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Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig
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1 Introduction

1.1 What is a clearing house / CCP?

A clearing house is a financial institution that provides a full range of different
services for financial transactions. A clearing house can also act as the cen-
tral counterparty (CCP) for its customers. Instead of bilateral trades the CCP
acts as the seller to every buyer and the buyer to every seller. Here, there are
two possible ways the clearing house can become the CCP. The first concept
is open offer where the CCP automatically becomes the counterparty for all
transactions at the supported exchange markets. The second concept is nova-
tion, through this process ”a bilateral contract between two market participants
is replaced by two bilateral contracts between each of the original counterparties
and the CCP.”1

1.2 Member structure at Eurex Clearing

Eurex is a derivatives exchange run by the Group Deutsche Boerse AG. A variety
of different products are offered to members from 700 locations worldwide, who
generate a trading volume of over 1.5 billion contracts a year. Eurex Clearing
is the clearing house of Eurex and acts as a central counterparty.2 In general,
Eurex Clearing offers three types of memberships to potential new customers.3

General Clearing Member (GCM) are able to clear for themselves and for their
customers, aswell as for associated Non Clearing Member (NCM), which form
another group of members. Direct Clearing Member (DCM) are the last type
of members. They are only allowed to clear for themselves, their customers and
affiliated NCMs.

Figure 1.1: Member Structure of Eurex Clearing4

1Bliss, R. and Papathanassiou, C.: Derivatives clearing, central counterparties and nova-
tion: The economic implications, p. 3.

2Eurex Clearing also clears other markets in addition to Eurex (e.g. the equity trading
on the Frankfurt Stock Exchange/Xetra). However, Eurex Derivatives are of interest in this
thesis and these products will be described.

3For each membership there are different obligations and requirements.
4Source: Eurex Clearing AG: Risk Based Margining, p. 8.
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1.3 Margin process and lines of defense

In order to be able to offset each open position in the portfolio within a very
short period of time, the clearing member has to deposit securities as collateral,
which is called margin. There are different types of margins. While ”premium,
current liquidating and variation margin cover the liquidation risk at the cur-
rent point of time, additional and future spread margins cover the potential
liquidation risk for the following business day.” The advantage for the members
in paying margins lies in the fact that they only have to provide coverage for
the risk of their positions instead of paying the full value of the open positions.
A further advantage is that Eurex Clearing takes risk reducing effects of differ-
ent positions into account. Thus, ”equal but opposite risks within the account
are offset against each other”, which yields to a lower amount of collateral the
clearing member has to provide.5

Since a CCP must not default even in extreme market situations, Eurex Clearing
has established multiple lines of defense to be protected in case of a default of a
clearing member (CM). Beside the obligation to provide margins, CMs have to
provide a contribution to the Clearing Fund. This security system should ensure
that Eurex Clearing can ”guarantee the fulfillment of every contract on every
market where they provide their services.”6 In figure 1.2, the different lines of
defense of Eurex Clearing are illustrated.

Figure 1.2: Eurex Clearing’s lines of defense7

5http://www.eurexclearing.com/risk/margin_process_en.html
6http://www.eurexclearing.com/risk/line_defense_en.html
7Source: Eurex Clearing AG: Safeguards of the clearing house, p. 16.
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1.4 Overview on derivatives

Derivatives are financial instruments. Their value depends on some other fi-
nancial product, the so called underlying (i.e. the value is derived from this
underlying).8

1.4.1 Futures

Futures are standardized contracts between two parties which are traded on an
exchange. Basically, a future is an agreement to buy or sell a financial product
at a specific time for a specific price. One of the two parties is in a long position
and has to buy the underlying at the specific time for the specific price. The
other party is in a short position and has to sell the respective product at the
same time for the same price. Settlement takes place at maturity. The party
in the short position delivers the underlying product to the party in the long
position and receives in return the payments of the agreed price (strike price).9

1.4.2 Options

Options are financial contracts which give, unlike futures, the right (and not
the obligation) to buy or sell a certain financial product (the underlying) at a
specific time (maturity) for the predetermined strike price. While a call option
gives the buyer of the option the right to buy the underlying, a put option gives
the buyer the right to sell the underlying asset. Again, the buyer of an option
is in a long position and the seller is in a short position. One distinguishes
between american and european options. American options can be exercised at
any time until maturity but european options can only be exercised at maturity
date.10

1.5 Default of a clearing member

A clearing member defaults when it has not fulfilled its legal obligations. In
this context, insolvency or bankruptcy are only a stronger form of a default.
But a default of a CM can also occur when it does not pay its margins. Even
when there is a delay in the payments Eurex Clearing can declare a technical
default of the CM. When a clearing member default occurs, Eurex Clearing has
to transfer its risk exposure resulting from such a default to another Clearing
Member. Eventual losses in this process are covered by the lines of defense. If
the resources of the lines of defense are not sufficient to cover the losses, Eurex
Clearing ”has the right to request the non-defaulting clearing members to re-
plenish the clearing fund.”11

8See: Hull, J. C.: Options, Futures and Other Derivative Securities, p. 1.
9See: Hull, J. C.: Options, Futures and Other Derivative Securities, pp. 2-3.

10See: Kohler, J.: Einfuehrung in die Finanzmathematik, p. 3.
11International Monetary Fund: Country Report No. 11/271, p. 20.
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In the figure below we can see a situation before the default of a clearing mem-
ber.

Figure 1.3: CCP is balanced before CM default12

If now in the example below CM1 defaults, the CCP is not balanced anymore.
Eurex Clearing as the CCP becomes the legal owner of the positions and the
margin collateral.

Figure 1.4: Default of CM1, CCP is unbalanced13

In a next step Eurex Clearing ”will re-establish opposing transactions with
the market so that the risk exposure for the CCP is flattened.”14

Figure 1.5: Re-balanced CCP15

As the case of the insolvency of Lehman Brothers has shown, a default of
a (major) clearing member has a lot of negative effects on the whole market.

12Source: Eurex Clearing AG: Detailed Liquidation Scenario Document.
13Source: Eurex Clearing AG: Detailed Liquidation Scenario Document.
14Eurex Clearing AG: Detailed Liquidation Scenario Document, p. 11.
15Source: Eurex Clearing AG: Detailed Liquidation Scenario Document.
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Thus, Eurex Clearing strives for a default management process minimizing the
negative effects of a default.

1.6 Proposals on the new default management process

Eurex Clearing will introduce a new default management process in which auc-
tions will play the key role. In case of a default of a clearing member, the
portfolio will be divided in so-called ”liquidation-groups”. After a hedging pro-
cess16 the different liquidation groups will then be auctioned off separately.
The new process has the following key goals:

1. ”Minimize the effect and disruption on the membership and the wider
market.

2. Minimize losses to the clearing house’s lines of defense i.e. minimize losses
to contributions from the clearing member community and the clearing
house.”17

More precisely, the following steps are considered to liquidate efficiently the
portfolio of the defaulted clearing member.18

1. Predefined Liquidation Groups: In order to facilitate further steps such as
hedging and pricing, all products of the portfolio will be split into parts,
so called liquidation groups.

2. Preliminary Actions: Since there may be positions in the portfolio with
approaching maturity, preliminary actions can be performed to minimize
or close-off such risks.

3. Hedging: Before the liquidation groups will be sold via independent sale
or auctions, an asset-class specific hedging will take place. The reason
for the hedging is to make the portfolio ”less sensitive to market moves”.
Furthermore, the hedged liquidation group becomes more stable in the
auction, since ”bidders’ future expectations have less impact on the port-
folio price.”

4. Independent Sale and Auction: The CCP may liquidate small portfolios
or parts of a portfolio with special products via bilateral trades or by order
book trading. But, as stated above, auctions are the core component of
the new procedures in order to establish a fair market price. Thus, a
separate auction will be established for each liquidation group.

16Hedging describes all steps with the goal to minimize possible volatilities in the price
of a portfolio, for example by buying a financial instrument which can offset the risk of the
existing positions. See: Oil and Gas Investor, White Paper: Hedging Commodity Risk, Allegro
Comodity Corp, 2009, p. 1.

17Eurex Clearing AG: Project Prisma, Default Management Process.
18Note that positions and collateral of the clients of the defaulted clearing member will be

transfered to other clearing members as a first step.
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5. Allocation: In case that all other attempts to liquidate parts of the port-
folio did not succeed, Eurex Clearing allocates the remaining parts to its
members ”in order to offset the risk exposure for the clearing house.”19

The proposed process for the auctions can be described as follows:

Figure 1.6: Auction Scheme

For each hedged liquidation group, a separate auction will be set up, gen-
erally there are no restrictions for participation in the auctions. Thus each
clearing member (and also their clients) is allowed to take part in the auctions.
There are two possibilities for the setup of the auction. The first possibility
is a single-unit auction, i.e. the whole liquidation group will be auctioned off.
The winner of the auction will receive the liquidation group and has to pay the
price depending on the chosen auction format.20 The second possibility is a
multi-unit auction. This means that the respective liquidation group will be
split in homogenous parts and bidders are able to bid on portions instead of the
whole liquidation group. If the auction is not successful (i.e. no competitive
price for the liquidation group or parts of it was established), Eurex Clearing
can directly allocate parts of the portfolio.21

1.7 Why are auctions useful?

Let us first think about the question what an auction actually is and what
kind of processes fall under this category. What all different auction formats
have in common is the fact that they extract information by the potential buy-
ers of an object to be sold (via the bidding process). Two further aspects are

19Eurex Clearing AG: Detailed Liquidation Scenario Document.
20Please note: Since financial products/derivatives are being auctioned off bids with negative

values are also possible. In this case, the winner of the auction receives the liquidation group
and the respective price.

21Eurex Clearing AG: Detailed Liquidation Scenario Document.
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also characteristic for auctions. These are the determination of the winner and
the determination of the payments by the auction participants. The determi-
nation processes are only based on the received information, i.e. auctions are
anonymous, the identity of the potential buyers does not influence the determi-
nations.22

Today, a variety of auctions are used in many different areas. For example,
the U.S. Treasury sells long-term securities via a weekly auction, in Aalsmeer
(Netherlands) the worlds’ biggest flower auction takes place every day. Also
in the case of the default of Lehman Brothers in 2008, auctions were used to
liquidate the portfolio of Lehman Brothers, but in a very unorganized way. But
an organized auction in case of a default would generate more liquidity and re-
duce price disruptions,23 ”than uncoordinated replacement of positions during
periods of pronounced uncertainty.”24 Also Craig Pirrong25 considers auctions
as a good strategy for a CCP to ”reduce the disruptive effects of default.”26

Regarding the questions why auctions are used, Vijay Krishna gives the fol-
lowing answer: ”Auctions are used precisely because the seller is unsure about
the values that bidders attach to the object being sold.”27 This means that if
a seller would know the values of the potential buyers, he would just offer the
object to the potential buyer with the highest value.

1.8 Motivation

Plenty of excellent work exists on auction theory dealing with the design of auc-
tions, the right incentive management and results and backgrounds on efficiency
and revenue considerations of different auction formats. Since existing literature
on auction theory adresses mainly readers from the economy, the mathematical
aspects and details are kept very functional, definitions and theorems are de-
signed in a way to serve only the predefined settings.
This thesis will review auction theory in a unified mathematical framework. The
focus will lie on the analysis of the maybe most celebrated theorem of auction
theory: The revenue equivalence theorem. The development of this theorem will
be characterized and a more general version will be presented for the single-unit
and for the multi-unit version. There will be an outlook on further aspects of
auction theory and the implications will be assessed, leading to recommenda-
tions for suitable central counterparty procedures at Eurex Clearing.

22See: Krishna, V.: Auction Theory, Academic Press, 2009, p. 6.
23See: Greenwald, B. and Stein, J.: Transactional Risk, Market Crashed and the Role of

Circuit Breakers 64 J. of Business (1991)443.
24Pirrong, C.: ISDA Discussion Paper Series, The Economics of Central Clearing: Theory

and Practice, p. 11.
25Craig Pirrong is Professor of Finance, and Energy Markets Director for the Global Energy

Management Institute at the Bauer College of Business at the University of Houston.
26Pirrong, C.: ISDA Discussion Paper Series, The Economics of Central Clearing: Theory

and Practice, p. 2.
27Krishna, V.: Auction Theory, Academic Press, 2009, p. 2.

10



2 Introduction to auction theory

2.1 General framework

In this section we want to begin to define a general framework and set the nota-
tions in order to present and analyse the theorems in the next chapters. First,
let us think about what is neccessary in order to perform an auction. In fact,
each auction consists of two components, an allocation rule, determining who
will get the object(s) auctioned-off by the seller and a payment rule, specifying
the payments after the auction by each participant.

Definition 2.1 (Single-Unit Auction). Let n be a natural number and let A0

be a function defined as follows:

A0 : Rn → Rn
x 7→ qA(x)

where qA(x) =
(
qA(x)1, . . . , q

A(x)n
)
,

∀i ∈ {1, . . . , n}, 0 ≤ qA(x)i and
∑n
i=1 q

X(x)i ≤ 1.

Furthermore, let A1, . . . , An be functions of type Rn → R. Then, a single-unit
auction A is defined by A = (A0;A1, . . . , An).

Definition 2.2 (Multi-Unit Auction). Let n and k be natural numbers and let
A0 be a function defined as follows:

A0 : (Rk)n → (Rk)n

x 7→ qA(x)

where qA(x) =
(
qA(x)1, . . . , q

A(x)n
)
,

∀i ∈ {1, . . . , n}, qA(x)i = (qA1 (x)i, . . . , q
A
k (x)i),

∀l ∈ {1, . . . , k}, qAl (x) =
(
qAl (x)1, . . . , q

A
l (x)n

)
and ∀i ∈ {1, . . . , n} and ∀l ∈ {1, . . . , k}, qAl (x)i ∈ [0, 1].

Furthermore, let A1, . . . , An be functions of type (Rk)n → R. Then, a multi-unit
auction A is defined by A = (A0;A1, . . . , An).

Beside an allocation and a payment rule, we need to define bidding functions.

Definition 2.3 (Bidding function). Let k be natural number and let b be a
function of type Rk → Rk.

In the next two subchapters we present some standard auction formats,
single-unit and multi-unit. Here we will use the formalism above, i.e. an alloca-
tion and a payment function per bidder with corresponding bidding functions.

2.2 Single-unit auctions

Definition 2.4 (First price auction). Let n be a natural number. For all i
between 1 and n, let vi be a real number. For all i ∈ {1, . . . , n}, let the functions

11



bi be of type R→ R and let the functions F0 and Fi be defined as follows.

