
Parametrised Complexity
of Functionals on Spaces of Real Functions

Eike Neumann

Bachelor-Thesis
October 2012

1

Parametrisierte Komplexität von Funktionalen auf Räumen reeller Funktionen
Parametrised Complexity of Functionals on Spaces of Real Functions

Vorgelegte Bachelor-Thesis von Eike Neumann

1. Gutachten: Prof. Dr. Martin Ziegler
2. Gutachten: Prof. Dr. Ulrich Kohlenbach

Tag der Einreichung:

2

Erklärung zur Bachelor-Thesis
Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 29.10.12

(Eike Neumann)

3

Abstract.
Using Kawamura’s and Cook’s extension of Weihrauch’s TTE, we study the uniform com-
plexity of integration, maximisation and function evaluation on the space of continuous-
and the space of real analytic functions over a compact interval. Building on results
due to Kawamura, Müller, Rösnick and Ziegler we introduce a notion of ’efficiently con-
structible functions’, which covers a wide range of real functions encountered in practi-
cal numerical analysis and prove that maximisation restricted to the class of efficiently
constructible functions and integration restricted to a smaller subclass are uniformly
polynomial-time computable, thus providing a more differentiated view on the clas-
sic result due to Ko and Friedman which asserts that maximisation and integration of
polynomial-time computable functions are computationally hard unless P = NP. We
also give a quantitative improvement of the aforementioned results of Kawamura, Müller,
Rösnick and Ziegler.

4

Contents
1. Introduction and Summary 5
Acknowledgement 8
2. The Computational Model 9
3. Representations of Separable Metric Spaces 12
4. Computing with Discrete Objects 18
4.1. Algorithms on Polynomials and Rational Functions 18
4.2. Root Finding and Maximisation 22
4.3. Algorithms on Piecewise Polynomials and Rational Functions 28
5. Representations of The Space of Continuous Functions 33
5.1. Parametrised Complexity of Functionals on C([0, 1]) 33
5.2. Parametrised Complexity of Operators on C([0, 1]) 37
5.3. Robustness of Definitions and Comparison of the Representations Introduced 42
6. Representations of the Space of Real Analytic Functions 49
References 59

5

1. Introduction and Summary
Subject of the present work is the study of the computational complexity of integra-

tion, maximisation and function evaluation on the space C([0, 1]) of continuous functions
over the compact interval [0, 1]. More precisely, we will consider the functionals

EVAL : C([0, 1]) × [0, 1] →R, (f, x) 7→f(x)
MAX : C([0, 1]) × [0, 1]2 →R, (f, a, b) 7→max{f(x) | min{a, b} ≤ x ≤ max{a, b}}

INT : C([0, 1]) × [0, 1]2 →R, (f, a, b) 7→
∫ b

a
f(x)dx

Classic results concerning the general difficulty of computing these functionals are due
to Ko and Friedman, who used the following notion of polynomial-time computability
(cf. [Ko91])

Definition 1.1 (Real Complexity due to Ko and Friedman). (i) Let x ∈ R be a real
number. Let D =

⋃
n∈NDn denote the set of dyadic rational numbers, where

Dn := { c2n | c ∈ Z}. A function φ : N → D is said to binary converge to x, if for
all n ∈ N we have φ(n) ∈ Dn and |φ(n)− x| ≤ 2−n. The set of all functions binary
converging to f is denoted by CFx.

(ii) Let x ∈ R be a real number. We say that x is computable if there exists a
computable φ ∈ CFx. It is polynomial-time computable if there exists a
polynomial-time computable φ ∈ CFx.

(iii) Let I be a compact interval in R. A function f : I → R is computable if there ex-
ists a function-oracle Turing Machine such that for each x ∈ I and every φ ∈ CFx,
the function ψ computed by M with oracle φ is in CFf(x).

(iv) If f : I → R is a computable function, then we say that the uniform time com-
plexity of f is bounded by T : N → N if there exists a function-oracle Turing
Machine M which computes f , such that for every x ∈ I and every φ ∈ CFx the
number of computational steps that M performs on input n with oracle φ is smaller
or equal than T (n). Consequently, f is said to be computable in polynomial
time if its uniform time complexity is bounded by some polynomial P ∈ N[x].

One can then show that the following relations hold

Theorem 1.2 ([Ko91]). (i) For each polynomial-time computable f ∈ C([0, 1]), the
function g(x) := maxy≤x f(y) is again polynomial-time computable if and only if
P = NP. The same result holds true even if one assumes f to be infinitely-often
differentiable.

(ii) For each polynomial-time computable f ∈ C([0, 1], the function g(x) :=
∫ x

0 f(t)dt is
again polynomial-time computable if and only if FP = #P. The same result holds
true even if one assumes f to be infinitely-often differentiable.

Since it is widely believed that P 6= NP, these results are generally considered neg-
ative. The proof of these results is based on a construction, which assigns to each
NP-language

L(p,A) = {u ∈ {0, 1}∗ | ∃v.|v| ≤ p(|u|), (u, v) ∈ A, }, A ∈ P, p ∈ N[x]

6

a polynomial-time computable function fL such that maximising fL is equivalent to de-
ciding for a given u ∈ {0, 1}∗, whether there exists a certificate v such that (u, v) ∈ A and
integrating fL is equivalent to counting the number of such certificates. The thus con-
structed functions fL are, however, highly artificial and not representative of functions
encountered in practical applications.

In fact, most ’efficiently computable’ functions encountered in every-day mathematics
are not only computable in polynomial time, but can be efficiently constructed from
basic functions, such as polynomials, rational functions, functions such as |x| or

√
x

or analytic functions such as sin, cos or exp by means of composition and elementary
algebraic operations. This motivates the following

Definition 1.3. The class of efficiently constructible real functions is defined as
follows:

• If f is a polynomial-time computable real analytic function over a compact in-
terval [a, b] ⊆ R, then f is efficiently constructible.
• f is an efficiently constructible function over the interval I, such that f(x) ≥ 0

for all x ∈ I, then
√
f is efficiently constructible as well. If f(x) ≥ 1 for all x ∈ I,

then 1/f is efficiently constructible.
• If f and g are efficiently constructible functions defined on the same interval I

then so are their sum f + g and their product f · g. If a ∈ I is a polynomial-time
computable number such that f(a) = g(a) then

ha(x) :=
{
f(x) if x ≤ a
g(x) if x ≥ a

is efficiently constructible as well.
• If f, g are efficiently constructible functions such that the range of g is contained

in the domain of f , then the composition f ◦ g is efficiently constructible.

This is of course a completely ’ad-hoc’ definition not designed to capture the general
intuitive notion of what it means for a function to be ’efficiently constructible’ - it does,
however, seem to cover a large class of functions encountered in real analysis. We will
show that these ’efficiently constructible’ functions are indeed efficiently constructible in
a more precise sense and that the following theorem holds

Theorem 1.4. Let f ∈ C([0, 1]) be an efficiently constructible function. Then f and

MAX(f, ·, ·) : [0, 1]× [0, 1]→ R, (a, b) 7→ max{f(x) | x ∈ min{a, b} ≤ x ≤ max{a, b}}

are polynomial-time computable functions. If the construction of f does not involve
divisions or square-roots, then

INT(f, ·, ·) : [0, 1]× [0, 1]→ R (a, b) 7→
∫ b

a
f(x)dx

is polynomial-time computable as well.

In fact, we will not only show that for these functions maximisation is non-uniformly
computable in polynomial-time, but also provide a polynomial-time algorithm which

7

uniformly computes the maximum of an efficiently constructible function, given an ap-
propriate ’encoding’ of the basic functions. To state this more precisely, we need to
introduce the notion of representations.

In [KC10], Kawamura and Cook have introduced an extension of Weihrauch’s Type
Two Theory of Effectivity (TTE) [Wei00], introducing a notion of ’size’ of represented
objects. In [Wei00], uncountable sets are represented as ’infinite strings’ (i.e. elements
of Cantor-Space) via partial mappings

δ : ⊆ Σω → X,

where Σ is some finite alphabet. A Turing Machine is then said to compute a function
f : X → Y (with respect to some representation α of X and some representation β of
Y) if, while reading an infinite string† s representing some element x ∈ X (in the sense
that α(s) = x) it produces some infinite string t representing f(x) ∈ Y (in the sense
that β(t) = y).

In [KC10], uncountable sets are represented as string functions (i.e. elements of Baire-
Space), essentially via partial mappings

δ : ⊆ (Σ∗)Σ∗ → X.

The size a name ψ ∈ dom δ can then be defined as |ψ|(n) = max|u|=n |ψ(u)| ‡. Com-
putability is then defined essentially like in Definition 1.1: a machine computes a function
f : X → Y with respect to some representation α of X and some representation β of Y
if on input u ∈ Σ∗ and with oracle ψ ∈ domα, where α(ψ) = x it outputs φ(u) where
β(φ) = y. In this definition we deal with two different kinds of inputs: the type-zero
input u, given as the ’usual’ input, and the type-one input φ, given as an oracle. The no-
tion of ’polynomial-time computability’ can then be generalised by considering so called
’second-order polynomials’: intuitively speaking, polynomials in the type-zero- and in
the type one input, e.g. P (x, `) = 23x3 + 42x2`(x) + 1729x`(`(x))2, which evaluate to
a positive integer P (n, |ψ|) = 23n3 + 42n2|ψ|(n) + 1729n|ψ|(|ψ|(n))2. A machine is said
to compute f : X → Y in second-order-polynomial time, if its running time on input u
and with oracle ψ is bounded by P (|u|, |ψ|) for some second-order polynomial P .

This approach allows for treating real functions (and other uncountable structures)
as inputs, just like real numbers, and thus for stating uniform complexity results for
operators and functionals, explicitly specifying what information is needed on the input
function in order to perform a particular computational task and how the resources re-
quired during the computation depend on said function. Furthermore, such results yield
explicit and well-defined algorithms for solving computational problems in numerical
analysis.

In order to establish Theorem 1.4, we define representations δC([0,1]),pp and δC([0,1]),pq
of the space C([0, 1]) of continuous functions over the compact interval [0, 1] via fast con-
verging sequences of piecewise polynomial- and rational functions with dyadic coefficients
and prove maximisation, integration and evaluation, as well as the operations mentioned
in Theorem 1.4 second-order polynomial time computable with respect to these repre-
sentations. It then suffices to show that every polynomial-time computable real analytic
†A Turing Machine reading and writing infinite strings is usually referred to as a Type Two Turing Machine
‡we will have to refine this definition slightly, since, like in discrete complexity, one wants to obtain time-

constructible complexity-bounds, which require the size of ψ to be ’efficiently computable’ in terms of ψ

8

function has a polynomial-time computable δC([0,1]),pp-name. This is established using a
result due to Kawamura, Müller, Rösnick and Ziegler [KMRZ12], who have given several
natural (and equivalent) representations of the space of real-analytic functions, render-
ing various basic operators and functionals (including the functionals MAX,EVAL and
INT) uniformly second-order polynomial-time computable, and have shown that every
polynomial-time computable real-analytic function has a polynomial-time computable
name with respect to these representations. We then show that a δC([0,1]),pp-name of a
real analytic function is computable in second-order polynomial time, given one of these
representations.

In Section 2 we give a brief introduction to the computational model due to Kawamura
and Cook. Section 3 contains some general considerations of how to construct repre-
sentations of separable metric spaces which render a given functional computable in
second-order polynomial-time, requiring as few information on the represented function
as possible. As mentioned before, we will represent continuous functions by fast con-
verging Cauchy-sequences of piecewise polynomial- and rational functions with dyadic
rational coefficients. In Section 4 we study the computational complexity of basic al-
gorithms on these functions, which will then in Section 5 be used to prove uniform
complexity results for operators and functionals on the space of continuous functions
over a compact interval. This will be the most important step in proving Theorem 1.4.
In Section 6 we discuss the results of Kawamura, Müller, Rösnick and Ziegler from a
quantitative viewpoint and conclude the proof of Theorem 1.4.

Acknowledgement. I would like to thank my advisor, Martin Ziegler, for his helpful
remarks and suggestions.

9

2. The Computational Model
In the following, fix some finite alphabet Σ containing 0 and 1.

Definition 2.1. A function ψ : Σ∗ → Σ∗ is called regular if
|ψ(1n)| = max{|ψ(u)| | |u| ≤ n}.

