ln(2)e

w ln(2)e− 1

(
`

− log(q)
log2

(
w

`

− log(q)

)
+
− log( ε2)− log2(1− q) + log2(2B)

− log2(q)

)
⇒0 ≤M − `

− log(q)
log2(M)−

− log( ε2)− log2(1− q) + log2(2B)

− log2(q)
.

And since M fullfils the upper condition (after some transformation the upper condition
is the same as the last term of the maximum of the corollary) also the second addend is
less or equal ε

2 . This shows
∑∞

n=M Aqn +Bn`qn ≤ ε.
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One could ask why the formula given by the upper corollary is not used. The reason
is, that the upper formula cannot be applied if q = 0. One could make a case distinction,
but this had to be multivalued and so we need a formula which yields correct results for
a neighbourhood of 0.

In fact we will do this in a disguised form. We will use suitable upper bounds for the
different terms occuring it the maximum of the upper corollary, which are optimal for
q → 1. So to speak we will use a continuous case distinction.

Proposition 3.2.5. Listing 3.1.3. is correct.

Proof. If q = 0 then z = 0 and so for each M ≥ 1,
∑∞

n=M anz
n = 0 ≤ ε. By definition

of Mup we have Mup ≥ 2`
1−q ≥ 1.

So we assume that q 6= 0. Since Mup ≥ N it holds
∑∞

n=Mup
≤ D(M). So we want to

apply corollary 3.2.4 on Mup. Therefore we have to check

Mup ≥
− log( ε2)− log2(1− q) + log2(A)

− log2(q)
,

Mup ≥
2`

1− q
,

Mup ≥
w ln(2)e

w ln(2)e− 1

− log( ε2)− log2(1− q) + log2(B) + ` log2(w`)− ` log2(− log2(q))

− log2(q)
.

Mup ≥ 2`
1−q is clear by the definition of Mup. By definition of Mup we have Mup ≥

ln(2)
− log( ε

2
)−log2(1−q)+log2(A)

1−q . So it suffices to show

− log( ε2)− log2(1− q) + log2(A)

− log2(q)
≤ ln(2)

− log( ε2)− log2(1− q) + log2(A)

1− q
.

This is obviously equivalent to

1

− log2(q)
≤ ln(2)

1− q
.

We proof this by showing that the function g(x) := − log2(x)− 1−x
ln(2) is not-negative on

(0, 1). The derivative of g tells us that g is decreasing in (0, 1) and hence it suffices to
check g(1) ≥ 0, which is true.

It remains to show that

Mup ≥
w ln(2)e

w ln(2)e− 1

− log( ε2)− log2(1− q) + log2(B) + ` log2(w`)− ` log2(− log2(q))

− log2(q)
.

Which will be shown in the same matter as above by

w ln(2)e

w ln(2)e− 1
ln(2)

− log( ε2)− log2(1− q) + log2(B) + ` log2(w`)− ` log2(1− q)
1− q

≥ w ln(2)e

w ln(2)e− 1

− log( ε2)− log2(1− q) + log2(B) + ` log2(w`)− ` log2(− log2(q))

− log2(q)
.
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Therefore it suffices to show that

1

− log2(q)
≤ ln(2)

1− q
and

− log2(− log2(q)) ≤ − log2(1− q).

The first inequality was already shown and the second inequality can be shown in the
same way.

3.2.2 Correctness of listing 3.1.4.

We start with a lemma.

Lemma 3.2.6. For M ∈ N and q ∈ (0, 1) it holds

qMM `

1− q
≤

∞∑
n=M

qnn`.

Proof.

∞∑
n=M

qnn` =
∞∑
n=0

qM+n(M + n)` =
∞∑
n=0

qM+n
∑̀
k=0

(
`

k

)
Mkn`−k

= qM
∑̀
k=0

Mk

(
`

k

) ∞∑
n=0

qnn`−k ≥ qMM `
∞∑
n=0

qn =
qMM `

1− q
.

Now we derive a suitable criterion on M s.t. D(M) ≥ ε.

Lemma 3.2.7. Let 0 < q < 1,ε > 0,A,B, ` ∈ R+ \{0} and `, w ∈ N \{0}. Then for
M ∈ N holds

M ≤ − log2(ε)− log2(1− q) + log2(A)

− log2(q)
⇒

∞∑
n=M

Aqn +Bn`qn ≥ ε (3.1)

and

`

− log2(q)
≥ 2w

w
∧M ≤

− log2(ε)− log2(1− q) + log2(B) + ` log2(
w`

− log2(q)
)

− log2(q)
(3.2)

⇒
∞∑

n=M

Aqn +Bn`qn ≥ ε.

Proof. One easily checks that the premise of (3.1) implies
∑∞

n=M Aqn ≥ ε and the
premise of (3.2) implies

∑∞
n=M Bqnn` ≥ ε. From this follows the lemma.
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Proposition 3.2.8. Listing 3.1.4. is correct.

Proof. We recall what listing 3.1.4. does.
If q ≤ 1√

2
, it returns Mlow as the maximum of the two terms

t1 := N

t2 :=
ln(2)q

1− q
(− log(ε)− log2(1− q) + log2(A)) .

If Mlow = t1, then we have not found a lower bound bigger then N (maybe there is none
or we were just to inexact), so this is the bad case.

If Mlow = t2, then we have the following inequality

Mup =
ln(2)q

1− q
(− log(ε)− log2(1− q) + log2(A)) ≤ − log2(ε)− log2(1− q) + log2(A)

− log2(q)

since ln(2)x
1−x ≤

1
− log2(x)

for all x ∈ (0, 1). And so by 3.1 D(Mlow) ≥ ε.
If q ≥ 1√

2
, it returns Mlow as the maximum of the three terms (In fact in the intervall

( 1√
2
, 1√

2
+ 0.1] it may just return the Mlow from above. This is due to the exact real

computation)

t1 := N

t2 :=
2

2 +
√

2

− log2(ε)− log2(1− q) + log2(A)

1− q

t3 :=
2

2 +
√

2

− log2(ε)− log2(1− q) + log2(B) + ` log2(`)− 1
log2(2+

√
2)
` log2(1− q)

1− q

If Mlow = t1 then, as above, we did not find anything better.
If Mlow = t2, then we have the following inequality

Mlow =
2

2 +
√

2

− log2(ε)− log2(1− q) + log2(A)

1− q
≤ − log2(ε)− log2(1− q) + log2(A)

− log2(q)

since 2
2+
√
2

1
1−x ≤

1
− log2(x)

for all x ∈ ( 1√
2
, 1). And so by 3.1 D(Mup) ≥ ε.