F0 : Rn → Rn
v 7→ qF (v)

where qF (v) =
(
qF (v)1, . . . , q

F (v)n
)

and ∀i ∈ {1, . . . , n}, qF (v)i =

{
1 if bi(vi) > maxj 6=i bj(vj)

0 if bi(vi) < maxj 6=i bj(vj)

Fi : Rn → R

v 7→

{
bi(vi) if bi(vi) > maxj 6=i bj(vj)

0 if bi(vi) < maxj 6=i bj(vj)

where v = (v1, . . . , vn)

In a first price auction each bidder i ∈ {1, . . . , n} has a value vi ∈ R for the
object to be auctioned-off. Each bidder submits a bid bi(vi) and he gets the
object if and only if his bid is the highest among all bids. In this case he gets the
object and has to pay an amount equal to his submitted bid. All other bidders
do not have to pay anything. In case of a draw (two or more bidders submitted
the highest bid), some arbitrary rule may be chosen to determine the winner of
the auction.

Definition 2.5 (Second price auction). Let n be a natural number. For all i
between 1 and n, let vi be a real number. For all i ∈ {1, . . . , n}, let the function
bi be of type R→ R and let the functions S0 and Si be defined as follows.

S0 : Rn → Rn
v 7→ qS(v)

where qS(v) =
(
qS(v)1, . . . , q

S(v)n
)

and ∀i ∈ {1, . . . , n}, qS(v)i =

{
1 if bi(vi) > maxj 6=i bj(vj)

0 if bi(vi) < maxj 6=i bj(vj)

Si : Rn → R

v 7→

{
maxj 6=ibj(vj) if bi(vi) > maxj 6=i bj(vj)

0 if bi(vi) < maxj 6=i bj(vj)

where v = (v1, . . . , vn)

In the second price auction, there are again n ∈ N bidders competing for
a single object. As in the first price auction, the bidder with the highest bid
wins the auction and gets the object. But in contrast to the first price auction,
the winner of the auction does not pay his own bid but instead the second
highest bid. The two single-unit auctions we defined so far have one property in

12



common: They are both sealed bid auctions, i.e. the bidding process is secret,
only the seller gets to know how everyone has bid. Beside these two common
auction formats, there are also two well-known ”open” auction formats, which
we want to quickly describe.

Definition 2.6 (Dutch Auction). The seller publicly announces a price for the
object to be auctioned off. This price is lowered step by step until one bidder
indicates that he wants to buy the object (for example by pressing a button).
This bidder gets the object and has to pay this respective price.

Definition 2.7 (Progressive (English) Auction). The seller publicly announces
a price for the object to be auctioned off. Each bidder who is interested in buying
the object for this price indicates his interest (for example by pressing a button).
The seller raises the price step by step as long as there are at least two bidders
remaining with the intend to buy the object. The auction ends when there is only
one bidder left. He gets the object and pays the price at which the second-last
bidder drops out of the bidding process.

There are some relations between the ”sealed” and ”open” auctions. For
example, we notice that the dutch auction is strategically equivalent to the first
price auction. Strategical equivalence means, that ”for every strategy in one
[auction], a [bidder] has a strategy in the other [auction], which results in the
same outcomes.”28 Although we mentioned that the Dutch auction belongs to
the ”open” auction formats, there is no useful information for the bidders. The
only time when the bidders get information is when one of them agrees to buy
the object, but at this point the auction terminates. So making a bid b(v) in the
first price auction is equivalent to signalling the willingness to buy the object
for b(v) in the dutch auction (of course only when the object has not been sold
yet)29.

2.3 Multi-unit auctions

Definition 2.8 (Discriminatory auction). Let n and k be natural numbers. For
all i between 1 and n, let vi ∈ Rk. For all i ∈ {1, . . . , n}, let the function bi
be of type Rk → Rk and let bi(vi) = (b1i (v

1
i ), . . . , bki (vki )). For all i ∈ {1, . . . , n}

and for all l ∈ {1, . . . , k}, let C be a set containing the k highest of all bli(vi).

28Krishna, V.: Auction Theory, Academic Press, 2009, p. 4.
29See: Krishna, V.: Auction Theory, Academic Press, 2009, p. 4.
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For all i between 1 and n, let the functions D0 and Di be defined as follows.

D0 : (Rk)n → (Rk)n

v 7→ qD(v)

where qD(v) =
(
qD(v)1, . . . , q

D(v)n
)
,

∀l ∈ {1, . . . , k}, qDl (v) =
(
qDl (v)1, . . . , q

D
l (v)n

)
and qDl (v)i =

{
1 if bli(v

l
i) ∈ C

0 if bli(v
l
i) /∈ C

∀l ∈ {1, . . . , k}

Di : (Rk)n → R
v 7→

∑
bli(v

l
i)∈C

bli(v
l
i)

where v = (v1, . . . , vn)

In multi-unit auctions we have n ∈ N bidders competing for k ∈ N identical
objects. Thus, each bidder i has a valuation vi = (v1

i , . . . , v
k
i ) and submits k

bids bli(v
l
i), with b1i (v

1
i ) representing bidder i’s bid for the first object. In the

discriminatory auction a bidder wins the l-th object if his l-th bid is in the set
C. For each object the bidder wins he pays an amount equal to his successful
bid.

Definition 2.9 (Uniform price auction). Let n and k be natural numbers. For
all i between 1 and n, let vi ∈ Rk. For all i ∈ {1, . . . , n}, let the function bi
be of type Rk → Rk and let bi(vi) = (b1i (v

1
i ), . . . , bki (vki )). For all i ∈ {1, . . . , n}

and for all l ∈ {1, . . . , k}, let C be a set containing the k highest of all bli(v
l
i).

Furthermore, let h ∈ R identify the k + 1st value of all bli(v
l
i). For all i between

1 and n, let ti := #(bli(v
l
i) ∈ C) and let the functions U0 and Ui be defined as

follows.

U0 : (Rk)n → (Rk)n

v 7→ qU (v)

where qU (v) =
(
qU (v)1, . . . , q

U (v)n
)
,

∀l ∈ {1, . . . , k}, qUl (v) =
(
qUl (v)1, . . . , q

U
l (v)n

)
and qUl (v)i =

{
1 if bli(v

l
i) ∈ C

0 if bli(v
l
i) /∈ C

∀l ∈ {1, . . . , k}

Ui : (Rk)n → R
v 7→ ti · h

where v = (v1, . . . , vn)

In the uniform price auction the winning bids are again those bids which
are among the k highest submitted bids. But in constrast to the discriminatory
auction the payment rule is as follows: First the highest bid h ∈ R which is not
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among the k winning bids will be identified (i.e. h is the highest losing bid).
All winning bidders now have to pay this price h for each successful bid.

Definition 2.10 (Vickrey auction). Let n and k be natural numbers. For all
i between 1 and n, let vi ∈ Rk. For all i ∈ {1, . . . , n}, let the function bi be of
type Rk → Rk and let bi(vi) = (b1i (v

1
i ), . . . , bki (vki )). For all i ∈ {1, . . . , n} and

for all l ∈ {1, . . . , k}, let us sort all values blj(vj), j 6= i in a decreasing order and

let c−i = (c1−i, . . . , c
k
−i) denote the first k values of these sorted values. For all

i ∈ {1, . . . , n} and for all l ∈ {1, . . . , k}, let the functions V0 and Vi be defined
as follows.

V0 : (Rk)n → (Rk)n

v 7→ qV (v)

where qV (v) =
(
qV (v)1, . . . , q

V (v)n
)
,

∀l ∈ {1, . . . , k}, qVl (v) =
(
qVl (v)1, . . . , q

V
l (v)n

)
and qVl (v)i =

{
1 if bli(v

l
i) > ck−l+1

−i
0 if bli(v

l
i) < ck−l+1

−i
∀l ∈ {1, . . . , k}

Vi : (Rk)n → R
v 7→

∑ti
j=1 c

k−ti+j
−i

where v = (v1, . . . , vn) and ti =
∑k
l=1 q

V
l (v)i

In a multi-unit vickrey auction, bidder i wins the l’th object if his bid bli(v
l
i)

is higher than the l’th lowest value of the sorted c−i. In case bidder i wins this
l’th object he has to pay ck−l+1

−i for it.

Observation 2.11. There are some connections between the presented single-
unit and multi-unit auctions. First consider the discriminatory auction in the
case k = 1. In this case we see that the discriminatory auction is identical
to the single-unit first price auction. The set C contains only one value, the
highest bid received by all bidders. Thus, for bidder i the case bi(vi) ∈ C is
indentical to the case bi(vi) > maxj 6=i bj(vj). Also the pricing rule is the same,
in both cases the winner of the auction pays his own bid. Let us now consider
the other two presented multi-unit auctions, the uniform price and the vickrey
auction. If we set k = 1 we see that both of these auctions are equivalent to
the single-unit second price auction. Again, the winner of the auction in all
three auctions is the bidder submitting the highest bid. We see that in the case
k = 1, maxj 6=i bj(vj) < bi(vi), bi(vi) ∈ C and c1i < bi(vi) are all three different
notations for the same rule. It is easy to see that the same holds for the payment
rule of all three auctions in the case k = 1.

2.4 Revelation principle

The auction formats introduced in the last section have some common char-
acteristics: Each time, an auction of the form A = (A0;A1 . . . , An) is set up,
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with an allocation rule A0 and a payment rule (A1, . . . , An). But in addition we
have bidding functions b, transforming the values v of the bidders into the bids.
Of course the presence of the bidding functions makes the analysis of auction
formats more complicated. Auction formats without a bidding function or with
a bidding function as defined below would make the analysis easier.

Definition 2.12 (Revealing bidding function). Let bR be a function of type
R→ R defined as follows.

bR : R → R
v 7→ v

Thus, by bR we characterize the identity function.

An auction format in which the revealing bidding function is used is equal
to an auction format without bidding function.

Definition 2.13 (Direct Auctions). We will call all auction formats in which
only revealing bidding functions are used, direct auctions.

The following lemma will help us for our further analysis, since it will allow
us to restrict ourselves to direct auctions.

Lemma 2.14 (Revelation Principle). For any auction format A = (A0;A1, . . . , An)
with corresponding bidding function bA, there exists an ”outcome equivalent”
direct auction B = (B0;B1, . . . , Bn) with revealing bidding function bR in the
following sense: The outcome in both auctions is the same, i.e. all participants
have the same probability of winning and the same payment obligations in both
auctions.

Proof. This relevation principle is based on Myerson30. He proves this re-
sult ”in the more general context of Bayesian collective choice problems”31.
In order to see why the revelation principle holds in our setting we just con-
struct the functions B0(·) and B1(·), . . . , Bn(·) as compositions of A0(b(·)) and
A1(b(·)), . . . , An(b(·)) respectively such that

B0(·) = A0(b(·))
∀i ∈ {1, . . . , n}, Bi(·) = Ai(b(·))

30Myerson, R.: Incentive Compatibility and the Bargaining Problem, Econometrica, Volume
47, Issue 1 (Jan., 1979), pp. 61-74.

31Myerson, R.: Optimal Auction Design, Mathematics of Operations Research, Vol. 6, No.
1 (Feb., 1981), p. 62.
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Figure 2.1: Revelation Principle32

Thus, for the analysis of the auction formats we will restrict ourselves to
direct auctions.

2.5 Reserve price

In the previous sections and in the presented examples of single-unit and multi-
unit auctions, the seller played a passive role. We now want to characterise a
seller with the possibility to set a reserve price in the auction. A reserve price
can be seen as a bid by the seller. For example, in a first price auction (see
Definition 2.4), a bidder will win the auction if his bid is higher than all other
submitted bids and higher than the reserve price set by the seller. Thus, there
is a possibility that the object will not be auctioned-off (if all bids are below the
reserve price). Let us model the first price auction with a reserve price.

Definition 2.15. Let n be a natural number. For all i between 1 and n, let vi
be a real number and let r ∈ R. For all i ∈ {1, . . . , n}, let the function bi be of
type R→ R and let the functions F0 and F1, . . . , Fn be defined as follows.

F0 : Rn → Rn
v 7→ qF (v)

where qF (v) =
(
qF (v)1, . . . , q

F (v)n
)

and ∀i ∈ {1, . . . , n}, qF (v)i =

{
1 if bi(vi) > max (r,maxj 6=i bj(vj))

0 if bi(vi) < max (r,maxj 6=i bj(vj))

Fi : Rn → R

v 7→

{
bi(vi) if bi(vi) > max (r,maxj 6=i bj(vj))

0 if bi(vi) < max (r,maxj 6=i bj(vj))

where v = (v1, . . . , vn)

32Cf. Krishna, V.: Auction Theory, Academic Press, 2009, p. 63.
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3 Revenue equivalence theorem

3.1 Preliminaries

The revenue equivalence theorem (RET) is one of the main classical results in
auction theory. In this section we revisit this result. After introducing a tech-
nical lemma we will first discuss the original version of the revenue equivalence
theorem by Vickrey. Then, we will also characterize two generalized versions
of the theorem by Riley/Samuelson and Myerson. Finally, we will present the
revenue equivalence theorem in an even more general framework.

Lemma 3.1. Let f be a function of type R2 → R and let g be a function of
type R → R. Assume that f is differentiable. Then assertion 2 follows from
assertion 1.

1. ∀x, y ∈ R, x 6= y ⇒ f(x, y)− g(y) < f(x, x)− g(x).

2. ∀x, y ∈ R,
∫ y
x

∂f
∂x1

(z, z)dz = f(y, y)− g(y)− f(x, x) + g(x).

Proof. Let us define the function k as follows.

k : R → R
x 7→ f(x, x)− g(x)

Let x and y be distinct real numbers. By assumption 1 we have(
f(y, x)− f(x, x) + f(x, x)

)
− g(x) < f(y, y)− g(y)

so we obtain.
f(y, x)− f(x, x) < k(y)− k(x) (1)

Since inequality (1) holds for all distinct x, y ∈ R, we can swap x and y and
obtain.

f(x, y)− f(y, y) < k(x)− k(y)

We multiply the inequality above by −1 and obtain.

k(y)− k(x) < f(y, y)− f(x, y) (2)

By combining the two inequalities (1) and (2) we conclude.

f(y, x)− f(x, x) < k(y)− k(x) < f(y, y)− f(x, y)

Let us now assume that x < y and let us divide the double inequality above by
y − x.

f(y − x)− f(x, x)

y − x
<
k(y)− k(x)

y − x
<
f(y, y)− f(x, y)

y − x
Since f is differentiable, one can prove by this double inequality that the function
k is differentiable and that

∀z ∈ R, k′(z) =
∂f

∂x1
(z, z).
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So the following holds for all real numbers x and y.∫ y

x

∂f

∂x1
(z, z)dz = f(y, y)− g(y)− f(x, x) + g(x)

3.2 Revenue equivalence theorem by Vickrey

Vickrey was not only the one who established the second price auction as a
new sealed bid auction format, he was also the first who discovered the revenue
equivalence of different auction formats in his now classical paper of 1961. Ba-
sically, Vickrey showed that under some assumptions regarding the distribution
of the bidders, the progressive auction and the dutch auction are equivalent
”in terms of average expected outcomes.”33. Vickrey’s assumption is that the
values by the bidders are independent and indentically drawn from an uniform
distribution ranging from 0 to 1.