We write Reg for the class of all regular functions. For all ψ ∈ Reg we define the function
|ψ| : N→ N, n 7→ |ψ(1n)|.

It is called the size or length of ψ.

We are going to use Reg as the domain for representations. Observe, that for every
ψ ∈ Reg, the size-function |ψ| is monotone and a Turing-machine given ψ as an Oracle
can compute |ψ|(u) in time O(|u| + |ψ|(u)). These properties are crucial for obtaining
a sensible notion of computational complexity. For our purpose, the restriction of Σ∗Σ∗

to Reg entails no loss of generality, since every function ϕ : Σ∗ → Σ∗ induces a function
ϕ̌ ∈ Reg, from which ϕ can be efficiently recovered, via

ϕ̌(0u) = ϕ(u), ϕ̌(1u) = 1max{|ϕ(v)| | |v|≤|u|+1}.

For a regular function ψ we denote by ψ̂ the function
ψ(0·) : Σ∗ → Σ∗ u 7→ ψ(0u).

By convention, we will ’store’ all the information relevant to the representation in ψ̂ and
use ψ(1·) to encode the size of ψ.

Remark 2.2. Kawamura and Cook define the notion of size slightly differently. In [KC10]
a function ψ : Σ∗ → Σ∗ is called regular if for all u, v ∈ Σ∗ we have

|ψ(u)| ≤ |ψ(v)| whenever |u| ≤ |v|.
The function |ψ| is then simply defined by putting |ψ|(n) = |ψ(u)| for some u with
|u| = n. Similarly to our approach, any function can be ’made regular’ - in this case by
’padding out’ the function values by redundant information. The disadvantage of this
approach is that recovering the original function becomes somewhat less straightforward.

Definition 2.3. (i) Let X be some non-empty, at most countable set. A surjective
partial mapping ν : ⊆ Σ∗ → X is called a notation of X. If x ∈ X and u ∈ Σ∗
satisfies ν(u) = x we call u a ν-name of x.

(ii) Let X be some non-empty set of cardinality at most 2ℵ0 . A surjective partial
mapping α : ⊆ Reg→ X is called a representation of X. If x ∈ X and ψ ∈ Reg
satisfies α(ψ) = x we call ψ an α-name of x.

Remark 2.4. Let ν : ⊆ Σ∗ → X be a notation of X. Then ν induces a representation ν̃
of X with

dom ν̃ = {ψ | ∃a ∈ dom ν.∀u ∈ Σ∗.ψ(u) = a}
and ν̃(ψ) = ν(ψ(0)). We will always simply write ν for both the notation and the
induced representation ν̃ as from the context no confusion may arise.

Example 2.5. (i) A νN-name of n ∈ N is a string bk · · · · · b0 over the alphabet {0, 1}
such that n =

∑k
i=0 bi2i.

10

(ii) A ν1-name of n ∈ N is the string 1n.
(iii) A νD-name of c ∈ D is a string over the alphabet {0, 1,+,−, .} of the form

σb−N . . . b0.b1 . . . bM , where σ ∈ {+,−} and bi ∈ {0, 1} satisfying c = σ
∑M
k=−N bk2−k.

If b−N = bM = 1, we write prec(c) for the number M . Unconditionally, we denote
N +M by `(c) †.

(iv) A δN→N-name of f ∈ NN is a function ψ ∈ Reg such that for all u ∈ {0, 1}∗, ψ(0u)
is a νN-name of f(νN(u)).

(v) A ρ-name of x ∈ R is a function ψ ∈ Reg such that ψ(u) = ψ(1n) whenever |u| = n
and ψ(1n) is a νD-name of some c ∈ D with |c− x| ≤ 2−n.

Definition 2.6. (i) Let (αi)i∈I be an at most countable family of representations of
sets (Xi)i∈I , I being notated by νI . The product representation

∏
I αi of the

Cartesian product
∏
I Xi with respect to νI is defined as follows: ψ is a

∏
I αi-name

of ~x ∈
∏
I Xi if ψ̂(ū#·̄) = φ(·), where

ψ̂(ū#·̄) : Σ∗ → Σ∗, v 7→ ψ̂(ū#v̄),
and φ is an ανI(u)-name of xu, where for e ∈ Σ, ē := e · e, for u, v ∈ Σ∗, u · v := ū · v̄
and # := 10.

(ii) Let α1, . . . , αm be a finite family of representations of X1, . . . , Xm. The product
representation α1×· · ·×αm of X1×· · ·×Xm is the product

∏
N αi of the family

(αi)i∈N with respect to ν1, where αi := α1 for i > m.
(iii) Let α be a representation of X. The star representation α∗ of the free monoid

X∗ over X is defined as follows: φ is an α∗-name of x = x1 · · · · · xm ∈ X∗ if it is a
ν1 × α× · · · × α-name of m ∈ N and (x1, . . . , xm) ∈ Xm.

(iv) Let α be a representation of X. The representation αω of Xω is the product
representation

∏
N α with respect to ν1.

Definition 2.7. Let F : ⊆ X ⇒ Y be a partial multifunction, let α and β be representa-
tions ofX and Y respectively. A function f : domα→ dom β is called an (α, β)-realiser
of F if for every ψ ∈ domα such that α(ψ) ∈ domF we have

β(f(ψ)) ∈ F [α(ψ)]
i.e. if the following diagram commutes.

domα
f−−−−→ dom βyα yβ

X
F−−−−→ Y

Definition 2.8. The set of second-order-polynomials is recursively defined as follows
(i) 1 and x are second-order-polynomials.
(ii) if P and Q are second-order-polynomials, then so are P +Q, P ·Q and `(P).

If P is a second-order-polynomial, then the evaluation of P in n ∈ N and f ∈ NN, de-
noted P (n, f), is defined as the value of the expression obtained by replacing everywhere
in P the term `(·) by f(·) and x by n.
†note that this is an abuse of notation, since it suggests independence of the underlying name, which is clearly

not the case. However, it will always be clear from the context to which name we refer

11

Definition 2.9. A function f : ⊆ Reg→ Reg is computable if there exists an Oracle-
Turing-machine which on input u ∈ Σ∗ and with oracle ψ outputs f(ψ)(u). It is com-
putable in second order polynomial-time or FP2-computable, if there exists some
second-order polynomial P (x, `) such that P (|u|, |ψ|) bounds the running time of the ma-
chine computing f on input u and with oracle ψ. A partial multifunction F : ⊆ X ⇒ Y
is (α, β)-computable resp. second-order polynomial-time (α, β)-computable (or
(α, β)-FP2) if it has a computable resp. second-order polynomial time computable re-
aliser.

Definition 2.10. Let α, β be representations of the same set X. We say that α reduces
to β and write α � β if the identity idX has a second-order polynomial time computable
(α, β)-realiser. We say that α and β are equivalent and write α ≡ β if α � β and
β � α. We say that the reduction α � β is strict, if α and β are not equivalent.

Proposition 2.11. (i) If F : ⊆ X ⇒ domG ⊆ Y is (α, β)-FP2 and G : ⊆ Y ⇒ Z is
(β, γ)-FP2, then their composition F ◦G ⊆ X ⇒ Z is (α, γ)-FP2.

(ii) If α � β and F : ⊆ X ⇒ Y is (β, γ)-FP2, then F is (α, γ)-FP2.

12

3. Representations of Separable Metric Spaces
Consider a function

F : X ×A→ Y,

where X,A and Y are metric spaces, A is compact and separable, Y is separable and
representations γ of A and β of Y have been fixed. One might ask whether it is possible
to find some canonical representation α of X, such that F is (α × γ, β)-FP2 and every
representation of X rendering F second-order polynomial time computable reduces to α.
Let us fix this notion for further reference.

Definition 3.1. Let α be a representation of X. We say that α uniformly char-
acterises F with respect to β and with parameters represented by γ if F is
(α× γ, β)-FP2 and if every representation δ of X, such that F is (δ× γ, β)-FP2 reduces
to α.

The function F induces an equivalence relation on X via
x ∼F y ⇔ ∀a ∈ A.(F(x, a) = F(y, a)).

A representation α of X induces a representation α/ ∼F of X/ ∼F via
α/ ∼F:= πF ◦ α,

where πF : X → X/ ∼F is the canonical projection. Note that the function
F̄ : (X/ ∼F)×A→ Y, F̄(πF(x), a) := F(x, a)

is well-defined. Our next goal is to show, that there exists a representation α of X/ ∼F

uniformly characterising F̄ under fairly general assumptions, so long the representations
of A and Y reflect the separability of A and Y and the compactness of A.

Definition 3.2. Let X be a separable metric space, and let S be a dense, countable
subset of X, notated by σ : ⊆ Σ∗ → S. The Cauchy representation of X induced
by σ, denoted δ(X,σ) is defined as follows. A function ψ ∈ Reg is a δ(X,σ)-name
of x ∈ X if for all n ∈ N ψ(u) = ψ(1n), whenever |u| = n and ψ(1n) is a σ-name
of some a ∈ S satisfying dX(a, x) ≤ 2−n. A representation of X is called a Cauchy
representation if it is equivalent to a Cauchy representation induced by some notation
of a dense, countable subset of X.

Remark 3.3. A similar notion of ’Cauchy representations’ is can be found in [Wei00]
(Definition 8.1.2).

Example 3.4. ρ : Reg→ R, defined in example 2.5, is the Cauchy representation induced
by νD.

Definition 3.5. Let α be a Cauchy representation of a complete separable metric space
X. We say that α is compact if there exists M : N → N such that every x ∈ X,
has an α-name whose size is bounded by M , i.e. for all x there exists ψ ∈ domα such
that α(ψ) = x and |ψ|(n) ≤ M(n) for all n. The representation α is called efficiently
compact if M is (ν1, ν1)-computable in polynomial time. More generally, α is called
locally compact, if the co-restriction α|K to any compact set K ⊆ X is compact
and locally efficiently compact if the co-restriction to any compact set is efficiently
compact.

13

Example 3.6. Every real number x has a ρ-name of size blog(|x|+ 1)c + n + 3. In
particular, every number in a compact interval I = [a, b] has a ρ-name of size

max{blog(|a|+ 1)c, blog(|b|+ 1)c}+ n+ 3.
So the co-restriction ρ|I of ρ to any compact interval is efficiently compact and ρ is
locally efficiently compact.

The above example motivates the definition of a new representation ρc of R as follows:
regular ψ is a ρc-name of x ∈ R if it is a ρ name of x of size at most blog(|x|+ 1)c+n+3.
This new representation is also a Cauchy representation: it is equivalent to ρ. In fact,
we have

Lemma 3.7 (truncation lemma). Let x ∈ R and c ∈ D with prec(c) = n + m, m ≥ 1,
such that

|x− c| ≤ 2−n−1.

Given a νD-name of c we can compute a νD-name of c′ ∈ D of size blog(x)c+n satisfying
|x− c′| ≤ 2−n

in time O(n+m+ blog(x)c).

Proof. Compute the unique c̄ ∈ [−2−m−1, 2−m−1] satisfying
c̄ ≡ 2n+mc (mod 2m),

then put c′ := c− c̄
2n+m . Note that prec(c′) = n and that

|c′ − x| ≤ |c′ − c|+ |c− x| ≤ 2−n.
In the worst case this procedure requires one addition of numbers of size smaller or equal
than n+m+ blog(|x|+ 1)c+ 1. �

We immediately deduce

Proposition 3.8. ρ ≡ ρc.

The notion ’compact’ is motivated by the following proposition.

Proposition 3.9. Let X be a complete separable metric space. Then the following are
equivalent

(i) X has a compact Cauchy representation.
(ii) X is compact.