If Mlow = t3, then we have the following inequality

Mlow =
2

2 +
√

2

− log2(ε)− log2(1− q) + log2(B) + ` log2(`)− 1
log2(2+

√
2)
` log2(1− q)

1− q

≤ − log2(ε)− log2(1− q) + log2(B) + ` log2(`)− ` log2(− log2(q))

− log2(q)

since 2
2+
√
2

1
1−x ≤

1
− log2(x)

, 1
log2(2+

√
2)
− log2(1−x) ≤ − log2(− log2(x)) for all x ∈ [ 1√

2
, 1).

And since `
− log(q) ≥ 2 (q ≥ 1√

2
) we have by 3.2 with w = 1 that D(Mup) ≥ ε.
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3.2.3 Correctness of listing 3.1.5. and listing 3.1.6.

We will shortly introduce the eulerian numbers, as we need them for an exact formula
for D(M).

Definition 3.2.9. [JMHM08, (2.114),(2.115) and (2.120)]

〈
n
k

〉
is the eulerian number,

which is defined for every n, k ∈ N with 0 ≤ k < n or k = n = 0. Its recursive definition
is given by: 〈

n
0

〉
= 1〈

n
n− 1

〉
= 1〈

n
k

〉
= (k + 1)

〈
n− 1
k

〉
− (n− k)

〈
n− 1
k − 1

〉
Lemma 3.2.10. For q ∈ R and `,N ≥ 0 holds

∞∑
n=N

n`qn =
qN

1− q

(
N ` + q

`−1∑
k=0

Nk

(
`

k

)
1

(1− q)`−k
`−k−1∑
i=0

〈
`− k
i

〉
qi

)
.

Proof.

∞∑
n=N

qnn` =
∞∑
n=0

qN+n(M + n)` =
∞∑
n=0

qN+n
∑̀
k=0

(
`

k

)
Nkn`−k

=qN
∑̀
k=0

Nk

(
`

k

) ∞∑
n=0

qnn`−k

=qN
∑̀
k=0

Nk

(
`

k

)(
δ`−k,0 +

∞∑
n=1

qnn`−k

)
[JMHM08, (2.126)]

= qN
∑̀
k=0

Nk

(
`

k

)(
δ`−k,0 +

q

(1− q)`−k+1

∑
i

〈
`− k
i

〉
qi

)

Proposition 3.2.11. Listing 3.1.5. and listing 3.1.6. are correct.

Proof. Since lemma 3.2.10 the variable D in listing 3.1.5. is equal to D(M). So D ≤ ε
2
ε

can only hold if D(M) ≤ ε.
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For listing 3.1.6. we use the the following estimation

∞∑
n=N

n`qn
lem 3.2.10

=
qN

1− q

(
N ` + q

`−1∑
k=0

Nk

(
`

k

)
1

(1− q)`−k
`−k−1∑
i=0

〈
`− k
i

〉
qi

)
q∈(0,1)
≤ qN

1− q

(
N ` + q

`−1∑
k=0

Nk

(
`

k

)
1

(1− q)`−k
`−k−1∑
i=0

〈
`− k
i

〉)
[JMHM08, (2.117)]

=
qN

1− q

(
N ` + q

`−1∑
k=0

Nk

(
`

k

)
1

(1− q)`−k
(`− k)!

)

So the variable D in listing 3.1.6. is greater equal D(M) and by the same argumentation
as above listing 3.1.6. is correct.

3.3 Towards the complexity of the evaluation algorithm

Before all else, we want to say that we did not manage to determine the complexity of
the algorithm. So we can only argue in a limited sense for the efficiency of the algorithm.
Furthermore we cannot even argue that our general concept of the evaluation algorithm
is efficient.

The concept of the evaluation algorithm is based on the idea of finding a suitable
partial sum

∑M−1
n=0 anz

n approximating f(z). The following two aspects seem to be most
important for the complexity of the algorithm:

A1 The computation for M should be efficient, which is evident if the overall algorithm
should be fast.

A2 M should be as small as possible, so we need less values of c which has unknown
complexity.

For the first aspect, as previously mentioned, we have no answer. For the second aspect
we want to give an heuristic argument why our algorithm determines a rather small M .
But before this, we want to emphasise that even if we could answer this question to full
extend the result had limited consequences.

3.3.1 Towards the generall concept of the evaluation algorithm

How good behaves the algorithm with respect to the two upper aspects. In fact we do
not know. But even if we had an algorithm which uses the minimal Mmin, satisfying
D(Mmin) ≤ ε, i.e. an optimal result with respect to the second aspect of the upper list,
one can construct a different algorithm which is better.

Remark 3.3.1. The upper algorithm is not optimal with respect to number of values of
c are needed.
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We will show the remark soon, but first we want to mention that this is the first
efficiency gap we have encountered. There might be more sophisticated algorithms which
work utterly different and are more efficient as our approach and this early design desicion
hampers our algorithm to be such effective.

Here is an example which is related to the upper remark. The following algorithm is
more economic with respect to the needed values of c.

Possible outline of evaluation

1 \\ Contract:

2 \\ Input: Name (R, c,A,B, `,N) of some power series

f(x) =
∑∞

i=0 anx
n, z ∈ BR(0) and some ε > 0.

3 \\ Output: Some real y with |f(z)− y| ≤ ε.
4 Determine a set X with least cardinality in

{X ⊆ [N,∞] :
∑

n∈Xc Aqn +Bn`qn ≤ ε}.
5 Return

∑N−1
n=0 c(n)zn +

∑
n∈X c(n)zn.