3.3 Revenue equivalence theorem by Riley and Samuelson

Riley and Samuelson carry on Vickrey’s assumption regarding the distribution
of the valuation of the bidders. In the beginning of their paper, they state their
”IID assumption” which they use for their further theorems.

Definition 3.2 (IID assumption by Riley and Samuelson). The reservation
values of the parties are independent and identically distributed, drawn from the
common distribution F (v) with F (v) = 0, F (v) = 1 and F (v) strictly increasing
and differentiable over the interval [v, v].34

While Vickrey showed the revenue equivalence only for the progressive and
dutch auctions, Riley and Samuelson define a certain family of auction formats
for which the following four assumptions are satisfied.

1. Each bidder can make any bid above some reserve price set by the seller.

2. The bidder with the highest bid wins the object.

3. Each bidder is treated in the same way, they are anonymous.

4. There exists a common equilibrium bidding stragegy. Each bidder i sub-
mits a bid bi, which is a strictly increasing function of his value vi.

We will only present the theorem of Riley and Samuelson characterizing the
assumptions they made in our new formalism. The proof itself is then just a
special case of part a) of the generalized version in Section 3.5.

33Vickrey, W.: Counterspeculation, Auctions and Competitive Sealed Tenders, Journal of
Finance, 1961, p. 30.

34See: Riley, J., Samuelson, W.: Optimal Auctions, The American Economic Review, 1981,
p. 381.
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Theorem 3.3 (RET by Riley and Samuelson). Let v, v ∈ R and v ≤ v. Let n
be a natural number and V = (V1, . . . , Vn) be a vector consisting of n real-valued
random variables taking values in [v, v]. Let A0 and B0 be functions of type
([v, v])n → Rn defined as follows:

X0 : ([v, v])n → Rn
x 7→ qX(x)

where X represents A or B, qX(x) =
(
qX(x)1, . . . , q

X(x)n
)
,

∀i ∈ {1, . . . , n}, 0 ≤ qX(x)i and
∑n
i=1 q

X(x)i ≤ 1.

Let A1, . . . , An and B1, . . . , Bn be functions of type Rn → R. For all i ∈
{1, . . . , n}, let the function ui be defined as follows.

ui : [v, v] → [v, v]
v 7→ v

For X representing A or B and for every natural number i between 1 and n let
us assume that the functions eXi and aXi below are well-defined.

eXi : [v, v] → R
v 7→ E(Xi(V [i→ v]))

aXi : ([v, v])2 → R
x, y 7→ E(ui(x) · qX(V [i→ y]i))

where V [i→ v] := (V1, . . . , Vi−1, v, Vi+1, . . . , Vn)

We assume the following.

1. For all i between 1 and n, the function aXi is differentiable.

2. The random variables V1, . . . , Vn are mutually independent.

3. For all i between 1 and n, let f be a density function for Vi, where∫ v
v
f(x)dx = 1.

4. For all i ∈ {1, . . . , n} we have aAi = aBi .

5. Let (vi)i∈{1,...,n} be a family of real numbers, where ∀i ∈ {1, . . . , n}, vi ∈ [v, v],

such that
∑n
i=1 e

A
i (vi) =

∑n
i=1 e

B
i (vi).

6. For all i between 1 and n and for all distinct real numbers x, y ∈ [v, v],

aXi (x, y)− eXi (y) < aXi (x, x)− eXi (x)

The following can be deduced from the assumptions above.

E(

n∑
i=1

Ai(V )) = E(

n∑
i=1

Bi(V ))
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As explained before, Riley and Samuelson use the IID assumption for their
analysis. In this assumption, they use the interval [v, v] as a bound for the
values vi of all bidders i ∈ {1, . . . , n}. Furthermore, they only take the values vi
into account for the valuation of the bidders. Thus, the function ui we defined
in the theorem is just the identity function.

3.4 Revenue equivalence theorem by Myerson

Riley and Samuelson worked on their paper in the same time as Myerson wrote
his paper on ”Optimal Auction Design”. Myerson uses a more technical ap-
proach in his paper than Riley and Samuelson. As explained before in Sec-
tion 2.4, Myerson discovered the Relevation Principle (see Lemma 2.1). By this
theorem he was able to analyse auction formats and theorems without using
bidding functions. Furthermore, in contrary to Vickrey and Riley/Samuelson,
Myerson does not use the IID assumption. In his concept, from the point of view
of the seller, the value of each bidder is a random variable with an individual dis-
tribution / density function. But also Myerson uses bounds for the values of the
bidders, even though he uses a more general approach: Just like he introduced
individual density functions, he allows for individual intervals [αi, βi] as bounds
for the values of the bidders. Finally, Myerson introduces more complex func-
tions ui to characterize the bidder’s valuation. While in Riley and Samuelson’s
paper the function ui of bidder i is only the identity function, Myerson takes
also the values of the other bidders into account, in form of so called ”revision
effect” functions.

Definition 3.4 (Revision effect functions). Let n be a natural number. For all
i between 1 and n, let the function τi be of type [αi, βi]→ R.

Again, we will present now only the theorem with the definitions of the
functions and the assumptions. The proof of the result can be easily derived
from the proof of the generalized version below.

Theorem 3.5 (RET by Myerson). Let n be a natural number and for all i
between 1 and n, let αi, βi ∈ R, αi ≤ βi. Let V = (V1, . . . , Vn) be a vector
consisting of n real-valued random variables. Let A0 and B0 be functions of
type Rn → Rn defined as follows:

X0 : [α, β] → Rn
x 7→ qX(x)

where X represents A or B, qX(x) =
(
qX(x)1, . . . , q

X(x)n
)
,

∀i ∈ {1, . . . , n}, 0 ≤ qX(x)i and
∑n
i=1 q

X(x)i ≤ 1,
and where [α, β] := [α1, β1]×, . . . ,×[αn, βn].

Let A1, . . . , An and B1, . . . , Bn be functions of type Rn → R. For all i ∈ {1, . . . , n},
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let the function ui be defined as follows.

ui : [α, β] → R
v 7→ vi +

∑
j∈{1,...,n},j 6=i

τj(vj)

where v = (v1, . . . , vn).

For X representing A or B and for every natural number i between 1 and n let
us assume that the functions eXi and aXi below are well-defined.

eXi : [αi, βi] → R
v 7→ E(Xi(V [i→ v]))

aXi : ([αi, βi])
2 → R

x, y 7→ E(ui(V [i→ x]) · qX(V [i→ y]i))

where V [i→ v] := (V1, . . . , Vi−1, v, Vi+1, . . . , Vn)

We assume the following.

1. For all i between 1 and n, the function aXi is differentiable.

2. The random variables V1, . . . , Vn are mutually independent.

3. For all i between 1 and n, let fi be a density function for Vi, where∫ βi

αi
fi(x)dx = 1.

4. For all i ∈ {1, . . . , n} we have aAi = aBi .

5. Let (vi)i∈{1,...,n} be a family of real numbers, where ∀i ∈ {1, . . . , n}, vi ∈ [αi, βi],

such that
∑n
i=1 e

A
i (vi) =

∑n
i=1 e

B
i (vi).

6. For all i between 1 and n and for all distinct real numbers xi and yi ∈ [αi, βi],

aXi (xi, yi)− eXi (yi) < aXi (xi, xi)− eXi (xi)

The following can be deduced from the assumptions above.

E(

n∑
i=1

Ai(V )) = E(

n∑
i=1

Bi(V ))

As mentioned before, we use a new formalism and way of proof for the
theorem. Myerson, for example needs in fact the bounds [α, β] for his proof,
since he shows that the payoff for the seller is determined only by the function
X0 and the payoff for all bidders at the lower bound α. We will now show,
among other improvements, that we do not need to use bounds for the values
of the bidders in order to proof the revenue equivalence theorem.
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3.5 Generalization of the revenue equivalence theorem

After revisiting the different versions of the revenue equivalence theorem we now
want to generalize the existing results. Let us first prove the result and then
interpret the improvements of this theorem compared to the earlier versions.

Theorem 3.6. Let n be a natural number and V = (V1, . . . , Vn) be a vector
consisting of n real-valued random variables. Let A0 and B0 be functions of
type Rn → Rn defined as follows:

X0 : Rn → Rn
x 7→ qX(x)

where X represents A or B, qX(x) =
(
qX(x)1, . . . , q

X(x)n
)
,

∀i ∈ {1, . . . , n}, 0 ≤ qX(x)i and
∑n
i=1 q

X(x)i ≤ 1.

Let A1, . . . , An, B1, . . . , Bn and u1, . . . , un be functions of type Rn → R. For
X representing A or B and for every natural number i between 1 and n let us
assume that the functions eXi , pXi and aXi below are well-defined.

eXi : R → R
v 7→ E(Xi(V [i→ v]))

pXi : R → [0, 1]
v 7→ E(qX(V [i→ v])i)

aXi : R2 → R
x, y 7→ E(ui(V [i→ x]) · qX(V [i→ y])i)

where V [i→ v] := (V1, . . . , Vi−1, v, Vi+1, . . . , Vn)

We assume the following.

1. For all i between 1 and n, the function aXi is differentiable.

2. The random variables V1, . . . , Vn are mutually independent.

3. For all i between 1 and n, let fi be a density function for Vi. Let J1, . . . , Jk
be a partition of {1, . . . , n} complying with the following.
∀i, j ∈ {1, . . . , n}, fi = fj ⇒ ∃l ∈ {1, . . . , k}, i, j ∈ Jl. Also, for all l
between 1 and k, let the function f l be defined as follows.
∀i ∈ {1, . . . , n}, i ∈ Jl ⇒ f l := fi.

4. For all l ∈ {1, . . . , k} we have
∑
i∈Jl p

A
i =

∑
i∈Jl p

B
i ,∑

i∈Jl a
A
i =

∑
i∈Jl a

B
i and

∑
i∈Jl

∂aAi
∂x1

=
∑
i∈Jl

∂aBi
∂x1

.

5. Let (vl)l∈{1,...,k} be a family of real numbers such that∑k
l=1

∑
i∈Jl e

A
i (vl) =

∑k
l=1

∑
i∈Jl e

B
i (vl).
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6. For all i between 1 and n and for all distinct real numbers x and y,

aXi (x, y)− eXi (y) < aXi (x, x)− eXi (x)

The following can be deduced from the assumptions above.

a) E(
∑n
i=1Ai(V )) = E(

∑n
i=1Bi(V ))

b)
∑n
i=1E(qA(V )i) =

∑n
i=1E(qB(V )i)

c)
∑n
i=1 e

A
i =

∑n
i=1 e

B
i

d) If there exists v ∈ R and l ∈ {1, . . . , k} such that
∑
i∈Jl e

A
i (v) =

∑
i∈Jl e

B
i (v),

then
∑
i∈Jl e

A
i =

∑
i∈Jl e

B
i .

Proof. First notice that we can apply Lemma 3.1 for all i between 1 and n for
the functions aXi and eXi , when we replace the functions f and g with aXi and eXi
respectively, since by assumption 1, aXi is is differentiable and since the types
of aXi and eXi do not restrict the application of the lemma.

a) Since assumption 6 is equivalent to assertion 1 of Lemma 3.1, we can use
assertion 2 of the lemma. Then the following holds for all i ∈ {1, . . . , n} and for
all real numbers x and y.

eXi (x) =

∫ y

x

∂aXi
∂x1

(z, z)dz − aXi (y, y) + eXi (y) + aXi (x, x) (3)

By basic probability theory E(
∑n
i=1Xi(V )) =

∑n
i=1E(Xi(V )) (see Appendix,

Definition A.18). For all i ∈ {1, . . . , n}, we use the density function fi of Vi,
defined in assumption 3. So E(Xi(V )) = E(Xi(V [i → Vi])) =

∫
R e

X
i (x)fi(x)dx

(see Appendix, Definition A.14) by independence in assumption 2. Therefore,
using equation (3), for all i between 1 and n, the following holds for all real
numbers y.

E(

n∑
i=1

Xi(V )) =

n∑
i=1

∫
R

(
eXi (y)−aXi (y, y)+aXi (x, x)+

∫ y

x

∂aXi
∂x1

(z, z)dz

)
fi(x)dx

We now use the partition of the set {1, . . . , n} (see assumption 3). Then the
equation above yields for all real numbers y.

E(

n∑
i=1

Ai(V )) =

n∑
i=1

∫
R

(
eAi (y)− aAi (y, y) + aAi (x, x) +

∫ y

x

∂aAi
∂x1

(z, z)dz

)
fi(x)dx

=

k∑
l=1

∑
i∈Jl

∫
R

(
eAi (y)− aAi (y, y) + aAi (x, x) +

∫ y

x

∂aAi
∂x1

(z, z)dz

)
fi(x)dx

We use linearity of integration and summation and the fact that ∀i ∈ {1, . . . , n},
∫
R fi(x)dx = 1

(see Appendix, Definition A.8). Since the equation above holds for all y, we use
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the family (vl)l∈{1,...,k} defined in assumption 5 and obtain by using also as-
sumptions 3 and 4.