Proof. (i) ⇒ (ii). Let α = δ(X,σ) be a compact Cauchy representation of X. Consider
the mapping

α′ : ⊆ (Σ∗)ω → X

with domα′ = {(an)n ∈ (Σ∗)ω | (σ(an))nconverges in X} and α′((an)n) = limn σ(an).
Note that if (σ(an)n) converges with order 2−n then α′((an)n) = α(ψ[(an)n]), where
ψ[(an)n](u) := a|u|. On (Σ∗)ω we introduce the Baire-metric

d((an)n, (bn)n) := 2−min{n|an 6=bn}

(with the convention that min ∅ = ∞ and 2−∞ = 0). Note that α′ is continuous with
respect to this metric and that the limit of a convergent sequence in domα′ corresponds

14

to a Cauchy-sequence in X. Since X is complete, domα′ is closed. Now, since every
x ∈ X has an α-name of size M(n), we have

X = α′

∏
n∈N
{u ∈ Σ∗ | |u| ≤M(n)} ∩ domα′

 .
Now, the set {u ∈ Σ∗ | |u| ≤ M(n)} is finite and thus compact for every n ∈ N, so
the product

∏
n∈N{u ∈ Σ∗ | |u| ≤M(n)} is compact by Tychonoff’s Theorem and since

domα′ is closed,
∏
n∈N{u ∈ Σ∗ | |u| ≤M(n)} ∩ domα′ is compact. So, X is compact,

since α′ is continuous.
(ii) ⇒ (i). Let A ⊆ X be countable and dense in X. Since X is compact, for every n

there exist sn1 , . . . , snkn
∈ A such that

X ⊆
kn⋃
i=1

B(sni , 2−n).

There exists a representation σ : ⊆ Σ∗ → A of A such that for every n and k ≤ kn
the element snk of A has a σ-name of size at most

∑n
i=1 log ki. Let α be the Cauchy

representation of X induced by σ. For every x ∈ X there exists a sequence (snin)n such
that x ∈ B(snin , 2

−n), which yields an α-name of x with size bounded by
∑n
i=1 log ki. �

Remark 3.10. One may argue that the term ’compact’ is not entirely appropriate, since
the completeness of the represented space is not a priori necessary to formulate the
definition. It is easy to see that one can find representations of non-compact spaces (e.g.
ρ|D∩[0,1]) such that the size of every name is uniformly bounded. It might thus be more
natural to drop the condition on the completeness of the represented space and refer to
such representations as precompact (or ’totally bounded’) rather than compact. One
can then show that a separable metric space X has a precompact representation if and
only if it is precompact, since from a precompact representation of X one can easily
construct a compact representation of its Cauchy-Completion X̃ (which by the above
proposition entails that the Cauchy-Completion is compact, i.e. X is precompact). A
’compact’ representation could then be defined either like it is done here, by restricting
the co-domain, or - maybe more naturally - by requiring the representation’s domain to
be closed with respect to a Baire-metric on Reg, similar to the one in the above proof.
However, since we are only going to study complete spaces, we may content ourselves
with the definition given here.

From now on, we consider the function
F : X ×A→ Y

where X is some metric space of cardinality at most 2ℵ0 , A is a separable and compact
metric space, which will be referred to as the parameter space represented by an
efficiently compact Cauchy representation γ, induced from the notation σ of S ⊆ A and
Y is a separable metric space represented by a Cauchy representation β induced by a
notation ν of T ⊆ Y , called the image space.

There are also some noteworthy relationships between first- and second order com-
plexity classes. Let DTIME(T (n)) be the class of regular functions computable in time
O(T (n)), SPACE(S(n)) be the class of regular functions computable in space O(S(n))

15

and SIZE(M(n)) be the class of regular functions with size in O(M(n)) (for more
detailed definitions of DTIME and SPACE, see e.g. [AB09]). We may then define the
following complexity classes over Reg.

Definition 3.11. Let
- FP =

⋃
c∈N DTIME(nc).

- PSIZE =
⋃
c∈N SIZE(nc).

- FPSPACE =
⋃
c∈N SPACE(nc).

Definition 3.12. (i) Let C be any of the complexity classes listed in definition 3.11.
The set of C-points of X with respect to α, denoted Cα(X) is the set of all x ∈ X
such that there exists a ψ ∈ Reg ∩C with α(ψ) = x.

(ii) The set FP2-points of F with respect to β and parameters represented by γ, denoted
(FP2)βF,γ(X) is the set of all x ∈ X such that the function

A 3 a 7→ F(x, a)

is (γ, β)-FP2.

Example 3.13. On the space C([0, 1]) of continuous functions, consider the functional

EVAL : C([0, 1])× [0, 1]→ R, (f, x) 7→ f(x).

One can easily verify that a function f ∈ C([0, 1]) is in
(
FP2

)ρ
EVAL,ρc|[0,1]

(C([0, 1])) if
and only if it is computable in polynomial-time in the sense of Ko and Friedman (Defini-
tion 1.1). Since ρ ≡ ρc (Proposition 3.8), it follows that f ∈

(
FP2

)ρ
EVAL,ρ|[0,1]

(C([0, 1]))
if and only if it is polynomial-time computable in the sense of Ko and Friedman.

Proposition 3.14. Let C be any of the complexity classes listed in Definition 3.11.
(i) If f : Reg → Reg is second-order polynomial time computable and ψ ∈ C then

f(ψ) ∈ C.
(ii) Let F : X → Y , α be a representation of X and β be a representation of Y . If F

is (α, β)-FP2, then F (Cα(X)) ⊆ Cβ(Y).
(iii) Let α, γ be representations of the same set X. If α � γ then Cα(X) ⊆ Cγ(X).
(iv) Let α be a representation of X. If F is (α×γ, β)-FP2, then FPα(X) ⊆

(
FP2

)β
F,γ

(X).

Definition 3.15. Let α be a representation of X. We say that α non-uniformly
characterises F with respect to β with parameters represented by γ, if

FPα(X) = (FP2)βF,γ(X).

The notion of ’non-uniform characterisation’ is motivated by the following observation.

Example 3.16. Let α be representation of C([0, 1]). If α non-uniformly characterises
EVAL with respect to ρ with parameters represented by ρ|[0,1] then a function f ∈
C([0, 1]) is polynomial-time computable in the sense of Ko and Friedman if and only if
it is an FP-point of α, i.e. if and only if it has a polynomial-time computable α-name.

16

Definition 3.17 (modulus of continuity). Let X and Y be metric spaces and f : X → Y
be a uniformly continuous function. A function µ : N → N is called a (uniform)
modulus of continuity of f if for all x, y ∈ X we have

dX(x, y) ≤ 2−µ(n) ⇒ dY (f(x), f(y)) ≤ 2−n

We now have introduced the terminology necessary to state our main result.

Theorem 3.18. If for every x ∈ X the function F(x, ·) : A→ Y, a 7→ F(x, a) is contin-
uous, then there exists a canonical representation α of X/ ∼F, uniformly characterising
F̄ with respect to β and parameters represented by γ, which is defined as follows: regular
ψ is an α-name of x̄ ∈ X/ ∼F if for every a ∈ S with σ-name s, ψ̂(s̄#1n) (cf. Definition
2.6) is a ν-name of some y ∈ T satisfying dY (F(x, a), y) ≤ 2−n and ψ̂(1n) = µ(n) where
µ is a modulus of continuity of F(x, ·).

Moreover, the mapping
(X/ ∼F)×A 3 (x̄, a) 7→ F(x, a) ∈ Y

is (α× γ, β) computable in time O(n+ µ(n+ 1)).

Proof. It is easy to see that the relation given is functional and surjective. We now show,
that F̄ is (α×γ, β)-FP2. Given an α×γ name of (x̄, a) ∈ (X/ ∼F)×A and 1n, n ∈ N we
need to compute a ν-name of y ∈ T satisfying dY (F(x, a), y) ≤ 2−n. In order to do so, we
first query the oracle for µ(n+1) and then for an approximation ξ to a of order 2−µ(n+1).
Finally, we query the oracle for an approximation to F(x, ξ) up to error 2−n−1 and return
it. It remains to show that α uniformly characterises F. Let δ be some representation
of X/ ∼F such that F̄ is (δ × γ, β)-computable in second order polynomial time, and let
P (x, `) be a second-order bound on the running time. Given 1n, n ∈ N, some δ-name ψ
of x̄ ∈ X/ ∼F and some γ-name ξ of a ∈ A, the machine computes a ν-name of y ∈ T
satisfying dY (F(x, a), y) ≤ 2−n in time P (n, |ψ × ξ|). Now, since every a ∈ A has a
γ-name with length majorised by some function M(n), the running time of the machine
on input of such a name is bounded by P (n,max{|ψ|,M}). From this it follows, that
P (·,max{|ψ|,M}) is a modulus of continuity for F(x, ·), since in order to compute the
value of F(x, a) up to error 2−n, the machine only reads an approximation to a up to
error P (n,max{|ψ|,M}). Observe that (ψ, n) 7→ P (n,max{|ψ|,M}) is computable in
second-order polynomial time. It is obvious, that given a δ-name of x ∈ X, a σ-name of
s ∈ S and 1n, n ∈ N, we can compute a ν-name of y ∈ T satisfying dY (F(x, s), y) ≤ 2−n
in second-order polynomial time. �

Remark 3.19. (i) Theorem 3.18 is essentially a uniform and somewhat generalised
version of a classic characterisation of polynomial-time computable functions (cf.
[Ko91], Corollary 2.21). A similar fact has also been stated in [KC10] and proven
in [Kaw11].

(ii) One can generalise Theorem 3.18 to the case where A is not necessarily compact,
if one requires the representation of A to be locally efficiently compact (this is for
instance the case for ρ) and if there exists some covering of A by compact sets such
that one can decide in second-order polynomial time to which compact set a given
element of A belongs (this is for instance the case for the covering {[−n, n] | n ∈ N}
of R represented by ρ). Instead of a global modulus of continuity, the characterising

17

representation will then encode a local modulus of continuity for every compact set
of this covering.

(iii) Theorem 3.18 suggests a canonical way of computing a (δ × γ, β)-realiser of F,
where δ is some representation of X. One first computes a (δ, δ/ ∼F)-realiser of the
canonical projection π : X → X/ ∼F and then computes a realiser of the reduction
(δ/ ∼F) � α, where α is the uniformly characterising representation of F̄ according
to Theorem 3.18. Now, the given α-name allows for evaluating F in second-order
polynomial time. More explicitly, given a δ-name ψ of x ∈ X, in order to compute
F(x, ·) we need to be able to compute from ψ a modulus of continuity of F(x, ·) and
evaluations of F(x, ·) on ’rational sample points’.

Theorem 3.20. If α uniformly characterises F then α non-uniformly characterises F.

Proof. Suppose that α uniformly characterises F and let x0 ∈ (FP2)βF,γ(X). We define
a new representation α′ of X as follows: regular ψ is an α′-name of x ∈ X if ψ̂(0) = 1
and ψ̂(1·) is an α-name of x or if x = x0 and ψ̂(0) = 0 and ψ̂(1·) is a δ-name of
x̄ ∈ X/ ∼F, where δ is the uniformly characterising representation of F̄ according to
Theorem 3.18. It is clear that F is (α′ × γ, β)-FP2. By the characterising property of
α it follows that α ≡ α′, so by Proposition 2.11 we have FPα(X) = FPα′(X). We now
show that x0 ∈ FPα′(X). Since F(x0, ·) is (γ, β)-computable in second-order-polynomial
time, F(x0, ·)|S is (σ, β)-computable in polynomial time and the (polynomial) bound on
the running time of some (γ, β)-realiser of F(x0, ·) constitutes a modulus of continuity
of F. This means that some δ-name of x̄0 is in FP, i.e. x0 ∈ FPα′(X) and hence
x0 ∈ FPα(X). It follows that α nonuniformly characterises F. �

18

4. Computing with Discrete Objects
4.1. Algorithms on Polynomials and Rational Functions. In this section we study
the computational complexity of well-known algorithms on polynomials and rational
functions with dyadic rational coefficients, which will serve as a basis for the algorithms
on real functions developed in Sections 5 and 6.

Proposition 4.1. (i) There exists an algorithm, which on input of a νD×νD name of
(a, b) ∈ D× D outputs a νD-name of a+ b ∈ D of size at most max{`(a), `(b)}+ 1
in time O(max{`(a), `(b)}).

(ii) There exists an algorithm, which on input of a νD × νD name of (a, b) ∈ D × D
outputs a νD name of a · b ∈ D of size at most `(a) + `(b) in time O(`(a)`(b)).

(iii) There exists an algorithm, which on input of a νD× νD name of (a, b) ∈ D×D and
1n, n ∈ N, outputs a νD name of some number c ∈ D of size n + max{blog(a)c −
blog(b)c, 0} satisfying |c− a

b | ≤ 2−n in time O((`(a) + n)`(b)).
(iv) There exists an algorithm, which on input of a νD × νD name of (a, b) ∈ D × D

with a
b ∈ D, outputs a νD name of a

b of size max{blog(a)c − blog(b)c, 0} in time
O(`(a)`(b)).