(a) Area summed up by Listing 3.1.1. in the
example

(b) Area summed up by the possible outline
of evaluation in the example

Figure 3.1: Listing 3.1.1. is not optimal in the usage of c (made with wolframalpha.com
and Gimp)

We show this for an example. Consider the holomorphic function f(z) =
∑∞

i=0(50000+
10x5). We want to evaluate at z = 0.8 with error ε = 7.78 · 106 (sic!) (one could scale
the whole example to get a small ε). We use the datatype (1, c, 50000, 10, 5, 0). Listing
3.1.1. has to compute at least

∑16
n=0 c(n)zn since the minimal M satisfying D(M) ≤ ε is

17, so in the best case we needed 17 values of c. The upper listing would just compute∑
n∈X c(n)zn with X = {20, 21, 22, 23, 24, 25} and hence uses 6 values of c. See figure

3.1.
This example is rather unnatural and the difference of values of c is rather small,

but this was only a simple example (We do not know whether the latter algorithm does
better in not pathological examples).
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3.3.2 How good is the output of the first step of evaluation

Since the first step of evaluation entails a binary search one could think that the output
M is the least M , s.t. D(M) ≤ ε holds. But, as said in the beginning of section 3.1.2,
the decision predicate C has not the property C(M) ⇔ D(M) ≤ ε. So we will use the
output Mup of listing 3.1.3. as base for our discussion. In order to make concrete results
we assume that − log2(ε) + log2(A) ≥ 1 and − log2(ε) + log2(B) ≥ 1. This restriction
seems quite reasonable, since, in general, ε is small and A,B are big. Mup is basically
the maximum of the four terms:

t1 := N

t2 := ln(2)
− log2(

ε
2)− log2(1− q) + log2(A)

1− q

t3 :=
2`

1− q

t4 :=
w ln2(2)e

w ln(2)e− 1

− log2(
ε
2)− log2(1− q) + log2(2B) + ` log2(w`)− ` log2(1− q)

1− q

If q ≤ 1√
2
, then

t2 ≤ 2.4(− log2(ε) + log2(A)) + 6.6

t3 ≤ 6.8`

t4 ≤
w ln(2)e

w ln(2)e− 1
(2.4(− log2(ε) + log2(B) + `(log2(w`) + 1.8) + 9.0) .

So we may make a huge relative error for finding an optimal Mup (and, in general, this
can be arbitrarily big), but the value of Mup is a nice formula in A,B, `, ε.

So now we will base the discussion on the case that q ≥ 1√
2
. We do a case distinction.

Mup = t1 Then we cannot do any better, since the estimation of the an starts from N and
before this an can go beserk.

Mup = t2 We have

Mup = ln(2)
− log2(

ε
2)− log2(1− q) + log2(A)

1− q

≤ ln(2)(1 +
1√
2

)
log2(ε)− log2(1− q) + log2(A) + 1

− log2(q)

≤ 1.2
log2(ε)− log2(1− q) + log2(A) + 1

− log2(q)︸ ︷︷ ︸
:=U

.

Here we used that

∀x ∈ [
1√
2
, 1),

1

1− x
≤ (1 +

1√
2

)
1

− log(x)
.
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We also have

M ≤ log2(ε)− log2(1− q) + log2(A)

− log2(q)︸ ︷︷ ︸
:=L

⇒ A

∞∑
n=M

qn ≥ ε⇒ D(M) ≥ ε.

The fraction U
L gives some upper bound for the relative error we have made with

Mup

U

L
= 1.2(1 +

1

− log2(ε)− log2(1− q) + log2(A)
).

Since the nominator of the upper formula is greater or equal 1, we see that the
relative error is less or equal 2.4.

Mup = t4 We have

Mup =
w ln(2)2e

w ln(2)e− 1

− log2(
ε
2)− log2(1− q) + log2(2B) + ` log2(w`)− ` log2(1− q)

1− q

≤ w ln(2)2e

w ln(2)e− 1
(1 +

1√
2

)

− log2(ε)− log2(1− q) + log2(B) + ` log2(w`)− ` log2(2 +
√

2) log2(− log2(q)) + 2

− log2(q)
=: U

Here we used that

∀x ∈ [
1√
2
, 1),

1

1− x
≤ (1 +

1√
2

)
1

− log(x)
and − log2(1− x) ≤ − log2(2 +

√
2) log2(log2(x)).

We also have by (3.1) if `
− log2(q)

≥ 2w

w

M ≤
− log2(ε)− log2(1− q) + log2(B) + ` log2(

w`
− log2(q)

)

− log2(q)︸ ︷︷ ︸
=:L

⇒ D(M) ≤ ε

The fraction U
L gives some upper bound for the relative error we have made with

Mup

U

L
=

w ln(2)2e

w ln(2)e− 1
(1 +

1√
2

)

(
1 +

−`(log2(2 +
√

2)− 1) log2(− log2(q)) + 2

− log2(ε)− log2(1− q) + log2(B) + ` log2(
w`

− log2(q)
)

)
≤ 9.5

Mup = t3 Since q ≥ 1√
2

we get t4 ≥ ln(2)
` log(1− 1√

2
)

1−q ≥ 1.3 `
1−q . So t3 is approximately 1.5-

times of t4. So the relative error is smaller than 15.
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3.4 The relation between A and B

We want to discuss which relation between A and B is the best for the evaluation
algorithm. We base our discussion on the step for finding the Mup, to be more precisely
we discuss, listing 3.1.3.. In this algorithm Mup is basically the maximum of the two
terms.

t1 = ln(2)
− log2(

ε
2)− log2(1− q) + log2(A)

1− q

t2 =
w ln(2)e

w ln(2)e− 1
ln(2)

− log2(
ε
2)− log2(1− q) + log2(2B) + ` log2(w`)− ` log2(1− q)

1− q
.

We have

A ≥ 2B · `w`

⇒ log2(A) ≥ log2(2B) + ` log2(w`)− log2(1− q)

⇒ ln(2)
− log2(

ε
2)− log2(1− q) + log2(A)

1− q

≥ w ln(2)e

w ln(2)e− 1
ln(2)

− log2(
ε
2)− log2(1− q) + log2(2B) + ` log2(w`)− ` log2(1− q)

1− q
⇒t1 ≥ t2.

So we think that it is most suitable if one can choose A and B, s.t. A ≈ 2B · `w`. This
may be of special interest for the functionals. When implementing these functionals, one
has a certain degree of freedom for the choise of A,B in the output (R, c,A,B, `,N).
But there may also be a problem with this, if in some procedure the values of A and B
get mixed, for example in multiplication, we might get higher overall results. Therefore a
simple example: Assume we have the choise of two representations of a power series. The
first has A1 = 10,B1 = 10 and `1 = 4. The other one has A2 = 512,B2 = 1 and `2 = 4.
Of the point of view from the upper discussion, the latter representation is superior. Now
we want to apply some functional and the result Ar, Br both consist of the sum of A
and B of the input. So we would get for the first representation Ar,1 = 20,Br,1 = 20 and
for the second Ar,2 = 513,Br,2 = 513. Then clearly the first representation is superior.

So we try to develope methods which do not have this mixing behaviour. But nev-
ertheless we did not manage to create methods which produce small B by costs of big
A in a controlled way, s.t. A ≈ 2B · `w`.
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Chapter 4

Maximum on shapes

For the following chapter we fix a power series f(x) =
∑∞

i=0 anx
n with name (R, c,A,B, `,N).