E(

n∑
i=1

Ai(V )) =

k∑
l=1

∑
i∈Jl

∫
R

(
eAi (vl)− aAi (vl, vl) + aAi (x, x) +

∫ vl

x

∂aAi
∂x1

(z, z)dz

)
f l(x)dx

=

k∑
l=1

∑
i∈Jl

eAi (vl)−
k∑
l=1

∑
i∈Jl

aAi (vl, vl) +

k∑
l=1

∑
i∈Jl

∫
R

(
aAi (x, x) +

∫ vl

x

∂aAi
∂x1

(z, z)dz

)
f l(x)dx

=

k∑
l=1

∑
i∈Jl

eAi (vl)−
k∑
l=1

∑
i∈Jl

aAi (vl, vl) +

k∑
l=1

∫
R

(∑
i∈Jl

aAi (x, x) +

∫ vl

x

∑
i∈Jl

∂aAi
∂x1

(z, z)dz

)
f l(x)dx

=

k∑
l=1

∑
i∈Jl

eBi (vl)−
k∑
l=1

∑
i∈Jl

aBi (vl, vl) +

k∑
l=1

∫
R

(∑
i∈Jl

aBi (x, x) +

∫ vl

x

∑
i∈Jl

∂aBi
∂x1

(z, z)dz

)
f l(x)dx

= E(

n∑
i=1

Bi(V ))

b) By assumption 4 and by using the partition of the set {1, . . . , n} we obtain
the following.

n∑
i=1

E(qA(V )i) =

n∑
i=1

E(qA(V [i→ Vi])i) =

n∑
i=1

∫
R
pAi (x)fi(x)dx

=

k∑
l=1

∑
i∈Jl

∫
R
pAi (x)f l(x)dx =

k∑
l=1

∫
R

∑
i∈Jl

pAi (x)f l(x)dx

=

k∑
l=1

∫
R

∑
i∈Jl

pBi (x)f l(x)dx =

n∑
i=1

E(qB(V )i)

c) We use the family (vl)l∈{1,...,k} defined in assumption 5 and equation (3).
Then we obtain the following for all x ∈ R.

k∑
l=1

∑
i∈Jl

eXi (x) =

k∑
l=1

∫ vl

x

∑
i∈Jl

∂aXi
∂x1

(z, z)dz−
k∑
l=1

∑
i∈Jl

aXi (vl, vl)+

k∑
l=1

∑
i∈Jl

eXi (vl)+

k∑
l=1

∑
i∈Jl

aXi (x, x)

Thus we conclude, using also assumption 4.

k∑
l=1

∑
i∈Jl

eAi (x) =

k∑
l=1

∫ vl

x

∑
i∈Jl

∂aAi
∂x1

(z, z)dz −
k∑
l=1

∑
i∈Jl

aAi (vl, vl) +

k∑
l=1

∑
i∈Jl

eAi (vl) +

k∑
l=1

∑
i∈Jl

aAi (x, x)

=

k∑
l=1

∫ vl

x

∑
i∈Jl

∂aBi
∂x1

(z, z)dz −
k∑
l=1

∑
i∈Jl

aBi (vl, vl) +

k∑
l=1

∑
i∈Jl

eBi (vl) +

k∑
l=1

∑
i∈Jl

aBi (x, x)

=

k∑
l=1

∑
i∈Jl

eBi (x)
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Since this is true for all real numbers x we obtain

n∑
i=1

eAi =

k∑
l=1

∑
i∈Jl

eAi =

k∑
l=1

∑
i∈Jl

eBi =

n∑
i=1

eBi .

d) Let l ∈ {1, . . . , k} and v ∈ R such that∑
i∈Jl

eAi (v) =
∑
i∈Jl

eBi (v). (4)

Analogous to the proof of c), we use equation (3) and obtain for all x ∈ R.

∑
i∈Jl

eXi (x) =

∫ v

x

∑
i∈Jl

∂aXi
∂x1

(z, z)dz −
∑
i∈Jl

aXi (v, v) +
∑
i∈Jl

eXi (v) +
∑
i∈Jl

aXi (x, x)

Now by using assumption 4 and equation (4), we conclude.

∑
i∈Jl

eAi (x) =

∫ v

x

∑
i∈Jl

∂aAi
∂x1

(z, z)dz −
∑
i∈Jl

aAi (v, v) +
∑
i∈Jl

eAi (v) +
∑
i∈Jl

aAi (x, x)

=

∫ v

x

∑
i∈Jl

∂aBi
∂x1

(z, z)dz −
∑
i∈Jl

aBi (v, v) +
∑
i∈Jl

eBi (v) +
∑
i∈Jl

aBi (x, x)

=
∑
i∈Jl

eBi (x)

Since this is true for all real numbers x we obtain∑
i∈Jl

eAi =
∑
i∈Jl

eBi .

This is the generalized version of the revenue equivalence theorem. The first
generalization we can see directly is that we do not use bounds anymore. All
values of the bidders i ∈ {1, . . . , n} are arbitrary real numbers. Also, we do
not make any assumptions or restrictions regarding the functions ui. So we
allow Riley/Samuelson’s version of the functions ui (just the identity functions)
and Myerson’s version with the revision effect functions. Furthermore, we use
a partition of the set {1, . . . , n} in order to define the density functions of the
random variables Vi. By this partition we allow that there may be certain
groups of bidders with the same density function, all bidders may have the
same density function (like in Riley/Samuelson), or each bidder has a different
density function (like in Myerson’s version).

In addition, in assumption 4 we do not require anymore that for all i be-
tween 1 and n, aAi = aBi . In the proof we can see that it is sufficient that
for all l between 1 and k,

∑
i∈Jl p

A
i =

∑
i∈Jl p

B
i (for the proof of part b),
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∑
i∈Jl a

X
i =

∑
i∈Jl a

X
i and

∑
i∈Jl

∂aAi
∂x1

=
∑
i∈Jl

∂aBi
∂x1

, which is a far weaker
condition than before.

All three version of the theorem have assumption 6 in common. Myerson
calls this assertion the incentive-compatibility condition for the bidders. By
a(x, x)− e(x) we define the expected payoff of the bidders. Here, a(x, x) defines
the expected profit, i.e. the expected valuation for the object subject to the
probability of winning it. The function e(x) represents the expected payments
in the auction, thus the difference of these two functions results in the expected
payoffs by the bidders. By assumption 6 we ensure that a bidder with true value
x ∈ R always has a greater expected payoff when he submits this real value x
to the seller and not any other value y ∈ R. So there is no incentive to lie about
one’s personal true valuation for the object.

Finally we prove three further assertions in addition to the fact that the
expected payoff of the seller in the two auctions A and B is the same. In b) we
show that the sums of the expected probability to win is the same in the two
auctions from the point of view of the seller. In c) we see that also the sums of the
expected payment functions eXi are the same for the two auctions. If there exists
in addition a real number v and a subgroup Jl of the partition such that the
sums of the expected payment functions coincide in that point v, then we show
in d) that the sums of the functions coincide everywhere,

∑
i∈Jl e

A
i =

∑
i∈Jl e

B
i .

We now want go back to the technical lemma from the beginning of the
section. As mentioned above, we characterize the expected payoff of the bidders
by a(x, x) − e(x). If we assume now that the functions u(x) are the identity
function (like in the version of Riley and Samuelson), then we can describe the
expected payoff by x · a(x) − e(x). In this case, we can simplify the technical
lemma which also allows us to derive one further result.

Lemma 3.7. Let f and g be two functions of type R → R and let us assume
that the function f is continuous. Then assertions 1 and (2a∧2b) are equivalent.

1. ∀x, y ∈ R, x 6= y ⇒ xf(y)− g(y) < xf(x)− g(x).

2. (a) f is strictly increasing, i.e. ∀x, y ∈ R, x < y ⇒ f(x) < f(y).

(b) ∀x, y ∈ R,
∫ y
x
f = yf(y)− g(y)− xf(x) + g(x).

Proof. ”1 ⇒ (2a∧2b)”
Let us define the function k as follows.

k : R → R
x 7→ xf(x)− g(x)

Let x and y be distinct real numbers. By assumption 1 we have

(y − x+ x)f(x)− g(x) < yf(y)− g(y)

so we obtain.
(y − x)f(x) < k(y)− k(x)
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Therefore, (x − y)f(y) < k(x) − k(y) holds too by swapping x and y in the
inequality above. We multiply the second inequality by −1 and obtain.

k(y)− k(x) < (y − x)f(y)

Combining the two inequalities above yields the following double inequality.

(y − x)f(x) < k(y)− k(x) < (y − x)f(y)

Let us now assume that x < y. Let us divide the double inequality by y − x,
this yields the double inequality below.

f(x) <
k(y)− k(x)

y − x
< f(y) (5)

This double inequality shows that the function f is strictly increasing. Since
f is continuous, letting y approach x from above in the double inequality (5)
shows that k is differentiable and that its derivative k′ equals f . So the following
holds for all real numbers x and y.∫ y

x

f = yf(y)− g(y)− xf(x) + g(x)

”(2a∧2b)⇒ 1”
Let x, y ∈ R and x 6= y. Since the function f is strictly increasing by assump-
tion 2a we obtain.

∀x, y ∈ R, x < y ⇒
∫ y

x

f(x)dt <

∫ y

x

f(t)dt (6)

In the same way we obtain the following.

∀x, y ∈ R, y < x⇒
∫ x

y

f(t)dt <

∫ x

y

f(x)dt

Now we multiply the inequality above by −1 and conclude.∫ y

x

f(x)dt = −
∫ x

y

f(x)dt < −
∫ x

y

f(t)dt =

∫ y

x

f(t)dt (7)

We combine inequalities 6 and 7 and obtain.

∀x, y ∈ R, x 6= y ⇒
∫ y

x

f(x)dt <

∫ y

x

f(t)dt

Finally we conclude by using assumption 2b.

yf(y)− g(y) > xf(x)− g(x) +

∫ y

x

f(x)dt

> xf(x)− g(x) + f(x)

∫ y

x

1dt

> xf(x)− g(x) + f(x)(y − x)

> xf(x)− g(x) + yf(x)− xf(x)

> yf(x)− g(x)

This proves assertion 1 of the lemma for all distinct real numbers x and y.
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Applying now this lemma in the generalized version of the revenue equiv-
alence theorem in the described case where u(x) = x we obtain that for all i
between 1 and n, the functions aXi are strictly increasing. In this special case,
the functions aXi only represent the probability to win from the point of view of
bidder i. Furthermore, this lemma shows an equivalence between the incentive
compatibility and the two assertions that the functions aXi are strictly increasing
and the intermediate equation (3) we use in the proof. In addition, we do not
need to assume anymore that the function f is differentiable. As we can see it
in the proof it is sufficient to assume that the function f is continuous.

3.6 Comparison of auction formats

After deriving the generalized version of the revenue equivalence theorem we
want to show its applicability by an example. We will consider the two standard
auction formats; first price and second price auction, defined in Section 2.

Let n be a natural number and let us assume that for all bidders i between
1 and n, the value for the object lies between 0 and 100. Let us first compare
the functions F0 and S0.

F0 : Rn → Rn
v 7→ qF (v)

where qF (v) =
(
qF (v)1, . . . , q

F (v)n
)

and ∀i ∈ {1, . . . , n}, qF (v)i =

{
1 if bi(vi) > maxj 6=i bj(vj)

0 if bi(vi) < maxj 6=i bj(vj)

S0 : Rn → Rn
v 7→ qS(v)

where qS(v) =
(
qS(v)1, . . . , q

S(v)n
)

and ∀i ∈ {1, . . . , n}, qS(v)i =

{
1 if bi(vi) > maxj 6=i bj(vj)

0 if bi(vi) < maxj 6=i bj(vj)

We see immediatley that the two functions are identical and thus we can obtain
that for all i between 1 and n also the functions pFi and pSi are equivalent.
Thereby, assumption 4 is valid.

We assumed that the value for all bidders lies in the interval [0, 100] and in
both auctions only the winner of the auction, i.e. the bidder with the highest
bid, has to pay something. So we conclude that for all bidders the expected
payments in both auctions equals zero when the value is zero.

n∑
i=1

eFi (0) = 0 =

n∑
i=1

eSi (0)

Thus, also assumption 5 of the revenue equivalence theorem holds and we can
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apply the theorem for the two auction formats and conclude.

E(

n∑
i=1

Fi(V )) = E(

n∑
i=1

Si(V ))

That is, the expected payoff for the seller in the first price auction and in the
second price auction is the same under the assumptions we made.
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4 Multi-unit revenue equivalence theorem

4.1 Preliminaries

After discussing in detail the development of the revenue equivalence theorem
and presenting the generalized version of it, we now want to investigate the
multi-unit version of the RET. Again, we will first proof a technical lemma
which will be then used for the theorem itself. We will also have a look at the
earlier versions of the multi-unit revenue equivalence theorem. In fact, Vickrey
was again the one who first characterized revenue equivalence for multi-unit
auctions, but only by an example. He explaines that the expected payoff for the
seller is the same whether he performs an auction where the winning bidders
have to pay an amount equal to the lowest winning bid or an amount equal to
the highest losing bid. The ”real” multi-unit version of the revenue equivalence
theorem is written by Krishna and Perry35.

Lemma 4.1. Let f be a function of type (Rk)
2 → R and let g be a function of

type Rk → R. Furthermore, assume that f is differentiable. Then assertion 2
follows from assertion 1.

1. ∀x, y ∈ Rk, x 6= y ⇒ f(x, y)− g(y) < f(x, x)− g(x).

2. Let a, b ∈ Rk. Then, ∀s, t ∈ [0, 1],∫ t

s

∂f

∂x1
(u∗, u∗)du = f(t∗, t∗)− g(t∗)− f(s∗, s∗) + g(s∗),

where z∗ = a+ z(b− a).

Proof. Let x, y ∈ Rk be two distinct vectors. Let us define the function k as
follows.

k : [0, 1] → R
t 7→ f(t∗, t∗)− g(t∗)

Let s, t ∈ [0, 1] and s 6= t. By assertion 1 we obtain.

f(t∗, s∗)− g(s∗) < f(t∗, t∗)− g(t∗)

This inequality is equivalent to the following inequality below.

f(t∗, s∗)− f(s∗, s∗) + f(s∗, s∗)− g(s∗) < f(t∗, t∗)− g(t∗)

Thus, the following holds as well.

∀s, t ∈ [0, 1], s 6= t⇒ f(t∗, s∗)− f(s∗, s∗) < k(t)− k(s) (8)

Since the inequality above holds for all s, t ∈ [0, 1], the following holds too by
swapping s and t.

∀s, t ∈ [0, 1], s 6= t⇒ f(s∗, t∗)− f(t∗, t∗) < k(s)− k(t)

35Krishna, V. and Perry, M.: Efficient Mechanism Design, 1998.
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We multiply the inequality above by −1 and obtain.

k(t)− k(s) < f(t∗, t∗)− f(s∗, t∗) (9)

We conclude by combining the two inequalities (8) and (9).

f(t∗, s∗)− f(s∗, s∗) < k(t)− k(s) < f(t∗, t∗)− f(s∗, t∗)

Let us assume that s < t and let us divide the double inequality above by t− s.

f(t∗, s∗)− f(s∗, s∗)

t− s
<
k(t)− k(s)

t− s
<
f(t∗, t∗)− f(s∗, t∗)

t− s
Since f is differentiable, one can prove by this double inequality that the function
k is differentiable and that

∀u ∈ [0, 1], k′(u) =
∂f

∂x1
(u∗, u∗).