Remark 4.2. The complexity of Multiplication given in Proposition 4.1 is the complexity
underlying the ’naive’ multiplication-algorithm and not the asymptotically best result
known (see e.g. [Fü09] and [SS71]). Similarly, there exist generic division algorithms
whose complexity is majorised by the complexity of multiplication. This will systemat-
ically increase the asymptotic time complexity of virtually all the following algorithms,
since almost all of them rely on multiplication.

We denote by D[x] the ring of univariate polynomials over D and by Dm(x) the ring
of rational functions over D which are bounded on the compact interval [0, 1].

Definition 4.3. (i) A νD[x]-name of P ∈ D[x] is a ν∗D name of the list of coefficients
of P in the monomial basis.

(ii) A νDm(x) name of a rational function P
Q ∈ Dm(x) with minx∈[0,1] |Q(x)| ≥ 1 is a

D[x]× D[x]-name of its numerator and denominator.

Remark 4.4. Requiring the represented function in (ii) to be minorised by 1 is equivalent
to encoding a rational function bounded on [0, 1] by a similar name and a lower bound
(in binary) on its minimum.

As νD[x] and νDm(x) are product notations, the size of a name of a function can be
expressed in terms of the size of the individual components.

Definition 4.5. Let P :=
∑degP
k=0 akx

k ∈ D[x], R = P
Q ∈ Dm(x) be given as νD[x]- and

νDm(x)-names respectively. Define dP := degP , dR := max{dP , dQ},
cP := maxk=0,...,dP

{blog(|ak|+ 1)c}, cR := max{cP , cQ}, bP := maxk=0,...,dP
{`(ak)} and

bR := max{bP , bQ}.

Note that this is an abuse of notation, since bP and bR actually depend on the chosen
representation. For P =

∑dP
k=0 akx

k, the number cP is a bound on the logarithm of the
height H(P) = maxk≤dP

{|ak|} of P and bP ≥ cP . The size `(P) of P is bounded by
dP bP . Analogously, the size of a rational function R is bounded by 2dRbR.

19

Proposition 4.6. There exists an algorithm, which, given a νD[X]-name of P ∈ D[x]
and a νD-name of ξ ∈ D outputs a νD-name of P (ξ) ∈ D in time O((bP +dP `(ξ))`(ξ)dP)
with output size at most bP + dP (`(ξ) + 1).
Proof. Let a0, . . . adP

denote the coefficients of P . Put E0 := adP
and compute the

result iteratively using the Horner schema Ek+1 := ξEk + adP−(k+1). Output EdP
. By

induction one verifies `(Ek) ≤ bP + k(`(ξ) + 1), so in the kth iterative step the algorithm
performs one multiplication of a number of size `(ξ) and a number of size bP +k(`(ξ)+1)
and one addition of a number of size bP and a number of size bP + k(`(ξ) + 2). The
complexity is thus dominated by the complexity of dP multiplications of numbers of size
at most bP + dP (`(ξ) + 1) with numbers of size at most `(ξ). �

Proposition 4.7. There exists an algorithm, which, given a νD[x]-name of P ∈ D[x] and
a νD-name of c ∈ D outputs a νD[x]-name of P (x−c) ∈ D[x] in time O(d2

P bP `(c)+d3
P `(c)2)

and the size of the coefficients of the output polynomial is bounded by bP + dP (`(c) + 1).
Proof. Let a0, . . . adP

denote the coefficients of P . Put T0 := adP
and Tk+1 := (x −

c)Tk + adP−k. One verifies by induction that the size of the coefficients of Tk is bounded
by bP + k(`(c) + 1), so in the kth iterative step we perform k multiplications of numbers
of size `(c) and bP + k(`(c) + 1) and k additions of numbers of size bP + k(`(c) + 2), so
the complexity is bounded by the complexity of dP (dP +1)

2 multiplications of numbers of
size at most bP + dP (`(c) + 1) with numbers of size `(c). �

Proposition 4.8. Evaluation of R := P
Q ∈ Dm(x) in ξ ∈ D is (νDm(x) × νD × ν1, νD)-

computable in time

O
(
dP (bP + dP `(ξ))2 + dQ(bQ + dQ`(ξ))2 + n(bQ + dQ`(ξ))

)
.

In particular, it is computable in time

O
(
dR(bR + dR`(ξ))2 + n(bR + dR`(ξ))

)
Proof. Proposition 4.6 allows us to compute P (ξ) and Q(ξ) in time O(dP (bP +dP (`(ξ)+
1))2 + dQ(bQ + dQ(`(ξ) + 1))2) with output sizes bP + dP (`(ξ) + 1) and bQ + dQ(`(ξ) + 1)
respectively. Now, we apply Proposition 4.1, which yields the desired output in time
O((bP + dP (`(ξ) + 1) + n)(bQ + dQ(`(ξ) + 1))) �

Proposition 4.9. (i) There exists an algorithm, which, given a ν2
D[X]-name of (P,Q) ∈

D[x]2 outputs a νD[x]-name of P + Q ∈ D[x] in time O((dP + dQ)(bP + bQ)). The
output polynomial has degree at most max{dP , dQ} and the size of its coefficients
is bounded by max{bP , bQ}+ 1.

(ii) There exists an algorithm, which, given a ν2
D[X]-name of (P,Q) ∈ D[X]2 outputs a

νD[x]-name of P ·Q ∈ D[x] in time O(dPdQbP bQ). The output polynomial has degree
at most dP +dQ and the size of its coefficients is bounded by bP +bQ+min{dP , dQ}.

Proof. (i) obvious.
(ii) Let P :=

∑dP
k=0 akx

k, Q :=
∑dQ

k=0 bkx
k. Then

P ·Q =
dP +dQ∑
k=0

 ∑
i+j=k

aibj

xk.

20

The inner sum has at most min{dP , dQ} summands, so in order to compute the
kth coefficient, we need to perform at most min{dP , dQ} multiplications of numbers
of size bP with numbers of size bQ and min{dP , dQ} additions. The given bound
on the coefficients then follows from 4.1 and the complexity estimate is O((dP +
dQ) min{dP , dQ}bP bQ) = O(dPdQbP bQ).

�

Proposition 4.10. Given a νD[x] × νD[x] name of (P,Q) ∈ D[x]×D[x] we can compute
a νD[x]-name of P ◦Q in time O(d3

Pd
2
Q(dP bQ+dPdQ+ bP)2). The output-polynomial has

degree at most dPdQ and its coefficients have size dP bQ + dP (dQ + 1) + bP .

Proof. Let P =
∑dP
k=0 akxk. Define C0 := adP

and for 0 ≤ k < dP , Ck+1 := QCk +
adP−(k+1). By induction one verifies that the polynomial Ck has degree at most kdQ
and coefficient size kbQ + kdQ + bP + k, so the total complexity is dominated by dP
multiplications of polynomials of degree smaller than dPdQ and coefficients of size dP bQ+
dP (dQ + 1) + bP . The bound given then follows from Proposition 4.9. �

Proposition 4.11. (i) There exists an algorithm, which, given a νDm(x) × νDm(x)-
name of (R,S) ∈ Dm(x)×Dm(x) outputs a νDm(x)-name of R+S ∈ Dm(x) in time
O(dRdSbRbS). The output function has degree at most dR + dS and the size of its
coefficients is bounded by bR + bS + min{dR, dS}+ 1.

(ii) There exists an algorithm, which, given a νDm(x)×νDm(x)-name of (R,S) ∈ Dm(x)×
Dm(x) outputs a νDm(x)-name of R · S ∈ Dm(x) in time O(dRdSbRbS). The output
function has degree at most dR + dS and the size of its coefficients is bounded by
bR + bS + min{dR, dS}.

Proposition 4.12. Given a νDm(x) × νDm(x) name of (R,S) ∈ Dm(x) × Dm(x) with
S([0, 1]) ⊆ [0, 1] we can compute a νDm(x)-name of R ◦S in time O(d3

Rd
2
S(dRbS +dRdS +

bR)2). The output-function has degree at most 2dRdS and its coefficients have size
2dP bQ + 2dP (dQ + 1) + 2bP .

Proof. Let R := P/Q with P :=
∑dP
k=0 akx

k, Q :=
∑dQ

k=0 bkx
k. We compute P (S)

and Q(S) using a schema like in 4.10. Let C0 := adP
and Ck+1 := SCk + adP−(k+1).

By induction one verifies that Ck has degree at most kdS and the size of its coeffi-
cients is bounded by kbS + kdS + bR + k, so the total complexity of this computation is
O(d2

Rd
2
SbS(dRbS + dRdS + bR)) by 4.11. Similarly, we obtain Q(S) in the same running

time. Now, we may output P (S)/Q(S) (note that Q(S) ≥ 1 throughout [0, 1]), which
can be obtained according to 4.11 in time O(d2

Rd
2
S(dRbS + dRdS + bR)2). The output

size follows analogously. �

Proposition 4.13. There exists an algorithm, which, given a νD[x] name of some polyno-
mial P ∈ D[x] outputs a νD[x]-name of its derivative P ′(x) ∈ D[x] in time O(dP bP log dP).
The output polynomial has degree dP − 1 and coefficient size at most bP + log dP . More
generally, given a νD[x] × ν1 of P ∈ D[x] and m ∈ N we can compute a νD[x]-name of
P (m) in time O(dPm2(log dP)2 +mdP log dP bP)

Proof. We perform m− 1 multiplications of numbers of size at most log dP , which takes
time O(m2(log dP)2). Then we multiply a number of size m log dP with the coefficients,

21

which takes time O(m log dP bP). Since there are O(dP) such multiplications to perform
the total complexity is O(dPm2(log dP)2 +mdP log dP bP). �

Theorem 4.14. (i) There exists an algorithm, which, given a νD[x]-name of P ∈ D[x]
and 1n, n ∈ N outputs a νD[x]-name of some polynomial Q ∈ D[x] whose coefficients
approximate the coefficients of an antiderivative of P up to error 2−n in time
O(dP (bP + n) log dP).

(ii) There exists an algorithm, which, given a νD[x]-name of P ∈ D[x], 1m, m ∈ N and
1n, n ∈ N outputs a νD[x]-name of some polynomial Q ∈ D[x] whose coefficients
approximate the coefficients of an m-fold anti-derivative of P , i.e. a polynomial
R ∈ D[x] satisfying R(m) = P , up to error 2−n in time O(dPm2(log(dP + m))2 +
dP (bP + n)m log(dP +m)).

(iii) There exists an algorithm, which, given a νD[x]-name of P ∈ D[x], a ν2
D[x]-name of

(a, b) ∈ D2 ∩ [0, 1] and 1n, n ∈ N outputs a νD name of some c ∈ D satisfying

|c−
∫ b

a
P (x)dx| ≤ 2−n

in time
O(dP (bP + n+ dP (`(a) + `(b)))(`(a) + `(b)) + dP log dP (bP + log dP + n)),

with output size bounded by bP + n+ dP (max{`(a), `(b)}+ 1) + 1.

Proof. (i) Let a0, . . . , ad denote the coefficients of P . An antiderivative of P is given
by

d+1∑
k=1

ak−1
k

xk.

The coefficients of this polynomial can be approximated up to error 2−n following
Proposition 4.1 in time O(dP (bP + n) log dP).

(ii) Picking up the notation in (i), an m-fold anti-derivative is given by
d+m∑
k=m

ak−m
k(k − 1) · · · · · (k −m+ 1)x

k.

Its coefficients can be approximated up to error 2−n in time O(dPm2(log(dP +
m))2 + dP (bP + n)m log(dP +m)).

(iii) Using item (i) we compute an approximate antiderivative Q of P up to error 2−n−1

in time O(dP log dP (bP + log dP + n)). Note that for all x ∈ [0, 1] we have

|Q(x)−
∫ x

0
P (x)dx| ≤ 2−n−1.

So Q(b) − Q(a) approximates
∫ b
a P (x)dx up to error 2−n. We can compute this

quantity using 4.6 and 4.1 in time O(dP (bP + n+ dP (`(a) + `(b)))(`(a) + `(b)) and
the result has size bP + n+ dP (max{`(a), `(b)}+ 1) + 1.