We use the following ad-hoc definition

Definition 4.0.1. A class S of closed subsets of C is called a class of shapes if there is
a naming system δS for S, s.t. for each w ∈ dom(δS) (we set S := δS(w)) and R ∈ R
with S ⊆ BR(0)

• we can compute a τ ∈ R, s.t.

S ⊆ Bτ ⊆ BR(0).

Then τ < R.

• for each ε > 0 we can compute finitely many points ai ∈ S, 1 ≤ i ≤ n s.t.

∂S ⊆
n⋃
i=1

Bε(ai)

An element of S is called S-shape.

Remark 4.0.2. We want to argue that for each closed set S ⊆ C,R ∈ R with S ⊆ BR(0)
and ε > 0 there exists τ and a1, . . . , an as in definition 4.0.1, but clearly they do not
have to be computable. As S is bounded (S ⊆ BR(0)) and closed, it is compact, so it
has an element z with maximal absolut value. Since S ⊆ BR(0), |z| < R there is a τ
that fullfills the upper condition.

The Bε(a1), . . . , Bε(an) covering ∂S exists since S is compact. Hence S can be
covered by finitely balls of the upper form and so can ∂S.

In this chapter we want to discuss how to implement a procedure which determines
the maximum of f on closed S-shapes.
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4.1 Maximum on general shapes

Lef S be a class of shapes. Let S ∈ S with S ⊆ BR(0). Since analytic functions obtain
its maximum on closed sets on the boundary, we only have to consider the boundary of
S to find its maximum. For determing the maximum of f on ∂S up to an error of ε,
we want to cover ∂S by balls of suitable radii, s.t. f varies only ε in this balls. For this
we first want to determine a lipschitz constant for f on S. For this we will use the next
lemma.

Lemma 4.1.1. Lef f(x) =
∑∞

i=0 anx
n be a power series with name (R, c,A,B, `,N).

Let R 3 τ < R. Then for all a, b ∈ Bτ (0)

|f(a)− f(b)| ≤ L|a− b|

with

L =

N−1∑
n=1

n|an|τn−1 +
1

τ

(
A
(
τ
R

)N
1− τ

R

(
N +

τ
R

1− τ
R

)
+
B
(
τ
R

)N
1− τ

R

(
N `+1 +

τ

R

∑̀
k=0

Nk(`+ 1)!(
1− τ

R

)`+1−k
k!

))
.

Proof. From analysis we know that for all points a, b ∈ Bτ (0) we have

|f(a)− f(b)| ≤ |a− b| max
z∈Bτ (0)

|f ′(z)|.

f ′ is given by f ′ =
∑∞

n=0 an+1(n+ 1)xn. For any point z ∈ Bτ (0) we have

|f ′(z)| =

∣∣∣∣∣
∞∑
n=0

an+1(n+ 1)zn

∣∣∣∣∣ ≤
N−2∑
n=0

(n+ 1)|an+1|τn +
∞∑

n=N−1
(n+ 1)|an+1|τn

=
N−2∑
n=0

(n+ 1)|an+1|τn +
1

τ

∞∑
n=N

n|an|τn

≤
N−2∑
n=0

(n+ 1)|an+1|τn +
1

τ

∞∑
n=N

nA
( τ
R

)n
+ n`+1B

( τ
R

)n
lem 3.2.10

=
N−2∑
n=0

(n+ 1)|an+1|τn

+
1

τ

(
A
(
τ
R

)N
1− τ

R

(
N +

τ
R

1− τ
R

)
+
B
(
τ
R

)N
1− τ

R

(
N `+1 +

τ

R

∑̀
k=0

Nk
(
`+1
k

)(
1− τ

R

)`+1−k

`−k∑
i=0

〈
`+ 1− k

i

〉( τ
R

)i))

≤
N−1∑
n=1

n|an|τn−1

+
1

τ

(
A
(
τ
R

)N
1− τ

R

(
N +

τ
R

1− τ
R

)
+
B
(
τ
R

)N
1− τ

R

(
N `+1 +

τ

R

∑̀
k=0

Nk(`+ 1)!(
1− τ

R

)`+1−k
k!

))
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The last estimation is the same as in the proof of the correctness of listing 3.1.6. For〈
n
k

〉
see definition 3.2.9.

So the general procedure for finding the maximum of an S-shape can be given by

Listing 4.1.1.: General algorithm for finding the maximum

1 \\ Contract:

2 \\ Input: Datatype (R, c,A,B, `,N) of some power series f ,
name w of a S-shape S with S ⊆ BR(0) and a ε > 0

3 \\ Output: real y s.t. |y −maxz∈S |f(z)|| ≤ ε
4 Determine a τ ∈ R s.t. τ < R and S ⊆ Bτ (0) \\ depends on

the class S
5 Calculate L as in lemma 4.1.1 applied to (R, c,A,B, `,N) and

τ

6 Cover ∂S by balls B ε
L

(a1), . . . , B ε
L

(an) with a1, . . . , an ∈ S \\

depends on the class S
7 Return max{|f(a1)|, . . . , |f(a2)|}

4.2 Maximum on balls

We want to describe an algorithm which finds the maximum of f on balls Br(z) with
r ∈ R+ and z ∈ C. We say that the two parameters r and z describe the ball (so the
tupel (r, b) gives rise to a naming system for the closed balls as in definition 4.0.1). We
describe how to perform the abstract steps given in listing 4.1.1. and then present the
whole algorithm.

Calculating τ is easy. We just add |z| and b, so τ = |z| + b. By triangle inequality
we get Br(z) ⊆ Bτ (0). We also see that Br(z) ⊆ BR(0)⇔ |z|+ b < R.

The next step is to determine the balls B ε
L

(a1), . . . , B ε
L

(an). Here we try to minimise

the number n of balls needed to cover ∂Br(z). This means we have to place the points
ai, such that the greatest possilbe angle φ of ∂Br(z) is covered by B ε

L
(ai). If r ≤ ε

L ,
then we just have to use one ball, that is B ε

2
(z). If r > ε

L ,without going into great
detail, the best placement can be obtained by placing ai as in figure 4.1.