Thus, the following holds for all s, t ∈ [0, 1].∫ t

s

∂f

∂x1
(u∗, u∗)du = f(t∗, t∗)− g(t∗)− f(s∗, s∗) + g(s∗)

4.2 Multi-unit revenue equivalence theorem by Krishna
and Perry

First we want to describe the model of multi-unit auctions which Krishna and
Perry use for their theorem in their original derivation. There are n ∈ N bidders
and k ∈ N identical objects to be auctioned-off. The value of each bidder i is
represented by a k−vector vi = (v1

i , . . . , v
k
i ), where vki ”represents the marginal

value of obtaining the kth object and these are declining.”36 In the same way as
in the previous section, we will present only the theorem and state the functions
and assumptions in our new formalism. The proof is then just a special case of
the proof of a) of the generalized version discussed below.

Theorem 4.2. Let n and k be two natural numbers. For all i between 1 and n,
let Vi = (V 1

i , . . . , V
k
i ) be a random vector and let V := (V1, . . . , Vn). Let A0

and B0 be functions of type (Rk)n → (Rk)n defined as follows.

X0 : (Rk)n → (Rk)n

x 7→ qX(x)

where X represents A or B, qX(x) =
(
qX(x)1, . . . , q

X(x)n
)
,

∀i ∈ {1, . . . , n}, qX(x)i = (qX1 (x)i, . . . , q
X
k (x)i),

∀l ∈ {1, . . . , k}, qXl (x) =
(
qXl (x)1, . . . , q

X
l (x)n

)
and ∀i ∈ {1, . . . , n} and ∀l ∈ {1, . . . , k}, qXl (x)i ∈ [0, 1].

36Krishna, V.: Auction Theory, Academic Press, 2009, p. 204.
Please note that also the examples of multi-unit auction formats introduced in Section 2.3 are
modeled in this way.
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Furthermore, let A1, . . . , An and B1, . . . , Bn be functions of type (Rk)n → R.
For all i ∈ {1, . . . , n}, let the function ui be defined as follows.

ui : Rk → Rk
x 7→ x

For X representing A or B and for every natural number i between 1 and n, let
us assume that the functions eXi and aXi below are well-defined.

eXi : Rk → R
v 7→ E(Xi(V [i→ v]))

aXi : (Rk)2 → Rk
x, y 7→ E(〈ui(V [i→ x]); qX(V [i→ y])i〉)

where V [i→ v] := (V1, . . . , Vi−1, v, Vi+1, . . . , Vn),
∀i ∈ {1, . . . , n}, ui = (ui,1, . . . , ui,k)

and 〈ui(V [i→ x]); qX(V [i→ y])i〉 :=
∑k
l=1 ui,l(V [i→ x])qXl (V [i→ y])i

We assume the following.

1. For all i between 1 and n, the function aXi is differentiable.

2. For all i between 1 and n and for all distinct x, y ∈ Rk

aXi (x, y)− eXi (y) < aXi (x, x)− eXi (x).

3. The random vectors V1, . . . , Vn are mutually independent.

4. For all i between 1 and n, let fi be a density function for Vi.

5. For all i ∈ {1, . . . , n} we have aAi = aBi .

6. Let (vi)i∈{1,...,n} be a family of k-vectors, such that∑n
i=1 e

A
i (vi) =

∑n
i=1 e

B
i (vi).

The following can be deduced from the assumptions above.

E(

n∑
i=1

Ai(V )) = E(

n∑
i=1

Bi(V ))

As we can see, Krishna and Perry only work with the value vi to express
the valuation of bidder i. Thus, the function ui is just the identity function.
Furthermore, they allow for all i between 1 and n, a density function fi for the
random vector Vi.
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4.3 Generalization of the multi-unit revenue equivalence
theorem

Now let us prove the generalized version of the theorem. In fact, we are able
to prove the same results as in the single-unit version of the theorem, there are
only slightly changes in the way of proof.

Theorem 4.3. Let n and k be two natural numbers. For all i between 1 and n,
let Vi = (V 1

i , . . . , V
k
i ) be a random vector and let V := (V1, . . . , Vn). Let A0

and B0 be functions of type (Rk)n → (Rk)n defined as follows.

X0 : (Rk)n → (Rk)n

x 7→ qX(x)

where X represents A or B, qX(x) =
(
qX(x)1, . . . , q

X(x)n
)
,

∀i ∈ {1, . . . , n}, qX(x)i = (qX1 (x)i, . . . , q
X
k (x)i),

∀l ∈ {1, . . . , k}, qXl (x) =
(
qXl (x)1, . . . , q

X
l (x)n

)
and ∀i ∈ {1, . . . , n} and ∀l ∈ {1, . . . , k}, qXl (x)i ∈ [0, 1].

Furthermore, let A1, . . . , An and B1, . . . , Bn be functions of type (Rk)n → R and
let u1, . . . , un be functions of type (Rk)n → Rk. For X representing A or B and
for every natural number i between 1 and n, let us assume that the functions
eXi , pXi,l and aXi below are well-defined.

eXi : Rk → R
v 7→ E(Xi(V [i→ v]))

pXi,l : Rk → [0, 1]

v 7→ E(qXl (V [i→ v])i), ∀l ∈ {1, . . . , k}

aXi : (Rk)2 → R
x, y 7→ E(〈ui(V [i→ x]); qX(V [i→ y])i〉)

where V [i→ v] := (V1, . . . , Vi−1, v, Vi+1, . . . , Vn),
∀i ∈ {1, . . . , n}, ui = (ui,1, . . . , ui,k)

and 〈ui(V [i→ x]); qX(V [i→ y])i〉 :=
∑k
l=1 ui,l(V [i→ x])qXl (V [i→ y])i

We assume the following.

1. For all i between 1 and n, the function aXi is differentiable.

2. For all i between 1 and n and for all distinct x, y ∈ Rk

aXi (x, y)− eXi (y) < aXi (x, x)− eXi (x).

3. The random vectors V1, . . . , Vn are mutually independent.
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4. For all i between 1 and n, let fi be a density function for Vi. Let J1, . . . , Js
be a partition of {1, . . . , n} complying with the following. ∀i, j ∈ {1, . . . , n},
fi = fj ⇒ ∃ r ∈ {1, . . . , s}, i, j ∈ Jr. Also, for all r between 1 and s, let
the function fr be defined as follows. ∀i ∈ {1, . . . , n}, i ∈ Jr ⇒ fr := fi.

5. For all r ∈ {1, . . . , s} we have
∑
i∈Jr p

A
i =

∑
i∈Jr p

B
i ,∑

i∈Jr a
A
i =

∑
i∈Jr a

B
i and

∑
i∈Jr

∂aAi
∂x1

=
∑
i∈Jr

∂aBi
∂x1

6. Let (vr)r∈{1,...,s} be a family of k-vectors, such that∑s
r=1

∑
i∈Jr e

A
i (vr) =

∑s
r=1

∑
i∈Jr e

B
i (vr).

The following can be deduced from the assumptions above.

a) E(
∑n
i=1Ai(V )) = E(

∑n
i=1Bi(V ))

b) ∀l ∈ {1, . . . , k},
∑n
i=1E(qAl (V )i) =

∑n
i=1E(qBl (V )i)

c)
∑n
i=1 e

A
i =

∑n
i=1 e

B
i

d) If there exists v ∈ Rk and r ∈ {1, . . . , s} such that
∑
i∈Jr e

A
i (v) =

∑
i∈Jr e

B
i (v),

then
∑
i∈Jr e

A
i =

∑
i∈Jr e

B
i .

Proof. First notice that we can apply Lemma 4.1 for all i between 1 and n for
the functions aXi and eXi , when we replace the functions f and g with aXi and
eXi respectively, since by assumption 1, aXi is differentiable and since the types
of aXi and eXi do not restrict the application of the lemma.

a) Since assumption 2 is equivalent to assertion 1 of Lemma 4.1, we can use
assertion 2 of the lemma. Then the following holds for all i ∈ {1, . . . , n} and for
all x, y ∈ Rk, where u∗ = x+ u(y − x).

eXi (x) = eXi (y)− aXi (y, y) + aXi (x, x) +

∫ 1

0

∂aXi
∂x1

(u∗, u∗)du (10)

By basic probability theory E(
∑n
i=1Xi(V )) =

∑n
i=1E(Xi(V )). For all i ∈ {1, . . . , n },

we use the density function fi of Vi according to assumption 4. So E(Xi(V )) =
E(Xi(V [i→ Vi])) =

∫
Rk e

X
i (x)fi(x)dx by independence in assumption 3. There-

fore, using equation (10), the following holds for all y ∈ Rk, where
u∗ = x+ u(y − x).

E(

n∑
i=1

Xi(V )) =

n∑
i=1

∫
Rk

(
eXi (y)− aXi (y, y) + aXi (x, x) +

∫ 1

0

∂aXi
∂x1

(u∗, u∗)du

)
fi(x)dx

We now use the partition of the set {1, . . . , n} (see assumption 4). Then the
equation above yields for all y ∈ Rk.

E(

n∑
i=1

Ai(V )) =

n∑
i=1

∫
Rk

(
eAi (y)− aAi (y, y) + aAi (x, x) +

∫ 1

0

∂aAi
∂x1

(u∗, u∗)du

)
fi(x)dx

=

s∑
r=1

∑
i∈Jr

∫
Rk

(
eAi (y)− aAi (y, y) + aAi (x, x) +

∫ 1

0

∂aAi
∂x1

(u∗, u∗)du

)
fi(x)dx
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Since the equation above holds for all y ∈ Rk, we use the family (vr)r∈{1,...,s}
(see assumption 6). Now we conclude using also assumptions 4 and 5, linearity
of integration and summation and the fact that ∀i ∈ {1, . . . , n},

∫
Rk fi(x)dx = 1.

E(

n∑
i=1

Ai(V )) =

s∑
r=1

∑
i∈Jr

∫
Rk

(
eAi (vr)− aAi (vr, vr) + aAi (x, x) +

∫ 1

0

∂aAi
∂x1

(u∗, u∗)du

)
fr(x)dx

=

s∑
r=1

∑
i∈Jr

eAi (vr)−
s∑
r=1

∑
i∈Jr

aAi (vr, vr)

+

s∑
r=1

∑
i∈Jr

∫
Rk

(
aAi (x, x) +

∫ 1

0

∂aAi
∂x1

(u∗, u∗)du

)
fr(x)dx

=

s∑
r=1

∑
i∈Jr

eAi (vr)−
s∑
r=1

∑
i∈Jr

aAi (vr, vr)

+

s∑
r=1

∫
Rk

(∑
i∈Jr

aAi (x, x) +

∫ 1

0

∂aAi
∂x1

(u∗, u∗)du

)
fr(x)dx

=

s∑
r=1

∑
i∈Jr

eBi (vr)−
s∑
r=1

∑
i∈Jr

aBi (vr, vr)

+

s∑
r=1

∫
Rk

(∑
i∈Jr

aBi (x, x) +

∫ 1

0

∂aBi
∂x1

(u∗, u∗)du

)
fr(x)dx

= E(

n∑
i=1

Bi(V ))

b) By assumption 5 we obtain for all l between 1 and k and for all r ∈ {1, . . . , s}
that

∑
i∈Jr p

A
i,l =

∑
i∈Jr p

B
i,l. Using this assertion we conclude for all

l ∈ {1, . . . , k}.

n∑
i=1

E(qAl (V )i) =
n∑
i=1

E(qAl (V [i→ Vi])i) =

n∑
i=1

∫
Rk

pAi,l(x)fi(x)dx

=

k∑
r=1

∑
i∈Jr

∫
Rk

pAi,l(x)fr(x)dx =

s∑
r=1

∫
Rk

∑
i∈Jr

pAi,l(x)fr(x)dx

=

s∑
r=1

∫
Rk

∑
i∈Jr

pBi,l(x)fr(x)dx

n∑
i=1

E(qBl (V )i)

c) We use the family (vr)r∈{1,...,s} (see assumption 6) and assumption 5. Then,
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by equation (10), we obtain for all x ∈ Rk, where u∗ = x+ u(vr − x).

s∑
r=1

∑
i∈Jr

eXi (x) =

s∑
r=1

∑
i∈Jr

eXi (vr)−
s∑
r=1

∑
i∈Jr

aXi (vr, vr)

+

s∑
r=1

∑
i∈Jr

aXi (x, x) +

s∑
r=1

∫ 1

0

∂aXi
∂x1

(u∗, u∗)du

Thus we conclude.
s∑
r=1

∑
i∈Jr

eAi (x) =

s∑
r=1

∑
i∈Jr

eAi (vr)−
s∑
r=1

∑
i∈Jr

aAi (vr, vr)

+

s∑
r=1

∑
i∈Jr

aAi (x, x) +

s∑
r=1

∫ 1

0

∂aAi
∂x1

(u∗, u∗)du

=

s∑
r=1

∑
i∈Jr

eBi (vr)−
s∑
r=1

∑
i∈Jr

aBi (vr, vr)

+

s∑
r=1

∑
i∈Jr

aBi (x, x) +

s∑
r=1

∫ 1

0

∂aBi
∂x1

(u∗, u∗)du

=

s∑
r=1

∑
i∈Jr

eBi (x)

Since this is true for all x ∈ Rk we obtain
n∑
i=1

eAi =

s∑
r=1

∑
i∈Jr

eAi =

s∑
r=1

∑
i∈Jr

eBi =

n∑
i=1

eBi .

d) Let r ∈ {1, . . . , s} and v ∈ Rk such that∑
i∈Jr

eAi (v) =
∑
i∈Jr

eBi (v) (11)

Analogous to the proof of c), we use equation (10) and obtain for all x ∈ Rk,
where u∗ = x+ u(v − x).∑
i∈Jr

eXi (x) =
∑
i∈Jr

eXi (v)−
∑
i∈Jr

aXi (v, v) +
∑
i∈Jr

aXi (x, x) +

∫ 1

0

∂aXi
∂x1

(u∗, u∗)du

Now by using assumption 5 and equation (11) we conclude.∑
i∈Jr

eAi (x) =
∑
i∈Jr

eAi (v)−
∑
i∈Jr

aAi (v, v) +
∑
i∈Jr

aAi (x, x) +

∫ 1

0

∂aAi
∂x1

(u∗, u∗)du

=
∑
i∈Jr

eBi (v)−
∑
i∈Jr

aBi (v, v) +
∑
i∈Jr

aBi (x, x) +

∫ 1

0

∂aBi
∂x1

(u∗, u∗)du

=
∑
i∈Jr

eBi (x)
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Since this is true for all x ∈ Rk we obtain∑
i∈Jr

eAi =
∑
i∈Jr

eBi .