�

Proposition 4.15. Given a νD[X] name of P ∈ D[x] we can compute a ν1-name of the
logarithm of some Lipschitz-constant of P in time O(dP cP) with output size 2 log(dP +
1) + cP

22

Proof. A Lipschitz-constant of P is given by maxx∈[0,1] |P ′(x)|, which is majorised by
dP (dP +1)

2 2cP , so its logarithm is majorised by 2 log(dP+1)+cP , where cP can be computed
in time O(dP cP) by reading the coefficients of P and determining the maximum length.

�

Proposition 4.16. Given a νDm(x)-name of R := P
Q ∈ Dm(x) we can compute a ν1

name of the logarithm of some Lipschitz-constant of R in time O(dRcR) with output size
3 log(dR + 1) + 2cR + 1.

Proof. A Lipschitz-constant of R is given by

max
x∈[0,1]

∣∣∣∣P (x)Q′(x)− P ′(x)Q(x)
Q2(x)

∣∣∣∣ .
Its logarithm is majorised by 2cR + 3 log(dR + 1) + 1, where cR can be computed in time
O(dRcR). �

4.2. Root Finding and Maximisation. In the following we develop the techniques
necessary for finding the maximum of a function. The algorithm will rely on finding and
comparing the local extrema of an approximating polynomial, thus reducing the problem
to the problem of root finding. Our root finding algorithm will be based on a root isolating
algorithm found in [BPR08], which there is credited to [Vin36] and [Usp48] - in fact, our
algorithm is merely a variant of Algorithm 10.5 in [BPR08], slightly adapted to better
match our framework (in particular, it will be formulated over the domain D rather than
over Z). The root isolating algorithm we are going to use works only for polynomials
which do not have multiple roots, so given a polynomial we will first need to extract its
separable part, which can be done efficiently using signed subresultant sequences. This is
carried out in detail for the ring Z in [BPR08] and the results immediately carry over to
the ring D. It should be re-emphasised that this whole section follows the presentation
in [BPR08] very closely and all adaptations made in order to fit our framework are very
minor.

Definition 4.17. Let P ∈ C[x] be some polynomial. The separable part P̄ of P is a
separable polynomial whose complex roots coincide with the roots of P in C.

Remark 4.18. Actually, ’the’ separable part is only defined up to a multiplicative con-
stant.

Proposition 4.19. There exists an algorithm, which on input P ∈ D[x] outputs the
separable part of P in time O(d3

P (b+ log dP)). The coefficients of the output polynomial
have size at most dP + bp + log(dP + 1).

Proof. As mentioned before, this follows from the proof of the correctness of Algorithm
10.1 in [BPR08]. �

We may now proceed to developing an algorithm, which on input of a separable
polynomial P outputs a list isolating the roots of P . It is based on Descartes’ Rule of
Signs. Let Var(P) denote the number of sign variations in the list of the polynomial’s
coefficients, e.g. Var(x2 − x + 1) = 2 and Var(x2 − x − 1) = 1. Let pos(P) denote the
number of positive real roots of P , counted with multiplicity.

23

Theorem 4.20 (Descartes’ Rule of Signs). Let P be a polynomial in R[x]. Then
Var(P) ≥ pos(P) andVar(P)− pos(P) is even.

Proof. Without loss of generality we may assume that P (x) = xd + adx
d−1 + · · · + a0

with a0 6= 0. Observe that if we change the sign of a coefficient ai with 1 ≤ i ≤ d − 1,
then the number of sign variations changes by either zero or two. Since the sign of the
leading coefficient is one, the number of sign variations is odd if and only if a0 < 0. The
sign of P at zero is the sign of a0 and the sign of P at +∞ is one. From this it follows
immediately, that if P has only simple positive roots, the number of positive roots is
odd if and only if a0 < 0, i.e. the number of sign variations and the number of positive
roots coincide modulo two. Now, if P has multiple positive roots, P is obtained from a
polynomial with simple positive roots by successive multiplication of terms of the form
(x − a), where a is positive. Observe that each of these multiplications alters the sign
of the constant coefficient and thus alters the number of sign variations modulo two. It
remains to show that the number of positive roots is always smaller than the number of
sign variations. For this observe, that multiplying a polynomial with (x−a) for positive
a will add at least one sign variation to the coefficients. �

We also have two converse propositions.

Proposition 4.21. Let P be a monic polynomial in R[x]. If all the roots of P have
non-positive real part, then Var(P) = 0.

Proof. Write

P = (x− a0) · · · · · (x− as) · (x2 + α0x+ β0) · · · · · (x2 + αtx+ βt),

with real numbers ai, αi, βi ∈ R such that

x2 + αix+ βi = (x− zi)(x− z̄i)

for some complex number zi ∈ C. Observe, that the coefficients of the polynomials
(x− ai) and (x2 + αtx+ βt) are non-negative and that the product of two polynomials
with non-negative coefficients has non-negative coefficients. �

Definition 4.22. Let A ∈ R[x] be a polynomial with non-negative coefficients, A =
adx

d + · · ·+ a0. A is called normal if
(1) ad > 0
(2) a2

k ≥ ak−1ak+1 for all 1 ≤ k ≤ d− 1
(3) If aj > 0 and ah > 0 then ai > 0 for all i ∈ {j . . . h}.

Proposition 4.23. Let P ∈ R[x] be a monic polynomial. If all the roots of P belong to
the cone B in the complex plane defined by

B := {a+ ib | b ≤ −
√

3a}

then P is normal.

Proof. See [BPR08], Proposition 2.40. �

Proposition 4.24. If A ∈ R[x] is normal and a > 0 then Var((x− a)A) = 1.

24

Proof. We may suppose without loss of generality that 0 is not a root of A. It then follows
from condition (iii) of Definition 4.22 that all coefficients of A are positive. Condition
(ii) can then be written as

ad
ad−1

≤ ad−1
ad−2

≤ . . .

or equivalently
ad−1
ad
≥ ad−2
ad−1

≥ . . .

It follows that

A(x− a) = adx
d+1 + ad

(
ad−1
ad
− x

)
xd + · · ·+ a1

(
a0
a1
− x

)
x− a0x

has exactly one sign variation. �

Given a polynomial P ∈ R[x] we define
Recp(P (x)) := xpP (1/x)

The non-zero roots of RecdP
P are of the form 1/a, where a is a root of P

Coλ(P (x)) := P (λx)
The roots of Coλ P are of the form a/λ, where a is a root of P .

Tc(P (x)) := P (x− c).
The roots of Tc P are of the form a+ c, where a is a root of P .

Descartes’ rule of signs (Theorem 4.20) yields a sufficient criterion for determining
whether a polynomial has a root in a given interval.

Theorem 4.25. Let P ∈ R[x] and let P̂ := T−1 RecdP
Cor−l T−l. If Var(P̂) = 0, then

P has no root in (l, r), if Var(P̂) = 1, then P has exactly one simple root in (l, r).

Proof. The roots of P̂ in (0,∞) correspond to the roots of P in (l, r). By Theorem 4.20,
Var(P̂) ≥ pos(P̂), so if Var(P̂) = 0, then P̂ has no roots in (0,∞), i.e. P has no roots
in (l, r) and if Var(P̂) = 1, then pos(P̂) = 1, so P̂ has exactly one simple root in (0,∞),
i.e. P has exactly one simple root in (l, r). �

Let C(l, r) denote the open disk in C with [l, r] as diameter. Let C1(l, r) denote the
open disk circumscribing the equilateral triangle based in [l, r] and C2(l, r) be the open
disk symmetric to C1(l, r) with respect to the x-axis.

Theorem 4.26 (’Theorem of Three Circles’). Let P ∈ R[x] and let
P̂ := T−1 RecdP

Cor−l T−l P

If P has no root in C(l, r) then Var(P̂) = 0. If P has exactly one simple root in
C1(l, r) ∪ C2(l, r) then Var(P̂) = 1.

Proof. The roots of P in the complement of C(l, r) correspond to the roots of P̂ in the
half-plane {x ∈ C|Rex ≤ 0}. Hence, if P has no roots in C(l, r) then by Proposition
4.21 we have Var(P̂) = 0.

The roots of P in the complement of C1(l, r)∪C2(l, r) correspond to the roots of P̂ in
the cone B = {a+ib | b ≤ −

√
3a}. If P has exactly one simple root α ∈ C1(l, r)∪C2(l, r),

25

then α is a real number in (l, r) and P̂ has exactly one real root α′ ∈ (0,∞) and all its
other roots lie in B. According to Proposition 4.23, A(x) := P̂ (x)/(x − α′) is normal,
so Var(P̂) = Var(A(x− α′)) = 1 by 4.24. �

Proposition 4.27 (Cauchy Bound). Let P ∈ R[x], P = adx
d + · · ·+ a0. Let

C(P) :=
d∑
i=0

∣∣∣∣ aiad
∣∣∣∣ .

Then the absolute value of any real root of P is smaller than C(P).
Proposition 4.28. Given a νD[x] × νD-name of P ∈ D[x] and c ∈ D we can compute a
νD[x]-name of Coc P in time O(d2

P `(c)(bP + `(c))). The output polynomial’s coefficients
are bounded by bP + dP `(c).
Proof. Let ck := ck. Then `(ck) = k`(c). We compute for k = 1, . . . , dP , âk := ckak
and ck+1 := kck and output the list (â0, . . . , âdP

). Visibly, âk has size bP + k`(c).
The complexity of computing c1, . . . , cdP

is O(d2
P `(c)) and the complexity of computing

â1, . . . , given c1, . . . , cdP
is O(d2

P bP `(c)). �

A binary tree T whose nodes are labelled by open intervals with dyadic rational
endpoints such that for every node labelled by (l, r), its children are labelled by (l,m)
and (m, r) respectively with m = r−l

2 is called an isolating tree for a polynomial
P ∈ R[x] if

• The interval labelling the root of the tree contains all the roots of P in R.
• If the interval (l, r) labels a leaf of the tree then it contains either no root or

exactly one (possibly multiple) root of P .
• If the interval (l, r) labels a node of the tree which is not a leaf then either P has

at least two roots in C(l, r) or the interval (l, r) contains exactly one root of P
and C1(l, r) ∪ C2(l, r) contains a pair of conjugate roots.

If T is an isolating tree for P , a leaf which is labelled by an interval containing a root of
P will be referred to as a leaf of type one and a leaf which is labelled by an interval
containing no root of P will be called a leaf of type zero.
Proposition 4.29. Let T be an isolating tree for a polynomial P . Let U denote the
number of nodes of T . Let T ′ be a subtree of T obtained by pruning certain leaves from
T : we prune every leaf that has a non-leaf for a sibling and for every pair of leaves we
prune exactly one, where a leaf of type zero is pruned preferably to a leaf of type one.
Let L′ denote the set of T ′’s leaves and for a leaf u ∈ L denote by hu its depth. Then

U ≤ 2
∑
u∈L′

hu ≤ (2bP + 3 log dP + 3)dP

We are now able to formulate the root isolation algorithm. The main idea is to use
Theorems 4.26 and 4.25 to decide whether a given separable polynomial P ∈ D[x] has
a real root in a given interval with dyadic rational endpoints (r, l). This leads to the
task of computing P̂ := T−1 RecdP

Cor−l T−l P ∈ D[x]. If we have already computed this
transform on the interval (l, r), we can recursively compute the transform on subintervals.
For dyadic rational numbers r, l ∈ D, let P [l, r] := Cor−l T−l P . If m = r−l

2 , we have
P [l,m] = Co1/2 P [l, r]

26

and
P [m, r] = T−1 P [l,m]

Lemma 4.30. (i) Computing T−1 takes time O(d2
P (bP + dP)) and has output size

O(bP + dP).
(ii) Computing Co1/2 takes time O(dP (bP + dP)) and has output size O(bP + dP).

Theorem 4.31. There exists an algorithm which, given a νD[x]-name of some non-zero
polynomial P ∈ D[x] returns a (νD × νD × νD[x])∗-name of a list isolating the zeroes of
P in R with corresponding polynomials P̄ [l, r], where P̄ is the separable part of P . Its
complexity is bounded by O(d5

P (bP +log dP)2). The resulting list has at most dP elements
whose size is bounded by bP + log(dP + 1) + dP (4bP + 6 log dP + 6).

Proof. We first compute the logarithm of the Cauchy-bound B of P . Now, compute the
separable part of P and denote it by Q. Let L := {((2− logB, 2logB), Q[2− logB, 2logB])},
let R be the empty list. While L is nonempty, remove an element ((l, r), Q[l, r]) from L
and compute

Q̂ := T−1 RecdP
Q[l, r] ∈ D[x].