φ

r

d

ε
L

ε
L

z
ai

Figure 4.1: Sketch for φ and d

Thereby d is chosen so that ai is on
the line between the two intersections of
∂Br(z) and ∂B ε

L
(ai). Some easy cal-

culation yields: The optimal distance is

d =
√
r2 −

(
ε
L

)2
and the covered an-

gle of φ = 2 arcsin
(
ε
Lr

)
. Since arcsin

is not so easy to calculate, we want to
work with some easier term. We just
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use the estimation x ≤ arcsin(x) for all
0 ≤ x ≤ 1. So φ ≥ 2 ε

Lr and we can
cover ∂Br(z) with dπLrε e many points. So
we arrange the points a1, . . . , adπLr

ε
e with

distant d to z, s.t. the angle between
ai, z and ai+1, z is 2 ε

Lr . So the balls

B ε
L

(z + de1·2
ε
Lr ), . . . , B ε

L
(z + ded

πLr
ε
e·2 ε

Lr )
do the job. So it remains to get rid of the
case distinction between r > ε

L and r ≤ ε
L .

We somehow want to incorporate the case in which just one ball is sufficient in the case
where we have to use several balls. Therefore we will adapt the formula for d: d =√

max{r2 −
(
ε
L

)2
, 0}, so if r ≤ ε

L all the points B ε
L

(z+de1·2
ε
Lr ), . . . , B ε

L
(z+ded

πLr
ε
e·2 ε

Lr )
will be placed on z. This will be good enough for us. Now we can state the whole algo-
rithm (use instead of d·e some computable upper bound as in the end of remark 3.1.2).

Listing 4.2.1.: Algorithm for finding the maximum on a ball

1 \\ Contract:

2 \\ Input: Name (R, c,A,B, `,N) of some power series f , the

description of a closed ball Br(z), i.e. (r, z) with

|z|+ r < R and a ε > 0
3 \\ Output: real y s.t. |y −maxz∈Br(z) f(z)| ≤ ε
4 τ := |z|+ r
5 Calculate L as in lemma 4.1.1 applied to (R, c,A,B, `,N) and

τ

6 d :=
√

max{r2 −
(
ε
2

)2
, 0}

7 Return max{z + de1·2
ε
Lr , . . . , z + ded

πLr
ε
e·2 ε

Lr }

26



Chapter 5

Computing operators

5.1 Addition

We are given a power series f =
∑
anx

n with name (Rf , cf , Af , Bf , `f , Nf ) and a power
series g =

∑
bnx

n with name (Rg, cg, Ag, Bg, `g, Ng) and want to determine a name
(Rh, ch, Ah, Bh, `h, Nh) for the power series h = f + g.

Listing 5.1.1.: Summation algorithm

1 \\ Contract:

2 \\ Input: Name (Rf , cf , Af , Bf , `f , Nf ) of some power series f ,
name (Rg, cg, Ag, Bg, `g, Ng) of some power series g s.t.

`f ≥ `g ≥ 1.
3 \\ Parameter: K ∈ N
4 \\ Output: Some name (Rh, ch, Ah, Bh, `h, Nh) of the power series

h := f + g
5 Rh := min{Rf , Rg}
6 ch := cf + cg
7 Nh := max{Ng, Nf}
8 `h := `f

9 A′f :=
(
Rh
Rf

)Nh
Af ,A

′
g :=

(
Rh
Rg

)Nh
Ag,B

′
f :=

(
Rh
Rf

)Nh
Bf ,B

′
g :=

(
Rh
Rg

)Nh
Bg

10 Ah :=

max

{
0, A′f +A′g +N

`g
h B

′
g

(
1− `g

`f

(
Nh
K

)`f−`g)}
if K ≤ Nh

A′f +A′g +K`gB′g

(
1− `g

`f

)
if K ≥ Nh

11 Bh := B′f +B′g
`g

`fK
`f−`g

12 Return (Rh, ch, Ah, Bh, `h, Nh)

Proposition 5.1.1. Listing 5.1.1. is correct.

Proof. It is clear, that ch = cf + cg is the appropriate function for the coefficients. It is
left to check that for all n ≥ Nh |ch(n)| ≤ R−nh (Ah +n`hBh). So fix some n ≥ Nh. Since
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Nf , Ng ≤ Nh we have

|ch(n)| ≤ |cf (n)|+ |cg(n)| ≤ R−nf (Af + n`fBf ) +R−ng (Ag + n`gBg).

So it suffices to show that

R−nf (Af + n`fBf ) +R−ng (Ag + n`gBg) ≤ R−nh (Ah + n`hBh).

We treat the case K ≥ Nh, so by definition of Ah, Bh, n
h we have to show

R−nf (Af + n`fBf ) +R−ng (Ag + n`gBg)

≤ R−nh

((
Rh
Rf

)Nh
Af +

(
Rh
Rg

)Nh
Ag +K`g

(
Rh
Rg

)Nh
Bg

(
1− `g

`f

))

+R−nh

(
n`f

((
Rh
Rf

)Nh
Bf +

(
Rh
Rg

)Nh
Bg

`g

`fK
`f−`g

))
.

Since R−nh

(
Rh
Rf

)Nh
≥ R−nf and R−nh

(
Rh
Rg

)Nh
≥ R−ng the following inequality implies the

upper inequality.

R−nf (Af + n`fBf ) +R−ng (Ag + n`gBg)

≤ R−nf Af +R−ng Ag +K`gR−ng Bg

(
1− `g

`f

)
+ n`f

(
R−nf Bf +R−ng Bg

`g

`fK
`f−`g

)
⇔ n`g − n`f `g

`fK
`f−`g

≤ K`g

(
1− `g

`f

)
The polynomial p(x) = x`g − x`f `g

`fK
`f−`g

has its maximum at K. So it suffices to check

the upper inequality for n = K and one easily sees that this is true.
For the case K ≤ Nh we procede in the same way as above, but set

Ah =

(
Rh
Rf

)Nh
Af +

(
Rh
Rg

)Nh
Ag +N

`g
h

(
Rh
Rg

)Nh
Bg

(
1− `g

`f

(
Nh

K

)`f−`g)
.

Which makes R−nh (Ah + n`hBh) only smaller. So we get the inequality

n`g − n`f `g

`fK
`f−`g

≤ N `g
h

(
1− `g

`f

(
Nh

K

)`f−`g)
.

But the polynomial p from above is decreasing on [K,∞] so it suffices to check the upper
inequality for n = Nh and one easily sees that this is true.

Remark 5.1.2. If `g = 0 we can assume w.l.o.g Bg = 0 and one easily finds a suitable
algorithm.