Let us first clarify our interpretation of the ”value-vector” vi = (v1
i , . . . , v

k
i )

of bidder i when there are k identical objects to be auctioned-off. By v1
i we

identify bidder i’s value for obtaining one object, v2
i represents his value for two

objects and vli represents bidder i’s valuation for obtaining exactly l objects. We
do not require any assumptions regarding the values vli. Using this interpretation
we remark that the function ql(·)i represents the probability that bidder i will
get exactly l objects.

As mentioned above, we managed to follow nearly the same way of proof
as in the generalized version of the single-unit revenue equivalence theorem. In
addition, all our assumptions are just the multi-dimensional extensions of the
single-unit version. We again allow for all bidders i any function ui, expressing
their value/utility for the object(s). Also, by assumption 4 we introduce a
partition of the set {1, . . . , n} complying with the appearance of the density
functions of the Vi’s. Since we now have multiple objects, the formula of the
expected payoff of the bidders (assumption 2) has been adjusted.
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5 Optimal auctions

5.1 Framework and preliminaries for the optimal auction

The revenue equivalence theorem is a powerful result that shows us which auc-
tion formats yield the same expected payoff for the seller when they have some
properties in common. We now want to analyse which class of auction formats
ensure the highest expected payoff for the seller, i.e. we will discuss the re-
quirements for an optimal auction. After discussing the framework we will first
revisit Myerson’s result of an optimal auction and then characterize the optimal
auction in our new formalism leading to a different result.

First, let v0 ∈ R define the value of the object to be auctioned-off for the
seller. We also will use a function u0 of type Rn+1 → R to express that the sellers
value may also be influenced by the values of the bidders. We will characterize
the expected payoff U0 of the seller as the sum of all expected payments by the
bidders and his own valuation in the case the object remains unsold after the
auction.

5.2 Optimal auction by Myerson

In order to be able to characterize Myerson’s version of the optimal auction
we will again use the ”revision effect” functions, defined in Section 3.4, Defini-
tion 3.4 and the interval [α, β] (in addition, we define the interval from which
the seller chooses his value v0 for the object by [α0, β0]). Furthermore we intro-
duce parts of his formalism regarding the expected payoff of the bidders. In the
previous sections we explained that we can describe the expected payoff by our
functions a and e by a(x, x)− e(x). Let now U(x) identify this expected payoff,
i.e. let n ∈ R, then

∀i ∈ {1, . . . , n},∀x ∈ R, Ui(x) := ai(x, x)− ei(x). (12)

Myerson derives a new equivalence for the functions Ui(x) we will use for the
proof.

Theorem 5.1. Let n be a natural number and V = (V1, . . . , Vn) be a vector
consisting of n real-valued random variables. For all i between 1 and n, let the
functions Oi be of type Rn → R and let the functions ui and u0 be defined as
follows.

ui : [α, β] → R
v 7→ vi +

∑
j∈{1,...,n},j 6=i

τj(vj)

u0 : [α, β]0 → R
v0, v 7→ v0 +

∑
j∈{1,...,n}τj(vj)

where v = (v1, . . . , vn) and [α, β]0 := [α0, β0]× [α, β].
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Let the functions O0, a0 and U0 be defined as follows.

O0 : Rn → Rn
x 7→ qO(x)

where qO(x) =
(
qO(x)1, . . . , q

O(x)n
)
,

∀i ∈ {1, . . . , n}, 0 ≤ qO(x)i and
∑n
i=1 q

O(x)i ≤ 1.

a0 : [α0, β0] → R
v 7→ E(u0(v, V ))

U0 : R → R
v 7→ a0(v)

(
1−

∑n
i=1E(qO(V )i)

)
+
∑n
i=1E(Oi(V ))

Furthermore, for all i ∈ {1, . . . , n}, we define the functions eOi , p
O
i and aOi in

the same way as in the revenue equivalence theorem.

eOi : [αi, βi] → R
v 7→ E(Oi(V [i→ v]))

pOi : [αi, βi] → [0, 1]
v 7→ E(qO(V [i→ v]i))

aOi : ([αi, βi])
2 → R

x, y 7→ E(ui(V [i→ x]) · qO(V [i→ y]i))

where V [i→ v] := (V1, . . . , Vi−1, v, Vi+1, . . . , Vn)

Finally, for all i between 1 and n, let the function Ui be defined as follows.

Ui : [αi, βi] → R
v 7→ Ui(αi) +

∫ v
αi
pOi (x)dx

We assume the following.

1. The random variables V1, . . . , Vn are mutually independent.

2. For all i between 1 and n we have

Oi(v) = qO(v)iui(v)−
∫ vi

αi

qO(v−i, si)idsi

where v ∈ [α, β], v = (v1, . . . , vn) and v−i = (v1, . . . , vi−1, vi+1, . . . , vn).

3. For all i between 1 and n we have 0 ≤ Ui(αi).

4. For all i between 1 and n, let fi be a density function and Fi be a distribu-
tion function for Vi. Furthermore, let f :=

∏n
i=1 fi and f−i =

∏n
j=1,j 6=ifj.
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Let v0 ∈ R. If now the function O0 maximizes∫
[α,β]

( n∑
i=1

(
vi − v0 − τi(vi)−

1− Fi(vi)
fi(vi)

)
qO(v)i

)
f(v)dv,

where v = (v1, . . . , vn), then the function U0 is maximal subject to the assump-
tions above.

Proof. By using the notation above for the densities and by the definition of the
expectation we obtain for the function U0.

U0(v0) = a0(v0)
(
1−

n∑
i=1

E(qO(V )i)
)

+

n∑
i=1

E(Oi(V ))

= a0(v0)
(
1−

n∑
i=1

∫
[α,β]

qO(v)if(v)dv
)

+

n∑
i=1

∫
[α,β]

Oi(v)f(v)dv

By rearranging the equation above we obtain.

U0(v0) = a0(v0) +

n∑
i=1

∫
[α,β]

qO(v)i
(
ui(v)− u0(v0, v)

)
f(v)dv

+

n∑
i=1

∫
[α,β]

Oi(v)− qO(v)iui(v)f(v)dv

(13)

By using the characterization for the functions Ui we made in the preliminaries
(see equation (12)) we obtain for all i ∈ {1, . . . , n}.∫

[α,β]

Oi(v)− qO(v)iui(v)f(v)dv = −
∫ βi

αi

Ui(vi)fi(vi)dvi

= −
∫ βi

αi

(
Ui(αi) +

∫ vi

αi

pOi (x)dx
)
fi(vi)dvi

= −Ui(αi)−
∫ βi

αi

∫ βi

x

fi(vi)p
O
i (x)dvidx

= −Ui(αi)−
∫ βi

αi

(1− Fi(x))p
O
i (x)dx

= −Ui(αi)−
∫
[α,β]

(1− Fi(v))q
O(v)if−i(v−i)dv

(14)

By the definitions of the functions ui and u0 we obtain.

∀i ∈ {1, . . . , n}, ui(v)− u0(v0, v) = vi − v0 − τi(vi) (15)

Now we conclude by equations (14) and (15).

U0(v0) =

∫
[α,β]

( n∑
i=1

(
vi − v0 − τi(vi)−

1− Fi(vi)
fi(vi)

)
qO(v)i

)
f(v)dv

+ a0(v0)−
n∑
i=1

Ui(αi)

(16)
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Finally, we obtain for all i ∈ {1, . . . , n} by using also assumption 3 and the
definition of Ui in the beginning of the theorem.

0 ≤ Ui(αi) =

∫
[α,β]−i

(
ui(v)qO(v)i −

∫ vi

αi

qO(v−i, si)idsi −Oi(v)
)
f−i(v−i)dv−i

where [α, β]−i = [α1, β1]× · · · × [αi−1, βi−1]× [αi+1, βi+1]× · · · × [αn, βn].

Now we conclude that by using assumption 2 we get
∑n
i=1 Ui(αi) = 0, which

is the best possible value in equation (16). Finally, since a0(v0) is a constant,
independent of the functions O0 and Oi we obtain that U0 is maximal if O0

maximizes ∫
[α,β]

( n∑
i=1

(
vi − v0 − τi(vi)−

1− Fi(vi)
fi(vi)

)
qO(v)i

)
f(v)dv.

5.3 Construction of Myerson’s optimal auction

We will characterize Myerson’s construction of an optimal auction. Here, we
will present his construction for the ”regular case”37.

Definition 5.2. The problem to find an optimal auction is regular, if for all i
between 1 and n, the function

ci(vi) = vi − τi(vi)−
1− Fi(vi)
fi(vi)

is strictly increasing for all vi ∈ [αi, βi].

We now consider the following auction format: The seller keeps the object if
maxi∈{1,...,n} (ci(vi)) < v0, otherwise he sells the object to the bidder with the
highest ci(vi). In case of a draw,

∃i, j ∈ {1, . . . , n}, i 6= j, v0 ≤ ci(vi) = cj(vj) = max
k∈{1,...,n}

(ck(vk)),

some arbitrary rule may be used. Thus, in this auction format,

∀i ∈ {1, . . . , n}, 0 < qO(v)i ⇒ v0 ≤ ci(vi) = max
j∈{1,...,n}

(cj(vj)).

For all v ∈ [α, β], this considered rule maximizes the sum
∑n
i=1 (ci(vi)− v0)qO(v)i,

subject to
∑n
i=1 q

O(v)i ≤ 1 and ∀i ∈ {1, . . . , n}, 0 ≤ qO(v)i. Now we consider
again the function Oi as defined in assumption 2. Before deriving the payments
by the bidders we introduce for all i between 1 and n the function zi as follows,

zi(v−i) = inf {si|v0 ≤ ci(si) and ∀j ∈ {1, . . . , n}, i 6= j, cj(vj) ≤ ci(vi)}
37Beside the regular case, Myerson analyses also a general case for an optimal auction.
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where again v−i = (v1, . . . , vi−1, vi+1, . . . , vn). So, zi(v−i) is the infimum of all
winning bids for bidder i. We thus obtain for all i ∈ {1, . . . , n}.

qO(v−i, si)i =

{
1 if si > zi(v−i)

0 if si < zi(v−i)

By the equation above we conclude.∫ vi

αi

qO(v−i, si)dsi =

{
vi − zi(v−i) if vi > zi(v−i)

0 if vi < zi(v−i)

Finally, we can compute the functions Oi for all i ∈ {1, . . . , n}.

Oi(v) =

{
zi(v−i) +

∑
j∈{1,...,n}j 6=i

τj(vj) if qO(v)i = 1

0 if qO(v)i = 0

By this payment function we see that in Myerson’s optimal auction bidder i
only pays when he wins the auction. In this case he pays an amount equal
to ui(v−i, zi(v−i)). If we now assume that all the revision effect functions are
identically zero and if for all i, j ∈ {1, . . . , n}, αi = αj , βi = βj , fi = fj , then we
obtain.

∀i ∈ {1, . . . , n}, zi(v−i) = max {c−1
i (v0), max

j∈{1,...,n},j 6=i
vj}

By this construction, Myersons optimal auction becomes a second price auction
with a reserve price c−1

i (v0) (by the regularity assumption the function ci is
invertible and by the restrictions above, ∀i, j ∈ {1, . . . , n}, ci = cj).

5.4 New formalism for an optimal auction

We now return to the formalism introduced in Section 3. We will introduce
other assumptions and requirements for an optimal auction and will see that
the new assumptions lead to a different solution.

Theorem 5.3. Let n be a natural number and V = (V1, . . . , Vn) be a vector
consisting of n real-valued random variables. For all i between 1 and n, let
the functions Oi and ui be of type Rn → R and let the function u0 be of type
Rn+1 → R. Let the functions O0, a0 and U0 be defined as follows.

O0 : Rn → Rn
x 7→ qO(x)

where qO(x) =
(
qO(x)1, . . . , q

O(x)n
)
,

∀i ∈ {1, . . . , n}, 0 ≤ qO(x)i and
∑n
i=1 q

O(x)i ≤ 1.

a0 : R → R
v 7→ E(u0(v, V )

U0 : R → R
v 7→ a0(v)

(
1−

∑n
i=1E(qO(V )i)

)
+
∑n
i=1E(Oi(V ))
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Furthermore, for all i ∈ {1, . . . , n}, we define the functions eOi and aOi in the
same way as in the revenue equivalence theorem.

eOi : R → R
v 7→ E(Oi(V [i→ v]))

aOi : R2 → R
x, y 7→ E(ui(V [i→ x]) · qO(V [i→ y]i))

where V [i→ v] := (V1, . . . , Vi−1, v, Vi+1, . . . , Vn)

We assume the following.

1. The random variables V1, . . . , Vn are mutually independent.

2. For all i between 1 and n we have Oi = qOi ui.

3. For all i between 1 and n, let fi be a density function for Vi. Let J1, . . . , Jk
be a partition of {1, . . . , n} complying with the following.
∀i, j ∈ {1, . . . , n}, fi = fj ⇒ ∃l ∈ {1, . . . , k}, i, j ∈ Jl. Also, for all l
between 1 and k, let the function f l be defined as follows.
∀i ∈ {1, . . . , n}, i ∈ Jl ⇒ f l := fi. Furthermore, let f :=

∏k
l=1 f

l.

4. ∀y ∈ R, 0 ≤
∑k
l=1

∑
i∈Jl

∫
R a

O
i (y, y)− eOi (y)−

∫ y
x
∂aOi
∂x1

(z, z)dzf l(x)dx.

5. For all i between 1 and n, the function aOi is differentiable.

6. For all i between 1 and n and for all distinct real numbers x and y,

aOi (x, y)− eOi (y) < aOi (x, x)− eOi (x)

Let v0 ∈ R. If now the function O0 maximizes

k∑
l=1

∑
i∈Jl

∫
Rn

qO(v)i(ui(v)− u0(v0, v))f(v)dv,

where v = (v1, . . . , vn), then the function U0 is maximal subject to the assump-
tions above.

Proof. By using the notation above for the densities and by the definition of the
expectation we obtain for the function U0.

U0(v0) = a0(v0)
(
1−

k∑
l=1

∑
i∈Jl

E(qO(V )i)
)

+

k∑
l=1

∑
i∈Jl

E(Oi(V ))

= a0(v0)
(
1−

k∑
l=1

∑
i∈Jl

∫
Rn

qO(v)if(v)dv
)

+

k∑
l=1

∑
i∈Jl

∫
Rn

Oi(v)f(v)dv
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By rearranging the equation above we obtain.