If Var(Q̂) = 1, add ((l, r), Q[l, r]) to R. If Var(Q̂) > 1, let m := r−l
2 , compute

Q[l,m] = Co1/2Q[l, r]

and
Q[m, r] = T−1Q[l,m]

and add ((l,m), Q[l,m]) and ((m, r), Q[m, r]) to L. If Q(m) = 0, add ({m}, Q[l, r]) to
R.

The fact that this algorithm terminates and its correctness follow immediately from
Theorem 4.26 and Theorem 4.25. Note that the algorithm produces an isolating tree
for P , so by 4.29 the algorithm produces at most O(dP (bP + log dP)) intervals. By
the above lemma, the coefficient size of the polynomial occurring in the computa-
tion is in O(d2

P (bP + log dP)), so at each algorithmic step the computation takes time
O(d4

P (bP + log dP)), which yields a total complexity of O(d5
P (bP + log dP)2). As for the

size, C(P) ≤ (dP +1)2bP and the height of the tree produced by the algorithm is bounded
by
∑
u∈L′ hu ≤ dP (2bP + 3 log dP + 3). At each step, the endpoints of the intervals are

added and divided by 2, so their size increases by at most two - each interval is treated
at most dP (2bP + 3 log dP + 3) times, so the size of the endpoints can be estimated by
bP + log(dP + 1) + dP (4bP + 6 log dP + 6). �

Theorem 4.32. There exists an algorithm which, given a νD[x] × ν1-name of some
nonzero polynomial P ∈ D[x] and 1n, n ∈ N returns a ν∗D-name of a list of dyadic
approximations to the roots of P in R up to error 2−n, which has running time

O(d5
P (bP + log dP)2 + nd4

P (bP + log dP + n) + nd5
P (bP + log dP)).

The output list has at most dP elements and the endpoints of the intervals have size at
most

O(dP (bP + log dP) + n)

27

Proof. Find a root isolating list L for P and the polynomials P̄ [l, r] according to Theorem
4.31. Then for every element ((l, r), P [l, r]) in L, while r − l > 2−n compute

P [l,m] := Co1/2 P [l, r]
P [m, r] := T−1 P [l,m]

and
P̂ := T−1 RecdP

P [l,m].
If we have Var(P̂) = 1, we replace ((l, r), P [l, r]) by ((l,m), P [l,m]), otherwise we replace
it by ((m, r), P [m, r]). The polynomial P̄ has coefficient size dP + bP + log(dP + 1), so
by Theorem 4.31, the computation of the isolating list will take time at most O(d5

P (bP +
log dP)2), the polynomials in the output list have coefficient size O(d2

P (bP + log dP))
and the endpoints of the intervals have size O(dP (bP + log dP)). Since the endpoints of
the intervals are contained in the compact interval [−2C(P), 2C(P)] it follows, that the
algorithm terminates after at most O(dP (bP+log dP+n)) steps, taking O(bP+log dP+n)
steps for the refinement of each interval in the root isolation. It then follows from 4.30
that the polynomials occurring in the computation have coefficient size

O(d2
P (bP + log dP) + dP (bP + log dP + n)) = O(d2

P (bP + log dP) + dPn),
so at each step the computation takes time

O(d2
P (d2

P (bP + log dP) + dPn+ dP) = O(d4
P (bP + log dP) + d3

Pn).
Since there are O(dP (bP + log dP + n)) steps to perform, the total complexity of the
operations on the polynomials is given by

O(d5
P (bP + log dP)2 + nd4

P (bP + log dP + n) + nd5
P (bP + log dP)).

Similarly, the size of the endpoints of the intervals increases by at most two in every
algorithmic step, and for each interval there are O(bP + log dP + n) steps performed, so
the size of the endpoints of the output intervals is at most O(dP (bP + log dP) + n). The
total computational complexity of the operations on the intervals is thus bounded by
O(dP (bP + log dP)2 + n(dP (bP + log dP) + n)). �

Theorem 4.33. Given a νD[x]×νD×νD-name of some polynomial P ∈ D[x] and a, b ∈ D,
we can compute a νD-name of a dyadic number approximating maxx∈[a,b] P (x) up to error
2−n in time

O(d5
P (bP + dP)(bP + dP + n) + d4

P (bP + dP + n)2 + d2
PM

2),
where M is a bound on the bitsize of a and b. The output has size at most

O(dPM + dPn+ d2
P (bP + dP)).

Proof. First compute the the derivative of P and denote its separable part by Q. Then
approximate its zeroes {x1, . . . , xk} in [a, b] by dyadic numbers {ξ1, . . . , ξk} up to er-
ror 2−n−logC where C is the Lipschitz-constant found in 4.16. We then have the in-
equality |P (xi)− P (ξi)| ≤ 2−n, so max{P (a), P (ξ1), . . . , P (ξk), P (b)} approximates the
maximum of P on [a, b] up to error 2−n. Computing the derivative can be done in
time O(dP bP log dP) with output size bP + log dP (cf. 4.13), computing the separa-
ble part takes time O(d3

P (bP + log dP)) and the resulting polynomial Q has degree at
most dP and coefficient size dP + bP + log dP + log(dP + 1) according to 4.19. For the

28

bounds found in 4.16, we may use the estimate cP ≤ bP , so computing the logarithm
of some Lipschitz constant takes time O(dP (dP + bP + log dP)) and has output size
3 log(dP + 1) + dP + bP + log dP . So Proposition 4.32 yields the desired approximation
to the roots of Q in R in time O(d4

P (bP + dP +n)2 + d5
P (bP + dP)(bP + dP +n)), and the

endpoints of the intervals have size at most O(dP (bP + dP) + n). To obtain the roots in
[a, b], we drop the intervals whose right endpoint is smaller than a and those whose left
endpoint is bigger than b. If there is an interval [c, d] such that a ∈ [c, d], we evaluate
Q in a and in d to decide whether the root of Q in [c, d] is contained in (a, d), in which
case we add the interval (a, d) to the list (note that since Q is separable, it will change
its sign in the root). We do the same for b. According to Proposition 4.6, this step takes
time O(d2

P (dP (bP + dP) + M + n)2). Finally, we perform at most dP evaluations of Q
in numbers of size O(dP (bP + dP) + n), and since Q has coefficient size O(dP + bP),
each of these evaluations is computable in time O(dP (dP + bP + dP (dP (bP + dP) +n))2)
according to Proposition 4.6, which simplifies to O(d5

P (bP +dP)2 +d3
Pn

2). So the overall
complexity is bounded by

O(d5
P (bP + dP)(bP + dP + n) + d4

P (bP + dP + n)2 + d2
PM

2).
The output size is given by Proposition 4.6 as O(dPM + dPn+ d2

P (bP + dP)). �

Theorem 4.34. Given a νDm(x) × νD × νD-name of some rational function R ∈ Dm(x)
and a, b ∈ D, we can compute a νD-name of a dyadic approximation to maxx∈[a,b]R(x)
up to error 2−n in time

O(d5
P (bP + dP)(bP + dP + n) + d4

P (bP + dP + n)2 + d2
PM

2).
Proof. Let R := P/Q. We first compute the separable part of P ′Q − Q′P and then
proceed as in 4.33, replacing in the last step polynomial evaluation by rational function
evaluation (4.8). The coefficients of P ′Q−Q′P are bounded by 2bR+2 log dR+dR+2 ∈
O(bR + dR) according to 4.9 and the degree of the polynomial is at most 2dR ∈ O(dR),
so we obtain the same bound for the overall complexity as in 4.33. �

4.3. Algorithms on Piecewise Polynomials and Rational Functions. Let PP and
PQ denote the subsets of C[0, 1] consisting of piecewise polynomial and rational func-
tions bounded on [0, 1] with dyadic rational breakpoints and dyadic rational coefficients
respectively. In this section we introduce notations νpp and νpq of PP and PQ and gen-
eralise the algorithms on polynomials and rational functions developed so far to the
piecewise case. These representations will induce Cauchy representations of the space of
continuous functions, which will be studied in Section 5. Approximations by piecewise
polynomial functions are used for the Finite Element Method in numerical analysis of
partial differential equations (often with further conditions to the smoothness of the
approximating functions) and are supported by standard computer algebra libraries.
Definition 4.35. (i) A νpp-name of f ∈ PP is a ν∗D × ν∗D[x]-name of a tuple of dyadic

rational points ~a, 0 = a0 < a1 < · · · < aN = 1 and a tuple of polynomials ~P in
D[x], |~P | = |~a| − 1 such that f = Pi on [ai, ai+1].

(ii) A νpq-name of f ∈ PQ is a ν∗D × ν∗Dm(x)-name of a tuple of dyadic rational points
~a, 0 = a0 < a1 < · · · < aN = 1 and a tuple of rational functions ~R in Dm(x),
|~R| = |~a| − 1 such that f = Ri on [ai, ai+1].

29

Definition 4.36. If f is in PP or PQ we write Bf for the number of breakpoints and pf
for a bound on their bit-size and define the numbers df , cf , bf in the obvious manner.

The size `(f) of a piecewise polynomial function f is bounded by Bfdfbf +Bfpf and
the size of a piecewise rational function g is bounded by 2Bgdgbg +Bgpg.

Theorem 4.37. (i) Addition,
PP× PP 3 (f, g) 7→ f + g ∈ PP

is (νpp × νpp, νpp)-computable in time
O((Bf +Bg)((df + dg)(bf + bg) + pf + pg)).

The resulting function has at most Bf + Bg breakpoints of size max{pf , pg}, its
degree is bounded by max{df , dg} and its coefficients are bounded by max{bf , bg}+1.

(ii) Multiplication,
PP× PP 3 (f, g) 7→ f · g ∈ PP

is (νpp × νpp, νpp)-computable in time

O((Bf +Bg)((df + dg)2(bf + bg)2 + pf + pg).
The resulting function has at most Bf + Bg breakpoints of size max{pf , pg}, its
degree is bounded by df+dg and its coefficients are bounded by bf+bg+min{df , dg}.

Proof. (i) We arrange the breakpoints of f and g in a common sorted list, which
takes time O(max{Bf , Bg}max{pf , pg}) and on each interval defined by this new
partition of [0, 1] we add the polynomials defined on said interval using 4.9.

(ii) We proceed as in (i), replacing addition by multiplication.
�

Proposition 4.38. Given a νpp × νpp × ν1-name of (f, g) ∈ PP2 and 1n, n ∈ N with
g([0, 1]) ⊆ [0, 1] we can compute a νpp-name of f̂ ∈ PP uniformly approximating f ◦ g up
to error 2−n in time

O
(
BgBfd

5
g(bg + pf + log dg)2 +BgBfNd

4
g(bg + pf + log dg +N)

)
+O

(
BgBfNd

5
g(bg + pf + log dg) +BgBfd

3
fd

3
g(dfbg + dfdg + bf)2

)
,

where N := n+ cg + cf + log df + log dg.

Proof. We first refine the partition of [0, 1] defined by the breakpoints of g, such that
the interval is divided into subintervals on which f ◦ g is a polynomial and then apply
the polynomial composition algorithm. Let ~b denote the breakpoints of f and ~a the
breakpoints of g. For every 1 ≤ k ≤ BP − 1 we compute g(ak) and g(ak+1) and find i1
and i2 such that bi1 ≤ g(ak) ≤ g(ak+1) ≤ bi2 . We now need to find the preimages of bj for
i1 ≤ j ≤ i2 under g and add them to the breakpoints of g. In order to do so we need to
solve the equation g(x) = bj , where x ∈ [ak, ak+1]. We can do this approximatively up to
error 2−µ(n), where µ(n) is a modulus of continuity of f ◦g using 4.32. This yields points
lij , r

i
j such that for every x ∈ [ak, ak+1] the equation g(x) = bj implies that there exists

an i such that x ∈ [lij , rij]. We add these points to the breakpoints of g. Now, for every
pair of successive breakpoints a, b with |a − b| > 2−µ(n) we can determine an interval

30

[bj1 , bj2] such that g([a, b]) ⊆ [bj1 , bj2], so we can compute f ◦g on the interval [a, b] using
4.10. If the pair of successive breakpoints has distance smaller than 2−µ(n), then for all
x ∈ [a, b] we have |f(g(x))− f(g(a))| ≤ 2−n, so the linear function interpolating f ◦ g in
a and b approximates f ◦ g on [a, b] up to error 2−n. A modulus of continuity µ of f ◦ g
is given by µ(n) := n+Lf +Lg, where Lf and Lg are logarithms of Lipschitz-constants
of f and g respectively, which can be found in time O(Bfdfcf + Bgdgcg) with output
size cf + log df and cg + log dg according to 4.43. The approximation of the preimages
can be done in time

O
(
Bf
(
d5
g(bg + pf + log dg)2 +Nd4

g(bg + pf + log dg +N) +Nd5
g(bg + pf + log dg)

))
according to 4.32, where N := n+cg+cf +log df +log dg. Since on every interval defined
by the breakpoints of g we introduce at most 2Bfdg new breakpoints, the ’polynomial
composition step’ on one interval takes time

O(Bfd3
fd

3
g(dfbg + dfdg + bf)2).