If one chooses K suitable, one can get the following formulas for Ah, Bh

Ah = A′f +A′g

Bh = B′f +B′g
1

N
`f−`g
h
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5.2 Multiplication

We are given a power series f =
∑
anx

n with name (Rf , cf , Af , Bf , `f , Nf ) and a power
series g =

∑
bnx

n with name (Rg, cg, Ag, Bg, `g, Ng) and want to determine a name
(Rh, ch, Ah, Bh, `h, Nh) for the power series

∑
dnx

n = h := f · g.

Listing 5.2.1.: Multiplication algorithm

1 \\ Contract:

2 \\ Input: Name (Rf , cf , Af , Bf , `f , Nf ) of some power series f ,
name (Rg, cg, Ag, Bg, `g, Ng) of some power series g s.t. `f ≥ `g.

3 \\ Parameter: K ∈ N
4 \\ Output: Some name (Rh, ch, Ah, Bh, `h, Nh) of the power series

h := f · g
5 Rh := min{Rf , Rg}
6 ch(n) :=

∑∞
k=0 cf (n) · cg(n− k)

7 Nh := Ng +Nf

8 `h := `g + `f + 1

9 A′f :=
(
Rh
Rf

)Nh
Af ,A

′
g :=

(
Rh
Rg

)Nh
Ag,B

′
f :=

(
Rh
Rf

)Nh
Bf ,B

′
g :=

(
Rh
Rg

)Nh
Bg

10 Ah := max
{

0, A′f
∑Ng−1

k=0 |bk|R
k
f +A′g

∑Nf−1
k=0 |ak|R

k
g

11 −A′fA′g(Nf +Ng − 1)−A′gB′f
∑Nf−1

k=1 k`f −A′fB′g
∑Ng−1

k=1 k`g
}

12 Bh :=
B′f

∑Ng−1

k=0 |bk|Rkf
N
`g+1

h

+
B′g

∑Nf−1

k=0 |ak|Rkg
N
`f+1

h

+
A′fA

′
g

N
`f+`g

h

+
A′gB

′
f

N
`g
h

+
A′fB

′
g

N
`f
h

+
`
`f
f `

`g
g

(`f+`g)
`f+`g

13 Return (Rh, ch, Ah, Bh, `h, Nh)

Remark 5.2.1. In fact the definition of Ah and Bh are in general not in Q, but we can
also use any upper bound for those.

Lemma 5.2.2. Let
∑`

i=0 αin
i be a polynomial in n with positive coefficients, N ∈ N

and α :=
∑`

i=0
αi
N`−i , then for all n ≥ N

αn` ≥
∑̀
i=0

αin
i (5.1)

Proof. Fix some n ∈ N with n ≥ N . Consider the difference of the two polynomials:

αn` −
∑̀
i=0

αin
i =

`−1∑
i=0

n`
αi
N `−i − n

iαi

=
`−1∑
i=0

niαi(
( n
N

)`−i
− 1) ≥ 0
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Proposition 5.2.3. Listing 5.2.1. is correct.

Proof. From analysis it is known that

dn =
n∑
k=0

akbn−k.

So the formula for ch is correct. It is left to check that for all n ≥ Nh |ch(n)| ≤
R−nh (Ah +n`hBh). Rather then showing it directly we want to develope this estimation.
We adopt the names of the programm for A′f , A

′
g, B

′
f , B

′
g i.e.

A′f :=

(
Rh
Rf

)Nh
Af , A

′
g :=

(
Rh
Rg

)Nh
Ag, B

′
f :=

(
Rh
Rf

)Nh
Bf , B

′
g :=

(
Rh
Rg

)Nh
Bg

So fix an n ≥ Nf +Ng. We have

|dn| =

∣∣∣∣∣
n∑
k=0

akbn−k

∣∣∣∣∣ ≤
Nf−1∑
k=0

|ak||bn−k|+
n−Nb∑
k=Nf

|ak||bn−k|+
n∑

k=n−(Ng−1)

|ak||bn−k|

=

Nf−1∑
k=0

|ak||bn−k|︸ ︷︷ ︸
Ig

+

Ng−1∑
k=0

|bk||an−k|︸ ︷︷ ︸
If

+

n−Ng∑
k=Nf

|ak||bn−k|︸ ︷︷ ︸
II

We discuss the terms If , Ig, II seperately. One observes that If and Ig are of similar
form, so we discuss If only and Ig is treated analogously.

If =

Ng−1∑
K=0

|bk||an−k| ≤
Ng−1∑
k=0

|bk|(Af +Bf (n− k)`f )R
−(n−k)
f

= (Rf )−n

Af Ng−1∑
k=0

|bk|Rkf +Bf

Ng−1∑
k=0

|bk|Rkf (n− k)`f


≤ (Rf )−n

Af Ng−1∑
k=0

|bk|Rkf +Bf

Ng−1∑
k=0

|bk|Rkfn`f


≤ (Rh)−n

(
Rh
Rf

)NhAf Ng−1∑
k=0

|bk|Rkf +Bf

Ng−1∑
k=0

|bk|Rkfn`f


= (Rh)−n

A′f Ng−1∑
k=0

|bk|Rkf +B′f

Ng−1∑
k=0

|bk|Rkfn`f


We get an analogously estimation for Ig:

Ig ≤ (Rh)−n

A′g Nf−1∑
k=0

|ak|Rkg +B′g

Nf−1∑
k=0

|ak|Rkgn`g

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Now we discuss II:

II =

n−Ng∑
k=Nf

|ak||bn−k|

≤
n−Ng∑
k=Nf

(Rf )−k(Af +Bfk
`f )(Rg)

−(n−k)(Ag +Bg(n− k)`g)

≤
n−Ng∑
k=Nf

(Rh)−k
(
Rh
Rf

)Nh
(Af +Bfk

`f )(Rh)−(n−k)
(
Rh
Rg

)Nh
(Ag +Bg(n− k)`g)

= (Rh)−n
n−Ng∑
k=Nf

(A′f +B′fk
`f )(A′g +B′g(n− k)`g)

≤ (Rh)−n

A′fA′g
n−Ng∑
k=Nf

1

+A′gB
′
f

n−Ng∑
k=Nf

k`f

+B′gA
′
f

n−Nf∑
k=Ng

k`g

+B′fB
′
g

n−Ng∑
k=Nf

k`f (n− k)`g


We want to develope for each addend in the last term a polynomial estimation. The
first one can be calculated exact as

A′fA
′
g

n−Ng∑
k=Nf

1

 = A′fA
′
g(−Nf −Ng + 1) +A′fA

′
gn.