U0(v0) = a0(v0) +

k∑
l=1

∑
i∈Jl

∫
Rn

qO(v)i
(
ui(v)− u0(v0, v)

)
f(v)dv

+

k∑
l=1

∑
i∈Jl

∫
Rn

Oi(v)− qO(v)iui(v)f(v)dv

(17)

Since by assumption 2, for all i ∈ {1, . . . , n}, Oi = qOi ui we obtain that the last
addend in the equation above equals zero. We now have to show that this is
indeed the best possible value for the addend. First, for all i between 1 and
n, we replace the functions Oi, q

O
i and ui by the functions eOi and aOi in the

following way.

k∑
l=1

∑
i∈Jl

∫
Rn

Oi(v)− qO(v)iui(v)f(v)dv =

k∑
l=1

∑
i∈Jl

∫
R
eOi (vi)− aOi (vi, vi)f

l(vi)dvi

= −
k∑
l=1

∑
i∈Jl

∫
R
aOi (vi, vi)− eOi (vi)f

l(vi)dvi

where v = (v1, . . . , vn).

(18)

Since for all i ∈ {1, . . . , n}, the function aOi is differentiable by assumption 5
and since assumption 6 is equivalent to assertion 1 of Lemma 3.1, we can use
assertion 2 of the lemma. In the same way as in the proof of the revenue
equivalence theorem, the following holds for all i ∈ {1, . . . , n} and for all real
numbers x and y.

aOi (x, x)− eOi (x) = aOi (y, y)− eOi (y)−
∫ y

x

∂aOi
∂x1

(z, z)dz (19)

We apply equation (19) in equation (18) and obtain for all y ∈ R.

−
k∑
l=1

∑
i∈Jl

∫
R
aOi (vi, vi)− eOi (vi)f

l(vi)dvi = −
k∑
l=1

∑
i∈Jl

∫
R

(
aOi (y, y)− eOi (y)−

∫ y

vi

∂aOi
∂x1

(z, z)dz
)
f l(vi)dvi

By using assumption 4 we conclude.

−
k∑
l=1

∑
i∈Jl

∫
R
aOi (vi, vi)− eOi (vi)f

l(vi)dvi = −
k∑
l=1

∑
i∈Jl

∫
R

(
aOi (y, y)− eOi (y)−

∫ y

vi

∂aOi
∂x1

(z, z)dz
)
f l(vi)dvi ≤ 0

Thus, by applying equation (19) in equation (17) we obtain for all y ∈ R.

U0(v0) = a0(v0) +

k∑
l=1

∑
i∈Jl

∫
Rn

qO(v)i
(
ui(v)− u0(v0, v)

)
f(v)dv

−
k∑
l=1

∑
i∈Jl

∫
R
aOi (y, y)− eOi (y)−

∫ y

vi

∂aOi
∂x1

(z, z)dzf l(vi)dvi
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We can see now that 0 is the best possible value for the last addend in the
equation above. Furthermore, a0(v0) ∈ R is a constant. Thus, if O0 maxi-

mizes
∑k
l=1

∑
i∈Jl

∫
Rn q

O(v)i
(
ui(v)− u0(v0, v)

)
f(v)dv, then the function U0 is

maximal.

5.5 Construction of the optimal auction under the new
formalism

We now want to describe the optimal auction subject to the assumptions in the
theorem above.

We consider an auction format similar to Myerson’s format in the section be-
fore. In the auction, the seller keeps the object if maxi∈{1,...,n} ui(v) < u0(v0, v),
otherwise the bidder with the highest ui(v) gets the object. In case of a draw
an arbitrary rule may be chosen. By following this format we obtain.

∀i ∈ {1, . . . , n}, 0 < qO(v)i ⇒ u0(v0, v) ≤ max
j∈{1,...,n}

uj(v) = ui(v)

This format maximizes
∑k
l=1

∑
i∈Jl

∫
Rn q

O(v)i
(
ui(v)− u0(v0, v)

)
f(x)dx. Fur-

thermore, for all i between 1 and n, 0 ≤ qO(v)i and
∑k
l=1

∑
i∈Jl q

O(v)i ≤ 1, so
the constraints are fulfilled. We can now directly compute the payment func-
tions O1, . . . , On.

∀i ∈ {1, . . . , n}, Oi(v) =

{
ui(v) if qO(v)i = 1

0 if qO(v)i = 0

Assume now that for all i between 1 and n, ui(v) = vi and u0(v0, v) = v0.
Then, the computed optimal auction is a first price auction where the seller sets
a reserve price v0 and sells the object to the bidder with the highest bid who
has to pay his submitted bid.

In our new derivation of the optimal auction we do not use the functions
Ui and we do not restrict ourself to the interval [α, β]. Furthermore, our con-
struction does not require Myerson’s regularity assumption in Definition 5.2.
By working with the technical lemma we derived for the revenue equivalence
theorem we are able to set other requirements for an optimal auction then My-
erson.
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6 Utility functions and risk

6.1 Relaxations of the RET settings

So far, for our analysis of the revenue equivalence theorem and the optimal
auction, we made use of an important assumption regarding the payoff of the
bidders participating in the auctions, without directly naming it. Let us state
again the expected payoff function we used.

a(x, x)− e(x)

That is, the expected payoff of a bidder is the difference between the bidder’s
expected profit and his expected payments. This property is called additive
separability.

Definition 6.1 (Additive separability). A function of two variables F (x, y) is
called additively separable, if it can be written as f(x) + g(y) for some single-
variable functions f(x) and g(y).38

Translating this defintion into our setting we get that f(x) := a(x, x) and
g(y) = e(y). As we will see below this property is not always given and if
not, we can not apply the revenue equivalence theorem anymore. In fact, the
”additive separability” property is strongly connected to utility functions and
utility functions in turn are connected to different risk preferences when we
translate the characteristics of utility functions into auction theory.

6.2 Utility functions

In order to consider utility functions of the bidders we introduce the Von
Neumann-Morgenstern (VNM) utility functions.

Definition 6.2. Let ≺ be a preference relation over a set of deterministic out-
comes Ω. Let pω be the probability of the outcome ω ∈ Ω, with

∑
ω∈Ω pω = 1.

We now introduce four axioms called the axioms of VNM rationality:

Completeness: For any ω1 and ω2 ∈ Ω there exists p ∈ [0, 1], such that
exactly one of the following holds:

pω1 ≺ pω2, pω1 � pω2, or pω1 ∼ pω2

Transitivity: Let ω1, ω2, ω3 ∈ Ω and p ∈ [0, 1]. If pω1 � pω2 and pω2 � pω3

then

pω1 � pω3

38See: Bellenot, S. F.: Additivley Separable Functions.
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Continuity: Let ω1, ω2, ω3 ∈ Ω. If ω1 � ω2 � ω3 then there exists p ∈ [0, 1]
such that

pω1 + (1− p)ω3 ∼ ω2

Independence: Let ω1, ω2 ∈ Ω. If ω1 � ω2 then for any ω3 ∈ Ω and p ∈ (0, 1]:

pω1 + (1− p)ω3 � pω2 + (1− p)ω3
39

Definition 6.3. Let ≺ be a preference relation over Ω as defined above. Let u
be a function of type Ω → R representing ≺. The function u has the following
characteristics.

• u(0) = 0.

• u is twice continuously differentiable.

• u is strictly increasing.

We will call such a function u a utility function.

Definition 6.4. The Von Neumann-Morgenstern utility function of u for ω ∈ Ω
is defined as follows: Let u be defined as above and let p ∈ [0, 1], then we have
for ω ∈ Ω:

E(u(pw)) = pu(ω)

The VNM utility function E(u) is therefore the expected value of the utility
function u.

6.3 Risk

Definition 6.5. We distinguish between the following categories of bidders with
utility functions u regarding their risk behaviour. A bidder is...

• ...risk neutral, if u′′ = 0. In this case u is a linear function of the form
u(x) = ax, a > 0 and we will write u ∈ RN . Here we can again look back
to our setting we used for the revenue equivalence theorem. It becomes
clear that we assumed the bidders to be risk neutral, risk neutrality just
implies that the expected payoff functions are additively separable.

• ...(strict) risk averse, if u′′ ≤ 0 (u′′ < 0). In this case u is a (strict)
concave function and we will write u ∈ RA (u ∈ SRA)

• ...(strict) risk seeking, if u′′ ≥ 0 (u′′ > 0). In this case u is a (strict)
convex function an we will write u ∈ RS (u ∈ SRS)40

39See: Goyal, V. and Saxena, A.: Von Neumann and Morgenstern Utility Function,
http://www.cse.iitd.ernet.in/~rahul/cs905/lecture7/index.html, 2002.

40See: Monderer, D. and Tennenholtz, M.: K-Price Auctions: Revenue Inequalities, Utility
Equivalence, and Competition in Auction Design, 2003, p. 6.
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Definition 6.6. Two measures for risk averse bidders are the Absolute Risk
Aversion Coefficient and the Relative Risk Aversion Coefficient.
The Absolute Risk Aversion Coefficient of a utility function u at point x is
defined as:

λA(x) = −u
′′(x)

u′(x)

A utility function u with constant λA for all x is called a CARA utility function.
The Relative Risk Aversion Coefficient of a utility function u at point x is defined
as:

λR(x) = x · λA = −xu
′′(x)

u′(x)

A utility function u with constant λR for all x is called a CRRA utility func-
tion.41

Example 6.7. An example for a utility function with constant absolute risk
aversion is the exponential utility. It is defined as follows:

uex(x) = 1− e−ax

where a is a positive constant representing the degree of risk aversion. Let us
calculate λA:

λA = −u
′′
ex(x)

u′ex(x)
= −−a

2e−ax

ae−ax
= a

Example 6.8. The isoelastic function is an example for a utility function with
constant λR.

uiso(x) =

{
x1−r−1

1−r r 6= 1

log x r = 1

with r being a non-negative constant. Calculating the relative risk aversion
coefficient we get:

λR(x) = −x
u′′iso(x)

u′iso(x)
= −x−rx

−r−1

x−r
= −−rx

−r

x−r
= r

Observation 6.9. Risk averse or risk seeking bidders in the context of auctions
can be described as follows:
Risk averse bidders attach a higher priority to ensure they win the auction com-
pared to a risk neutral bidder. Thus, they are willing to give up parts of their
expected utility by bidding higher (compared to the risk neutral bidders) and so
increasing their probability to win.42 But, an increase of the winning probability
is only possible if not all bidders have the same degree of risk aversion. Other-
wise all bidders would try to increase their probability to win by bidding higher
in the same way. In such a setup, no improvement would be possible for any

41See: Modern Investment Technologies: Multi-period Asset Allocation, 2006, p. 16.
42See: Maskin, E and Riley, J.: Auction Theory with Private Values, The American Eco-

nomic Review, 1985, p. 152.
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bidder, since the bidder with the highest value estimation would still win the
auction. 43

John Riley and William Samuelson show in their paper44 that the higher the
absolut risk aversion coefficient λA is, the higher the bidders will bid in a first
price auction. Furthermore, since the bidding strategy in a second price auction
remains unaffected45, a first price auction should be prefered over a second price
auction in case of risk averse bidders as this leads to a higher payoff.

43See: Kopp, V.: Kontrollierte Auktionen, 2010, pp. 119-120.
44Riley, J. and Samuelson, W.: Optimal Auctions, The American Economic Review, Vol

71, No.3., 1981, pp. 381-392.
45In a second price auction, the equilibrium strategy for every bidder is to bid an amount

equal to his own value. Since the winner of the auction pays the second-highest bid, risk
aversion does not affect this dominant bidding strategy.
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7 Tailoring auction theory for Eurex Clearing

7.1 Formalization of the problem

In this section we want to characterize the settings of the objectives and plans
of the project described in the first section in a mathematically formal way. On
the one hand, this will help us to define possible scenarios and a setup for the
planned auctions. On the other hand, we will be able to apply possible changes
in the future directly to the formalism.
The aim of Eurex Clearing is to find an auction format per liquidation group,
so that:

• the whole portfolio will be auctioned off

• there is a minimal consumption of the lines of defense

• the default of the CCP will be prevented

Definition 7.1. With C ∈ N we characterize the number of all participants
of Eurex Clearing (i.e. potential auction participants). Let d ∈ C identify the
member who defaults.

In order to model the portfolio of the defaulted member we use:

Definition 7.2. Let PFd be the portfolio of member d ∈ C at Eurex Clearing:

PFd =

M∑
i=1

pi × qi,

with M ∈ N being the number of all financial instruments traded over the clear-
ing house, pi are the different instruments and qi ∈ N0 is the number of instru-
ments pi in the portfolio.

As explained before, the portfolio of the defaulted member will not be auc-
tioned off as a whole, but instead will be split into l ∈ N liquidation groups.
Then, the different liquidation groups will be hedged properly before the auc-
tions will be performed. Therefore we conclude:

Definition 7.3. PFHd is the hedged portfolio of member d and we split this
hedged portfolio into the different liquidation groups:

PFHd =

l∑
i=1

Li,d

where Li,d represents liquidation group i of the hedged portfolio PFHd and

∀i, j ∈ {1, . . . , l}, i 6= j ⇒ Li,d ∩ Lj,d = ∅,

i.e. the sets Li,d, Lj,d are disjunct for i 6= j.
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We also want to consider the possibility of multi-unit auctions (as explained
in Section 1.6 Eurex Clearing reserves the right to perform a multi-unit auction
instead of running a single-unit auction format). For this possibility of auction
formats, the liquidation groups may be split into t ∈ N homogenous parts and
multi-unit auctions will be performed.

Definition 7.4. Let l ∈ N and for all i ∈ {1, . . . , l}, let Li,d be the liquidation
group i of the hedged portfolio PFHd . Then we define.

Li,d = t ·Ki,d,

where Ki,d ⊆ Li,d and t ∈ N is the number of homogenous parts of the liquidation
group Li,d.

In order to model the participants of the different auctions we will use:

Definition 7.5. Let Ni = {1, . . . , ni} ⊆ C\ {d} be the set of participants of the
auction of liquidation group Li,d. We of course allow that Ni ⊆ Nj for i 6= j.

Let k ∈ N. For all i ∈ {1, . . . , l}, let GNi
1 , . . . , GNi

k be a partition of Ni.

7.2 Discussion on the setup

The proposal for the new liquidation procedures foresees that in general, all
clearing members and their clients are allowed to participate in the planned
auctions. In addition, when entering the auction, all bidders will be able to see
the different liquidation groups they will bid on.