Since these steps are performed Bg times, the total complexity is given as

O
(
BgBfd

5
g(bg + pf + log dg)2 +BgBfNd

4
g(bg + pf + log dg +N)

)
+O

(
BgBfNd

5
g(bg + pf + log dg) +BgBfd

3
fd

3
g(dfbg + dfdg + bf)2

)
.

�

Proposition 4.39. Given a νpq × νpq × ν1-name of (f, g) ∈ PQ2 and 1n, n ∈ N with
g([0, 1]) ⊆ [0, 1] we can compute a νpq-name of f̂ ∈ PQ uniformly approximating f ◦ g
up to error 2−n in time

O
(
BgBfd

5
g(bg + pf + log dg)2 +BgBfNd

4
g(bg + pf + log dg +N)

)
+O

(
BgBfNd

5
g(bg + pf + log dg) +BgBfd

3
fd

3
g(dfbg + dfdg + bf)2

)
where N := n+ cg + cf + log df + log dg.

Proof. The proof is almost exactly identical as in the case of piecewise polynomial func-
tions. The only subtlety we have to be aware of, is that we cannot compute the linear
interpolating functions in the same way as in the above proof, since we cannot evaluate
rational functions exactly. Instead, we represent a linear function of the type

P (a)
Q(a) + x− a

b− a

(
P (b)
Q(b) −

P (a)
Q(a)

)
as a rational function with denominator (b− a)Q(a)Q(b) and numerator

(P (b)Q(a)− P (a)Q(b))x− aP (b)Q(a) + bP (a)Q(b).

Note that in order to compute the preimages of the breakpoints of f we have to solve
equations of the form P (x)/Q(x) = b, which can be written as P (x) − bQ(x) = 0 and
thus lead to polynomial equations of the same magnitude as in Proposition 4.38. �

Theorem 4.40. (i) There exists an algorithm, which, given a νpq×νpq-name of (f, g) ∈ PQ2

outputs a νpfrac-name of f+g in time O((Bf +Bg)((df + dg)2(bf + bg)2 + pf + pg)).

31

(ii) There exists an algorithm, which, given a νpq×νpq-name of (f, g) ∈ PQ×PQ outputs
a νpfrac-name of f · g ∈ PQ in time O((Bf +Bg)((df + dg)2(bf + bg)2 + pf + pg)).

Theorem 4.41. Evaluation of f in ξ ∈ D is (νpp × νD, νD)-computable in time

O(Bf (`(ξ) + pf) + df (bf + df `(ξ))`(ξ))

with output size at most bf + df (`(ξ) + 1) and (νpq × νD × ν1, νD)-computable in time

O (Bf (`(ξ) + pf) + df (bf + df `(ξ))`(ξ) + n(bf + df `(ξ))) .

Proof. Let ~a denote the breakpoints of f . We first determine 0 < k < |~a| such that
ξ ∈ [ak, ak+1] and then apply Propositions 4.6 or 4.8 respectively. �

Theorem 4.42. (i) Given a νpp × νD × νD × ν1-name of f ∈ PP and a, b ∈ D,
`(a), `(b) ≤ M and n ∈ N we can compute a νD-name of an approximation to
maxx∈[a,b] f(x) up to error 2−n in time

O(Bfd5
f (bf + df)(bf + df + n) +Bfd

4
f (bf + df + n)2 +Bfd

2
f (M + pf)2).

(ii) Given a νpp×νD×νD×ν1-name of f ∈ PQ and a, b ∈ D, `(a), `(b) ≤M and n ∈ N
we can compute a νD-name of an approximation to maxx∈[a,b] f(x) up to error 2−n
in time

O(Bfd5
f (bf + df)(bf + df + n) +Bfd

4
f (bf + df + n)2 +Bfd

2
f (M + pf)2).

Proof. We first determine j ≤ k such that a ∈ [aj , aj+1] and b ∈ [ak, ak+1]. This takes
time O(Bf (pf +M)) for both representations. We may assume without loss of generality
that j < k (otherwise we apply 4.33, or 4.34 right away). We then compute the numbers
mj := max{f(x)|x ∈ [a, aj+1]}, mk := max{f(x)|x ∈ [ak, b]} and for i = j+1, . . . k−1 the
numbers mi := max{f(x)|x ∈ [ai, ai+] up to precision 2−n using 4.33 or 4.34 respectively.
Then the maximum of f on [a, b] is given by max{mj , . . . ,mk}. This computation takes
time

O(Bfd5
f (bf + df)(bf + df + n) +Bfd

4
f (bf + df + n)2 +Bfd

2
f (M + pf)2)

which clearly dominates the overall complexity. �

Theorem 4.43. (i) Given a νpp-name of f ∈ PP we can compute a ν1-name of the
logarithm of some Lipschitz-constant of f in time O(Bfdfcf) with output-size
2 log(df+1)+cf . Furthermore, we can compute a ν1-name of the logarithm of some
number majorising f on [0, 1] in time O(Bfdfcf) with output-size cf + log(df).

(ii) Given a νpq-name of f ∈ PQ we can compute a ν1 name of the logarithm of some
Lipschitz-constant of f in time O(Bfdfcf) with output size 3 log(df + 1) + 2cf +
1. Furthermore, we can compute a ν1-name of the logarithm of some number
majorising f on [0, 1] in time O(Bfdfcf) with output-size cf + log(df).

Theorem 4.44. Given a νpp × νD × νD × ν1-name of f ∈ PP and a, b ∈ D, a < b, and
n ∈ N we can compute a νD name of an approximation to

∫ b
a f(x)dx up to error 2−n in

time

O(Bfdf (bf + n+ df (`(a) + `(b) + pf))(`(a) + `(b) + pf) +Bfdf log df (bf + log df + n)).

32

Proof. We may suppose that there is at least one breakpoint between a and b. Let
0 = g1 < · · · < gm = 1 denote the breakpoints of f . First we need to determine k and l
such that gk ≤ a ≤ gk+1 and gl ≤ b ≤ gl+1. This can be done in time O(Bf (`(a) + pf)).
Then we compute ∫ gk+1

a
f(x)dx+ · · ·+

∫ b

gl

f(x)dx

according to 4.14, which can be done in time
O(Bfdf (bf + n+ df (`(a) + `(b) + pf))(`(a) + `(b) + pf) +Bfdf log df (bf + log df + n)).

�

33

5. Representations of The Space of Continuous Functions
5.1. Parametrised Complexity of Functionals on C([0, 1]). Let C([0, 1]) denote
the space of continuous functions on the compact interval [0, 1]. Using the framework
introduced in Section 3 we can now state the computational problems mentioned in
the introduction more formally. Subject of this section is to study the computational
complexity of
- The evaluation functional on C([0, 1]) with parameters in [0, 1] represented by the

co-restriction of ρc to [0, 1] and with image space R represented by ρ.
EVAL : C([0, 1])× [0, 1]→ R, (f, x) 7→ f(x)

- The maximisation functional on C([0, 1]) with parameters in [0, 1]2 represented by the
co-restriction of ρc × ρc to [0, 1]× [0, 1] and with image space R represented by ρ.
MAX : C([0, 1])× [0, 1]2 → R, (f, a, b) 7→ max{f(x) | min{a, b} ≤ x ≤ max{a, b}}

- The integration functional on C([0, 1]) with parameters in [0, 1]2, represented by the
co-restriction of ρc × ρc to [0, 1]× [0, 1] and with image space R represented by ρ.

INT : ;C([0, 1])× [0, 1]2 → R, (f, a, b) 7→
∫ b

a
f(x)dx.

We will simply write ρc and ρc × ρc for ρc|[0,1] and (ρc × ρc)|[0,1] respectively, as the
co-domain will always be clear from the context.

Remark 5.1. (i) For any f ∈ C([0, 1]), the modulus of continuity of EVAL(f, ·) and
MAX(f, ·) in Theorem 3.18 is just the modulus of continuity of f .

(ii) Note that the space C([0, 1])/ ∼F introduced in Section 3 is isomorphic to C([0, 1])
for each of the above functionals. In particular, Theorem 3.18 yields representations
of C([0, 1]) uniformly characterising the functionals.

(iii) We choose to represent the parameters by ρc rather than ρ to avoid additional
second-order parameters in the time-bounds we are going to obtain. On the other
hand, we choose for convenience not to ’normalise’ the output and simply encode
it by ρ. It is clear from Proposition 3.8 that one could perform an additional
normalisation-step fairly efficiently.

By the Weierstraß Approximation Theorem, PP and PQ, as defined in Section 4, are
dense in C([0, 1]); so νpp and νpq induce Cauchy representations of C([0, 1]).

Definition 5.2. δC([0,1]),pp and δC([0,1]),pq are the Cauchy representations of C([0, 1])
induced by νpp and νpq as defined in 4.35 respectively.

As in Section 4, the size of a δC([0,1]),pp- or δC([0,1]),pq-name of a function f can be
expressed in terms of the size of the discrete functions approximating f . Note that
unlike in the discrete case, the ’parameters’ will be functions rather than constants.

Definition 5.3. Let (fn)n be the image of a δC([0,1]),pp- or δC([0,1]),pq-name of f . We
write Φf (n) for Φfn , where Φ ∈ {d, c, B, b, p} (cf. Definition 4.36). We will also use the
abbreviations Φ̇f := Φf (n+ 1), Φ̈f := Φf (n+ 2) etc.†

†Caution: An expression like Φ̇f (a+ b) is to be read as ’Φf (n) · (a+ b)’ and not as Φf (a+ b+ 1)!

34

Remark 5.4. (i) Note that the above definition again is an abuse of notation, since it
seems to suggest that the parameters only depend on f .

(ii) There exist no uniform bounds on the size of names of general continuous func-
tions, and the size may grow arbitrarily fast, so we cannot avoid using functions
(rather than constants) as parameters and will thus obtain ’genuine’ second-order
time-bounds. Note that this is a feature of any representation rendering evaluation
second-order-polynomial-time computable, since the characterising representation
of EVAL encodes a modulus of continuity, which can be arbitrarily big for arbi-
trary continuous functions. One can however show that every polynomial-time-
computable function (in the sense that EVAL(f, ·) is computable in polynomial
time) has an exponential-time computable δC([0,1]),pp-name (cf. [Ko91], Theorem
8.8).

Proposition 5.5. (i) Some modulus of continuity,

C([0, 1]) 3 f ⇒ µf ∈ NN,

|x− y| ≤ 2−µf (n) ⇒ |f(x)− f(y)| ≤ 2−n

is (δC([0,1]),pp, δN→N)- and (δC([0,1]),pq, δN→N)-computable in time

O(n+Bf (n+ 2)df (n+ 2)cf (n+ 2))

with output-sizes n+ 2 log(df (n+ 2) + 1) + cf (n+ 2) and n+ 3 log(df (n+ 2) + 1) +
2cf (n+ 2) respectively.

(ii) Some L1-modulus
C([0, 1]) 3 f ⇒ µf ∈ NN,

|a− b| ≤ 2−µf (n) ⇒
∫ b

a
|f(t)|dt ≤ 2−n

is (δC([0,1]),pp, δN→N)-computable in time O(n+Bf (n+ 1)df (n+ 1)cf (n+ 1)) with
output-size n+ cf (n+ 1) + log df (n+ 1) + 1.