Now we turn our attention to the next term and use some rather crude estimation

A′gB
′
f

n−Ng∑
k=Nf

k`f

 = A′gB
′
f

n−Ng∑
k=1

k`f −
Nf−1∑
k=1

k`f


≤ A′gB′f

 n∑
k=1

n`f −
Nf−1∑
k=1

k`f

 = A′gB
′
fn

`f+1 −A′gB′f
Nf−1∑
k=1

k`f

We want to argue that at least the exponent `f + 1 is optimal in the estimation. For all
m large enough we have

A′gB
′
f

m−Ng∑
k=1

k`f −
Nf−1∑
k=1

k`f

 ≥ A′gB′f
m−Ng∑

k=m
2

(m
2

)`f
−
Nf−1∑
k=1

k`f

 = A′gB
′
f

(m
2

)`f
+O(m`f ).

This shows the remark. A similiar treatment can be done with the third term and obtain:

A′fB
′
g

n−Nf∑
k=Ng

k`g

 ≤ A′fB′gn`g+1 −A′fB′g
Ng−1∑
k=1

k`g
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So the last term remains. We have k`f (n− k)`g is biggest for k = n
`f

`f+`g
. So we have

n−Ng∑
k=Nf

k`f (n− k)`g ≤
n∑
k=1

k`f (n− k)`g

≤
n∑
k=1

(
`f

`f + `g
n

)`f ( `g
`f + `g

n

)`g

≤
`
`f
f `

`g
g

(`f + `g)`f+`g
n`f+`g+1

Sadly the exponent in the upper estimation is not optimal since

n∑
k=1

k`a(n− k)`b = n`a+`b
n∑
k=1

(
k

n

)`a (
1− k

n

)`b for large n
≈ n`a+`b

∫ 1

0
x`a(1− x)`b .

So at least here is some optimisation possible. Now we have estimated all three terms
If , Ig, II if we collect all the constant terms (except the R−nh ) we get a restriction for
Ah:

Ah ≥ A′f
Ng−1∑
k=0

|bk|Rkf +A′g

Nf−1∑
k=0

|ak|Rkg −A′fA′g(Nf +Ng − 1)−A′gB′f
Nf−1∑
k=1

k`f −A′fB′g
Ng−1∑
k=1

k`g .

Which is obviously true by definition of Ah.
Now we gather all the terms which depend on n and get an constraint for Ahn

`f+`g+1:

Bhn
`f+`g+1 ≥ n`f

B′f Ng−1∑
k=0

|bk|Rkf

+ n`g

B′g Nf−1∑
k=0

|ak|Rkg

+ n
(
A′fA

′
g

)

+ n`f+1
(
A′gB

′
f

)
+ n`g+1

(
A′fB

′
g

)
+ n`f+`g+1

 `
`f
f `

`g
g

(`f + `g)`f+`g


We can apply on the latter polynomial lemma 5.2.2 and get the formula for Bh:

Bhn
`f+`g+1 = n`f+`g+1

(
B′f
∑Ng−1

k=0 |bk|R
k
f

N
`g+1
h

+
B′g
∑Nf−1

k=0 |ak|R
k
g

N
`f+1
h

+
A′fA

′
g

N
`f+`g
h

+
A′gB

′
f

N
`g
h

+
A′fB

′
g

N
`f
h

+
`
`f
f `

`g
g

(`f + `g)`f+`g


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5.3 Differentiation

We are given a power series f =
∑
anx

n with name (Rf , cf , Af , Bf , `f , Nf ) and want to
determine a name (Rh, ch, Ah, Bh, `h, Nh) for the power series h = f ′. Therefore we have
two methods. The first method is a straightforward calculation, but has the drawback
that Bh consists of a mixing of Af and Bf .

Listing 5.3.1.: First differentiation algorithm

1 \\ Contract:

2 \\ Input: Name (Rf , cf , Af , Bf , `f , Nf ) of some power series f
3 \\ Output: Some name (Rh, ch, Ah, Bh, `h, Nh) of the power series

h := f ′

4 Rh := Rf
5 ch(n) := (n+ 1)cf (n+ 1)
6 Nh := max{0, Nf − 1}
7 if(`f = 0 ∨Bf = 0){
8 `h = 1

9 Ah :=
Af+Bf
Rh

10 Bh :=
Af
Rh

11 }

12 if(Nh = 0 ∧ ` 6= 0 ∧Bg 6= 0)){
13 `h := `f + 1

14 Ah :=
Af
Rh

+
Bf
Rh

15 Bh :=
Bf2

`h+Af−Bf
Rh

16 }

17 if((Nh 6= 0 ∧ ` 6= 0 ∧Bg 6= 0)){
18 `h := `f + 1

19 Ah :=
Af
Rh

+
Bf
Rh

20 Bh :=
Bf (Nh+1)`h+AfNh−Bf

RhN
`h
h

21 }

22 Return (Rh, ch, Ah, Bh, `h, Nh)

The next program does not have this mixing behaviour (except for ` = 0 ∧ B = 0 but
then the problem discussed in section 3.4 does not occur), but is harder to compute.

Listing 5.3.2.: Second differentiation algorithm

1 \\ Contract:

2 \\ Input: Name (Rf , cf , Af , Bf , `f , Nf ) of some power series f
3 \\ Output: Some name (Rh, ch, Ah, Bh, `h, Nh) of the power series

h := f ′
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4 Rh := Rf
5 ch(n) := (n+ 1)cf (n+ 1)
6 Nh := max{0, Nf − 1}
7 if(`f = 0 ∨Bf = 0){
8 `h = 1

9 Ah :=
Af+Bf
Rh

10 Bh :=
Af
Rh

11 }

12 if(Nh = 0 ∧ ` 6= 0 ∧Bg 6= 0)){
13 `h := `f + 1

14 Ah :=
Af
Rf

+
Bf
Rf

+
Af
Rf

`h−1

√
A
`hB

(1− 1
`h

)

15 Bh := B
R2`h

16 }

17 if((Nh 6= 0 ∧ ` 6= 0 ∧Bg 6= 0)){
18 `h := `f + 1

19 Ah :=


Af
Rf

+
Bf
Rf

+
Af
Rf

`h−1

√
AN

`h
h

`hB
(1− 1

`h
) if 1 ≤ AfNh

Bf `h
Af (Nh+1)

Rh
else

20 Bh :=
Bf
Rh

(
Nh+1
Nh

)`h
21 }

22 Return (Rh, ch, Ah, Bh, `h, Nh)

Before we proof the correctness of these algorithms we state a technical lemma.