Assumption 7.6. Let j ∈ Ni ⊆ C\{d} be a bidder in the auction of liquidation
group Li,d. We assume that bidder j takes the following measures into account
when determining his valuation for the liquidation group to be auctioned off.

1. the market price xjLi,d
∈ R of the liquidation group at the time of the

auction

2. the impact of the liquidation group on the existing portfolio/the strategy

3. additional factors like evaluation of the market orientation of the company
in the future

Assumption 7.7. There are other factors playing an important role in the
auction which do not influence the valuation process of the bidders but may
influence their bidding behaviour.

1. Considerations regarding the probability of a replenishment of the clearing
fund contribution after the liquidation process.

2. Considerations regarding the probability of being affected in the allocation
process.
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Due to the mark-to-market, the daily evaluation process for all futures and
options at the derivatives market from wich the market prices can be derived,
we assume that the assumptions on the market price of liquidation group Li,d
at the day of the auction are common knowledge and the same for all auction
participants Ni, i.e. ∀j, k ∈ C\{d}, j, k ∈ Ni ⇒ xjLi,d

= xkLi,d
.

Definition 7.8. For all i ∈ {1, . . . , l} and for all j ∈ Ni, let λji ∈ R be the
coefficient characterizing the impact of the liquidation group Li,d on the existing
portfolio and the market orientation (and other factors) (Assumption 7.6, 3) of
bidder j. We assume the following.

λji


> 1, if liquidation group Li,d supports the strategy of the portfolio

= 1, if liquidation group Li,d does not influence the strategy of the portfolio

< 1, if liquidation group Li,d opposes the strategy of the portfolio

Let us now define the function determining the value of the liquidation group.

Definition 7.9. For all i ∈ {1, . . . , l} and for all j ∈ Ni, let the function vji be
defined as follows.

vji : (R)2 → R
λji , x

j
Li,d

7→ λji · x
j
Li,d

Definition 7.10. For all i ∈ {1, . . . , l}, let Vi = (V 1
i , . . . , V

ni
i ) be a random

vector consisting of ni real valued random variables.

Assumption 7.11. For all i ∈ {1, . . . , l} and for all j ∈ Ni, let f ji be the

density function of V ji . By using the partition GNi
1 , . . . , GNi

k of the set Ni (see
definition 7.5), we introduce the following property for the density functions of
the random variables V 1

i , . . . , V
ni
i .

∀s, t ∈ Ni, fs = ft ⇒ ∃h ∈ {1, . . . , k}, s, t ∈ GNi

h

Also, for all h between 1 and k, let the function fh be defined as follows.

∀j ∈ Ni, j ∈ GNi

h ⇒ fh := fj

This means that we will group the participants of the auction by their density
functions.

7.3 Utility functions of the auction participants

Since the potential bidders of the auction only see the liquidation groups after
they agree to participate, the decision regarding their utility functions (subject
to risk valuation) is taken after they are able to see the liquidation group they
will bid on. Not only Eurex Clearing will make every effort to prevent the de-
fault of the CCP, it is also in the interest of the Clearing Member that the CCP
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does not default itself. Losses to the own company would be the consequence
for all Clearing Members if the CCP fails. Thus, we will consider different sce-
narios and analyse independently for each scenario which utility functions are
appropriate for the auction participants.

Scenario 1: Clearing Member d defaults. But the default of this Clearing
Member is not correlated with high market turbulences. The expectation of
the participants is that the lines of defense will hold, i.e. the probability of a
replenishment of the clearing fund is very low. Considering such a scenario, one
can expect that the participants will try to generate profit through the auction
process. As described in the previous sections, in the context of auction theory,
a risk averse bidder has a higher priority to ensure winning the auction than
a risk neutral bidder. Thus, for example in a first price auction, a risk averse
bidder will bid higher than a risk neutral bidder. But as explained, in scenario
1 we expect the bidders will try to generate profit. Thus, in the auctions of the
liquidation groups one can assume that the bidders do not have utility functions
displaying risk aversion. This assumption is also reasonable because the auc-
tions in the liquidation process are not the only possibility for the participants
to buy the financial products. So the objects which are sold are not unique, like
for example a unique painting. In an auction of a painting it is more reasonable
to think about risk averse bidders who are willing to bid higher to increase their
probability to win. Let us state these observations in the assumption below.

Assumption 7.12. In scenario 1, for the utility functions u of the bidders in
the auctions we will consider functions u ∈ RN and u ∈ RS (see Section 6.3).

Scenario 2: Clearing Member d defaults. In scenario 2 we assume that the
default of the Clearing Member is highly correlated with market turbulences and
the lines of defense of Eurex Clearing may not be sufficient to cover all losses
resulting from the default and the succeeding liquidation process. Especially,
this case might appear if the prices realised in the auctions, are too low. Thus
we assume that in scenario 2 the probability of a replenishment of the clearing
fund contribution is relatively higher than in scenario 1. In order to prevent
a replenishment or a juniorization, the auction participants thus bid stronger.
These observations lead to the following assumption.

Assumption 7.13. In scenario 2, we will consider for the utility functions u
of the bidders in the auctions functions u ∈ RA.

7.4 Constellation of the auction participants

As characterized in assumption 7.11, for all i between 1 and n, we can group the
participants Ni of the auction of liquidation group i. In this section we want
to discuss a possible setup of such a partition GNi

1 , . . . , GNi

k of Ni. We want to
distinguish between two major groups of auction participants. The aspects un-
der which we will distinguish the auction participants are the clearing member’s
general strategic focus and as a consequence of that also the time period they
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take as a basis for their valuation of the portfolio.

Group 1: The clearing members’ strategy in general is to benefit from mini-
mal differences between bid and ask prices in the market. The member is not
interested in keeping a position very long in his portfolio. Instead, his strategy
is to buy a financial product and sell it within a short time period at a profit.
For clearing members in this group, we assume a small time period taken as a
basis for the valuation of the coefficient λ, by which we characterize the impact
of the liquidation group.

Group 2: The clearing member has a certain expectation for the future de-
velopment of the price of a financial product. Thus, he only buys a financial
product when he expects a positive development to be able to sell it at a profit.
Thus, for clearing members in this group, we assume a long time period taken
as a basis for the valuation of the coefficient λ.

Regarding the question whether the valuation of the bidders is independent
from each other, we will distinguish between two cases.

Assumption 7.14. For all i ∈ {1, . . . , l}, the random variables V 1
i , . . . , V

ni
i

are...

a) ...mutually independent.

b) ...interdependent.

Regarding the interdependence of the random variables we can assume the
model of affiliated random variables Paul Milgrom and Robert Weber introduced
for auctions46. We just want to characterize the idea behind the model of
affiliation: If the realisation of a random variable is a large value then the
probability that the other values are also high is greater than the probability
that they are small.

7.5 Application of the revenue equivalence theorem

After discussing the setup of an auction for the liquidation groups and possible
scenarios and utility functions of the bidders we now want to discuss whether
the revenue equivalence theorem we analysed precisely for the single-unit and
multi-unit case is applicable in the setup we described or not.
The most important assumption for applying the revenue equivalence theorem
is the independence of the random variables V 1

i , . . . , V
ni
i . Thus, in Assump-

tion 7.14, we have to consider possibility a). Remembering the partition of the
set {1, . . . , n} we used for the revenue equivalence theorem, we see that by As-
sumption 7.11 we established an equivalent partition complying with the same
rule. If we now take Scenario 1 as a basis for the analysis and assume that

46Milgrom, P. and Weber, R.: A Theory of Auctions and Competitive Bidding, Economet-
rica, Vol. 50, No. 5., 1982, pp. 1089-1122.
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all bidders are risk neutral, then all major requirements for the application of
the revenue equivalence theorem are fulfilled. But if one of these important
requirements is violated, for example when we have risk averse bidders or the
valuations (i.e. the random variables) of the bidders are affiliated in the way
we indicated above, we can not apply the revenue equivalence theorem anymore
and have to consider additional results.

7.6 Conclusion and outlook

The analysis and the modelling of the procedures in case of a default at Eurex
Clearing and the discussion regarding a possible setup and scenarios is only a
first step in the intensive process of finding the right solution for the challeng-
ing problem of Eurex Clearing. Especially, a deep analysis of more complex
theorems of auction theory is neccessary in order to be able to give precise
recommendations for future procedures. But the detailed analysis of the single-
unit and multi-unit versions of the revenue equivalence theorem have shown that
even though there exists a lot of work on auction theory, a complete clarifica-
tion and even generalization is possible for (long-existing) results. Furthermore
we were able to show by the revenue equivalence theorem (for example by the
partitioning of the bidders) that these generalizations are not only of theoretical
interest but have a concrete practical benefit.

By combining the mathematical analysis of auction theory and its theorems
with the explicit investigation of the applicability for Eurex Clearing, this thesis
can serve as a useful introduction for any institution in search for a good auction
format for their specific situation.
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Appendix

A Basic probability theory

Definitions in this section are taken from: An introduction to auction theory,
by F. Menezes and P. Monteiro and from Introduction to probability theory by
C. Geiss and S. Geiss.

Definition A.1 (Sample space). The sample space Ω is the set of all elementary
events ω (of an experiment).

For example, the sample space of throwing a dice is: Ω = {1, 2, 3, 4, 5, 6}.

Definition A.2 (σ-Algebra). Let Ω be a sample space and P(Ω) be the set of
subsets of Ω. We call γ ⊂ P(Ω) a σ-algebra if:

• Ω ∈ γ

• ∀A ∈ γ,AC = Ω\A ∈ γ

• For any family (An)n∈N ∈ γ,
⋃
n∈NAn ∈ γ

A pair (Ω, γ), with γ being a σ-algebra on Ω is called a measurable space.

Definition A.3 (Probability measure). Let (Ω, γ) be a measurable space. We
call a function P : γ → [0, 1] a probability measure if:

• P (∅) = 0, P (Ω) = 1

• For any family An ∈ γ with Ai ∩Aj = ∅ for i 6= j we have:

P (

∞⋃
n=1

An) =

∞∑
n=1

P (An)

Definition A.4 (Probability space). We call the triplet (Ω, γ, P ) a probability
space, with γ ⊂ P(Ω) being a σ-algebra and P : γ → [0, 1] a probability measure.

Definition A.5 (Random variable). Let [Ω, γ] be a measurable space. The
function X : Ω → R is a random variable if for every interval (a, b) of real
numbers the set {ω ∈ Ω;X(ω) ∈ (a, b)} ∈ γ. That is, for a random variable the
probability of its value being in a given interval is well defined.

Definition A.6 (Distribution). A function F : R → [0, 1] is a distribution
function if:

• F is non-decreasing, i.e. F (x) ≤ F (y) if x ≤ y

• F is right-continuous, i.e. F (x+) := limy↓x F (y) = F (x)

• F (−∞) := limx→−∞ F (x) = 0, F (∞) := limx→∞ F (x) = 1
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Definition A.7. Given a random variable X : Ω→ R its distribution function
FX : R→ [0, 1] is defined by:

FX(x) = P ([X ≤ x])

Definition A.8 (Density). The distribution function F has a density if there
is a (Riemann integrable) function f : R→ R+ such that:

• for every x we have: F (x) =
∫ x
−∞ f(u)du

•
∫∞
−∞ f(x)dx = 1

Definition A.9 (Random vector). A function X : Ω→ Rn is a random vector if
{ω ∈ Ω;X(ω) ∈

∏n
i=1(ai, bi)} ⊂ Rn ∈ γ for every cartesian product of intervals∏n

i=1(ai, bi) ⊂ Rn.

Definition A.10. The distribution function FX : Rn → [0, 1] of a random
vector X is defined by:

FX(x1, . . . , xn) = P ([X1 ≤ x1, . . . , Xn ≤ xn])

The distribution FX has a density if there exists a Riemann integrable function
f : Rn → R+, such that for every x ∈ Rn:

FX(x) =

∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
f(y1, y2 . . . yn)dy1dy2 . . . dyn

Definition A.11 (Marginal Density). Let X = (X1, . . . , Xn) be a random vec-
tor with density fX . For all i between 1 and n, let fXi be the marginal density
function of the random variable Xi alone. This marginal density can be deduced
by integrating the density fX as follows:

fXi =

∫
Rn−1

fX(y1, . . . , yn)dy1 · · · dyi−1dyi+1 · · · dyn

Definition A.12 (Independence). We call the random variables X1, X2, . . . , Xm

independent if:

FX(x) = P ([X1 ≤ x1, . . . , Xm ≤ xm])

= P ([X1 ≤ x1]) · · ·P ([Xm ≤ xm])

= FX1
(x1) · · ·FXm

(xm)

Corollary A.13. Suppose that X1, . . . , Xn are independent random variables
that are identically distributed, i.e. F := FX1 = · · · = FXn . To find the maxi-
mum of the n functions we define max{X1, . . . , Xn}(ω) = max{X1(ω), . . . , Xn(ω)}
for each ω ∈ Ω. Now let G be the distribution of the maximum of the Xi’s. Then
we have:

G(t) = P ({ω ∈ Ω; max{X1(ω), . . . , Xn(ω)} ≤ t})
= P ([Xi ≤ t, 1 ≤ i ≤ n]) = P (∩ni=1[Xi ≤ t])

=

n∏
i=1

P ([Xi ≤ t]) =

n∏
i=1

F (t) = Fn(t)
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If F has a density, then G has a density as well:

g(t) = G′(t) = n · Fn−1(t) · f(t)

Definition A.14 (Expectation). The expectation of a random variable X with
distribution function FX and density fX is defined by:

E[X] =

∫ ∞
−∞

x · f(x)dx

Definition A.15 (Conditional Distribution). Suppose we have a random vector
(X,Y ) with distribution F and density f(·, ·). The conditional density fX|Y=y

is defined by

fX|Y=y(x) =
f(x, y)

fY (y)

Then, the conditional distribution FX|Y=y is

FX|Y=y(x) =

∫ x

−∞
fX|Y=y(t)dt =

∫ x

−∞

f(t, y)∫∞
−∞ f(a, y)da

dt

Definition A.16 (Conditional Expectation). The conditional expectation of a
random variable X, given that X < x is

E[X|X < x] =
1

FX(x)
·
∫ x

−∞
t · f(t)dt

Definition A.17. Given a random variable X, its density f and a function g,
the expected value of g(X) is given by

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx

Definition A.18. Given the random variables X1, . . . , Xn, the sum of the ex-
pected values of the n random variables equals the expected value of the sum of
the random variables.

n∑
i=1

E(Xi) = E(

n∑
i=1

Xi)

This holds, whether the random variables are independent or not.
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