Lemma 5.3.1. Let `,N ∈ N with N ≥ 1. Then for all n ∈ N with n ≥ N(
N + 1

N

)`
n` − (n+ 1)` ≥

( n
N

)`
− 1 ≥ 0

Proof. Since n ≥ N we have
(
n
N

)j − 1 ≥ 0(
N + 1

N

)`
n` − (n+ 1)` =

∑̀
i=0

(
`

i

)(
n`

N `−i − n
i

)

=
∑̀
i=0

(
`

i

)
ni
(( n

N

)`−i
− 1

)
≥
(
`

0

)
n0
(( n

N

)`−0
− 1

)
=
( n
N

)`
− 1

Proposition 5.3.2. Listing 5.3.1. and 5.3.2. are correct.
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Proof. We have

f ′ =
∞∑
n=0

an+1(n+ 1)xn

So the formula for ch is correct in both listings. Now for the estimation of the coefficients.
For all n ≥ Nh holds n+ 1 ≥ Nf and so:

|ch(n)| = |an+1(n+ 1)| ≤ 1

Rn+1
f

(Af +Bf (n+ 1)`f )(n+ 1) =
1

Rnf

(
Bf
Rf

(n+ 1)`f+1 +
Af
Rf

n+
Af
Rf

)
=

1

Rnh

(
Bf
Rh

(n+ 1)`h +
Af
Rh

n+
Af
Rh

)
We first show that listing 5.3.1. is correct. Therefore we verify the representations
generated in the different cases.

Let `f = 0 ∨Bf = 0 then for all n ≥ Nh

1

Rnh

(
Bf
Rh

(n+ 1)`h +
Af
Rh

n+
Af
Rh

)
=

1

Rnh

(
Af
Rh

n+
Af +Bf
Rh

)
=

1

Rnh

(
Bhn

`h +Ah

)
Now let (Nh 6= 0 ∧ ` 6= 0 ∧Bg 6= 0) then for all n ≥ Nh

1

Rnh

(
Bf
Rh

(n+ 1)`h +
Af
Rh

n+
Af
Rh

)
≤ 1

Rnh

(
Bf
Rh

(
(Nh + 1)`h − 1

N `h
h

n`h + 1

)
+
Af
Rh

n+
Af
Rh

)

=
1

Rnh

(
Bf
Rh

(Nh + 1)`h − 1

N `h
h

n`h +
Af
Rh

n+
Af
Rh

+
Bf
Rh

)

≤ 1

Rnh

((
Bf
Rh

(Nh + 1)`h − 1

N `h
h

+
Af

RhN
`h−1
h

)
n`h +

Af
Rh

+
Bf
Rh

)
=

1

Rnh

(
Bhn

`h +Ah

)
Now let (Nh = 0 ∧ ` 6= 0 ∧ Bg 6= 0). We reduce this case to the previous one. Take

Ah, Bh such as Nh = 1. Then we know that

1

Rnh

(
Bf
Rh

(n+ 1)`h +
Af
Rh

n+
Af
Rh

)
≤ 1

Rnh

(
Bhn

`h +Ah

)
for all n ≥ 1. One easily checks that the upper inequality also holds for n = 0.

Now we show that listing 5.3.2. is correct. Therefore we verify the representations
generated in the different cases.

Let `f = 0 ∨Bf = 0 then we can apply the same reasoning above.
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Now let (Nh 6= 0 ∧ ` 6= 0 ∧Bg 6= 0) then for all n ≥ Nh

1

Rnh

(
Bf
Rh

(n+ 1)`h +
Af
Rh

n+
Af
Rh

)
≤ 1

Rnh

(
Bf
Rh

(
(Nh + 1)`h − 1

N `h
h

n`h + 1

)
+
Af
Rh

n+
Af
Rh

)

=
1

Rnh

(
Bf
Rh

(Nh + 1)`h

N `h
h

n`h +

(
Af
Rh

n−
Bf

RhN
`h
h

n`h

)
+
Af
Rh

+
Bf
Rh

)
The expression (

Af
Rh

n−
Bf

RhN
`h
h

n`h

)

attains its maximum at nmax := Nh
`h−1

√
AfNh
Bf `h

. So by either pluging in nmax if Nh ≤

Nh
`h−1

√
AfNh
Bf `h

(⇔ 1 ≤ AfNh
Bf `h

) or Nh in the other case, we get the formula of the listing.

Now let (Nh = 0 ∧ ` 6= 0 ∧ Bg 6= 0). We reduce this case to the previous one. Take
Ah, Bh such as Nh = 1. Then we know that

1

Rnh

(
Bf
Rh

(n+ 1)`h +
Af
Rh

n+
Af
Rh

)
≤ 1

Rnh

(
Bhn

`h +Ah

)
for all n ≥ 1. One easily checks that the upper inequality also holds for n = 0.

5.4 Integration

We are given a power series f =
∑
anx

n with name (Rf , cf , Af , Bf , `f , Nf ) and want to
determine a name (Rh, ch, Ah, Bh, `h, Nh) for a power series h, s.t. h′ = f this means to
find an integral for f . Since the integral is uniquely except for a constant we norm h,
s.t. h(0) = 0.

Listing 5.4.1.: Integration

1 \\ Contract:

2 \\ Input: Name (Rf , cf , Af , Bf , `f , Nf ) of some power series f
3 \\ Output: Some name (Rh, ch, Ah, Bh, `h, Nh) of the power series h

s.t. h′ = f and h(0) = 0
4 Rh := Rf

5 ch(n) :=

{
cf (n−1)

n if n ≥ 1

0 if n = 0

6 Nh := Nf + 1
7 `h := `f − 1

8 Ah :=
AfRh
Nh

9 Bh := BfRh
10 Return (Rh, ch, Ah, Bh, `h, Nh)
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Proposition 5.4.1. Listing 5.4.1. is correct.

We omit this straight forward proof.
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Chapter 6

Conclusion

So we have created a fundament for a new datatype for iRRAM. If this can be used
efficiently in practice, should be tested in practice. For instance the discussion of the
efficiency of the first step of evaluation was based purely on the algorithm for finding
Mup. This is comprehensible since we cannot make predictions for the binary search
which is in fact involved since it depends on the representation. So in the worst case the
binary search will not find a lower value for Mup, altough there exist one. But it may
also be in other cases very beneficial.

The algorithm for multiplication is not very good developed. But there are things,
one is not able to improve. So it seems that multiplication is theoretical doable, but not
feasible.
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