Proof. (i) Let (fn)n be (the image of) a δC([0,1]),pp resp. δC([0,1]),pq name of f .Let Ln
be a Lipschitz-constant of fn. Then we have for all x, y ∈ [0, 1]

|f(x)− f(y)| ≤ Ln+2|x− y|+ 2−n−1.

So if |x − y| ≤ 2−n−1−logLn+2 it follows that |f(x) − f(y)| ≤ 2−n. A modulus of
continuity of f is hence given by µ(n) := n + 1 + logLn+2 and can be computed
according to 4.43 in time O(n + Bf (n + 2)df (n + 2)cf (n + 2)). The output-sizes
are also given in 4.43.

(ii) Note that if ‖ f − fn ‖1≤ 2−n and Mn ≥‖ fn ‖∞, then for all a, b ∈ [0, 1] we have∫ b

a
|f(x)|dx ≤Mn|a− b|+ 2−n.

So an L1-modulus is given by n+ 1 + logMn+1, which can be computed according
to 4.43 in time O(n+Bf (n+ 1)df (n+ 1)cf (n+ 1)).

�

35

Proposition 5.6. (i) Evaluation

C([0, 1])× D 3 (f, a) 7→ f(a) ∈ R

is (δC([0,1]),pq × νD, ρ)-computable in time

O(Bf (ṅ)(m+ pf (ṅ)) + df (ṅ)(bf (ṅ) +mdf (ṅ))m+ n(bf (ṅ) +mdf (ṅ))),

and (δC([0,1]),pp × νD, ρ)-computable in time

O(Bf (ṅ)(m+ pf (ṅ)) + df (ṅ)(bf (ṅ) +mdf (ṅ))m),

where m = `(a).
(ii) Parametrised maximisation

C([0, 1])× D2 3 (f, (a, b)) 7→ max
x∈[a,b]

{f(x)} ∈ R

is (δC([0,1]),pq × νD × νD, ρ)-computable in time

O(Ḃf ḋ5
f (ḃf + ḋf)(ḃf + ḋf + n) + Ḃf ḋ

4
f (ḃf + ḋf + n)2 + Ḃf ḋ

2
f (m+ ṗf)2).

where m is a bound on `(a) and `(b).
(iii) Parametrised integration

C([0, 1])× D2 3 (f, (a, b)) 7→
∫ b

a
{f(x)}dx ∈ R

is (δC([0,1]),pp × νD × νD, ρ)-computable in time

O(Ḃf ḋf (ḃf + n+ ḋf (m+ ṗf))(m+ ṗf) + Ḃf ḋf log ḋf (ḃf + log ḋf + n)).

where m is a bound on `(a) and `(b).

Proof. (i) Given a δC([0,1]),pq-name of f , query the oracle for fn+1 and compute fn+1(a)
up to error 2−n−1 according to Proposition 4.41, which can be done in time

O(Ḃf (m+ ṗf) + ḋf (ḃf +mḋf)m+ n(ḃf +mḋf)).

The bound given for δC([0,1]),pp follows analogously.
(ii) Given a, b ∈ D with `(a), `(b) ≤ m, we first query the oracle for an approximation

f̂ to f up to error 2−n−1 and then compute maxx∈[a,b] f(x) up to error 2−n−1

according to 4.42, which can be done in time

O(Ḃf ḋ5
f (ḃf + ḋf)(ḃf + ḋf + n) + Ḃf ḋ

4
f (ḃf + ḋf + n)2 + Ḃf ḋ

2
f (m+ ṗf)2).

(iii) Given a νD × νD-name of a, b ∈ D, `(a), `(b) ≤ m, we can compute the integral∫ b
a f(x)dx up to error 2−n by querying the oracle for an approximation to f up to

error 2−n−1 and then computing the integral with precision 2−n−1, using Proposi-
tion 4.44, in time

O(Ḃf ḋf (ḃf + n+ ḋf (m+ ṗf))(m+ ṗf) + Ḃf ḋf log ḋf (ḃf + log ḋf + n)).

�

As a corollary to the preceding propositions we obtain

36

Theorem 5.7. (i) Evaluation
C([0, 1])× [0, 1] 3 (f, x) 7→ f(x)

is (δC([0,1]),pp × ρc, ρ)- and (δC([0,1]),pq × ρc, ρ)-computable in time

O(
...
Bf

...
d f

...
c f + B̈f (n+log

...
d f +...

c f + p̈f)+ d̈f b̈f (n+log
...
d f +...

c f)+ d̈f (n+log
...
d f +...

c f)2).
(ii) Parametrised maximisation

C([0, 1])× [0, 1]× [0, 1] 3 (f, a, b) 7→ max
x∈[a,b]

f(x) ∈ R

is (δC([0,1]),pp × ρc × ρc, ρ)- and (δC([0,1]),pq × ρc × ρc, ρ)-computable in time

O(
...
Bf

...
d f

...
c f+B̈f d̈5

f (b̈f+d̈f)(b̈f+d̈f+n)+B̈f d̈4
f (b̈f+d̈f+n)2+B̈f d̈2

f (n+log(
...
d f+1)+...

c f+p̈f)2).
(iii) Parametrised integration

C([0, 1])× [0, 1]× [0, 1] 3 (f, a, b) 7→
∫ b

a
f(x)dx ∈ R

is (δC([0,1]),pp × ρc × ρc, ρ)-computable in time

O(B̈f d̈f (b̈f+n+d̈f (n+c̈f+log d̈f+p̈f))(n+c̈f+log d̈f+p̈f)+B̈f d̈f log d̈f (b̈f+log d̈f+n)).

Proof. We only give the proof for δC([0,1]),pp.
(i) We combine the algorithm given by Theorem 3.18 with Proposition 5.6. We first

compute µ(n+ 1), where µ is a modulus of continuity for f , then query the oracle
for a dyadic rational approximation ξ of x up to error 2−µ(n+1) and then compute
f(ξ) up to error 2−n−1. The computation of µ(n+ 1) takes time

O(n+
...
Bf

...
d f

...
c f)

and has output size n + 2 log(
...
d f + 1) + ...

c f , so we perform an evaluation up to
error 2−n−1 on a dyadic number of size O(n + log

...
d f + ...

c f), which according to
Proposition 5.6 takes time
O(B̈f (n+ log

...
d f + ...

c f + p̈f) + d̈f (b̈f + (n+ log
...
d f + ...

c f)d̈f)(n+ log
...
d f + ...

c f)).
Note that in the case of δC([0,1]),pq the additional complexity of the division step is
already dominated by this.

(ii) Compute µ(n+1), where µ is a modulus of continuity of f , then query the oracle for
approximations α, β ∈ D to a, b up to error 2−µ(n+1 and compute maxx∈[α,β] f(x) up
to error 2−n−1 using Proposition 5.6. The computation of the modulus of continuity
takes time O(n +

...
Bf

...
d f

...
c f) and has output size n + 2 log(

...
d f + 1) + ...

c f , so the
parametrised maximisation takes time

O(B̈f d̈5
f (b̈f + d̈f)(b̈f + d̈f +n) + B̈f d̈

4
f (b̈f + d̈f +n)2 + B̈f d̈

2
f (n+ log(

...
d f + 1) + ...

c f + p̈f)2).

(iii) Compute µ(n + 1), where µ is an L1-modulus of f , then query the oracle for
approximations α, β ∈ D to a, b up to error 2−µ(n+1 and compute

∫ β
α f(x)dx up to

error 2−n−1 using Proposition 5.6. The computation of the L1-modulus takes time
O(n + B̈f d̈f c̈f) and has output size n + c̈f + log d̈f + 1 according to Proposition
5.5, so the parametrised integration takes time

O(B̈f d̈f (b̈f+n+d̈f (n+c̈f+log d̈f+p̈f))(n+c̈f+log d̈f+p̈f)+B̈f d̈f log d̈f (b̈f+log d̈f+n)).

37

�

5.2. Parametrised Complexity of Operators on C([0, 1]). We now proceed to show
that the representations δC([0,1]),pp and δC([0,1]),pq render various elementary operations on
the space C([0, 1]) second-order polynomial time computable, thus allowing to construct
names of more complicated functions from names of more elementary ones.

Theorem 5.8. (i) Composition
C([0, 1])× {h ∈ C([0, 1]) | h([0, 1]) ⊆ [0, 1]} 3 (f, g) 7→ f ◦ g ∈ C([0, 1])

is (δC([0,1]),pp × δC([0,1]),pp, δC([0,1]),pp)-computable in time

O
(
BĝBf̂d

5
ĝ(bĝ + pf̂ + log dĝ)2 +BĝBf̂Nd

4
ĝ(bĝ + pf̂ + log dĝ +N)

)
+O

(
BĝBf̂Nd

5
ĝ(bĝ + pf̂ + log dĝ) +BĝBf̂d

3
f̂
d3
ĝ(df̂bĝ + df̂dĝ + bf̂)2

)
,

where
N := n+ cĝ + cf̂ + log df̂ + log dĝ

and
Φĝ := Φg(n+ 2 log(df (n+ 4) + 1) + cf (n+ 4)),
Φf̂ := Φf (n+ 2)

and Φ ∈ {d, c, B, b, p}.
(ii) Composition

C([0, 1])× {h ∈ C([0, 1]) | h([0, 1]) ⊆ [0, 1]} 3 (f, g) 7→ f ◦ g ∈ C([0, 1])
is (δC([0,1]),pq × δC([0,1]),pq, δC([0,1]),pq)-computable in time

O
(
BĝBf̂d

5
ĝ(bĝ + pf̂ + log dĝ)2 +BĝBf̂Nd

4
ĝ(bĝ + pf̂ + log dĝ +N)

)
+O

(
BĝBf̂Nd

5
ĝ(bĝ + pf̂ + log dĝ) +BĝBf̂d

3
f̂
d3
ĝ(df̂bĝ + df̂dĝ + bf̂)2

)
,

where
N := n+ cĝ + cf̂ + log df̂ + log dĝ

and
Φĝ := Φg(n+ 3 log(df (n+ 4) + 1) + 2cf (n+ 4)),
Φf̂ := Φf (n+ 2)

and Φ ∈ {d, c, B, b, p}.

Proof. (i) Compute µf (n+2) for some modulus of continuity of f using 5.5. Query the
oracle for an approximation ĝ of g up to error 2−µf (n+2) and for an approximation
f̂ of f up to error 2−n−2. Then compute an approximation h to f̂ ◦ ĝ using 4.38
up to error 2−n−1. We then have for all x ∈ [0, 1]:

|h(x)− f(g(x))| ≤ |h(x)− f̂(ĝ(x))|+ |f̂(ĝ(x))− f(ĝ(x))|+ |f(ĝ(x))− f(g(x))| ≤ 2−n.
Since the modulus of continuity has size n + 2 log(df (n + 4) + 1) + cf (n + 4), the
complexity bound follows from 4.38.

38

(ii) idem.
�

Remark 5.9. The composition mapping defined in Theorem 5.8 actually allows for
computing the general composition of two continuous functions g : [0, 1] → R and
f : g([0, 1]) → R by first computing an estimate M on maxx∈[0,1] g(x) according to
4.43 and then putting f̂(t) := f0(−M + 2Mt) ,where f0 is some trivial continuation of
f from g([0, 1]) to [−M,M]. The function f̂ is then in C[0, 1] and we may now, using
Proposition 5.8, compute f̂((g(x) +M)/2M) = f(g(x)). Note that approximating f by
piecewise rational functions/polynomials on [−M,M] is equivalent to approximating f̂
by piecewise rational functions/polynomials on [0, 1] - we will state this formally in 5.21.

Theorem 5.10. Let B, d, b, p be bounds on Bf , Bg, df , dg, bf , bg, pf , pg respectively.
(i) Addition,

C([0, 1])× C([0, 1]) 3 (f, g) 7→ f + g ∈ C([0, 1])
is (δC([0,1]),pp × δC([0,1]),pp, δC([0,1]),pp)-computable in time

O(n+B(N)(d(N)b(N) + p(N))),

where N := n+ 1.
(ii) Multiplication,

C([0, 1])× C([0, 1]) 3 (f, g) 7→ f · g ∈ C([0, 1])

is (δC([0,1]),pp × δC([0,1]),pp, δC([0,1]),pp)-computable in time

O(n+B(N)(d(N)2b(N)2 + p(N))),

where N := n+ c(0) + log d(0).

Proof. (i) Query the oracle for an approximation h to f and an approximation i to g,
both up to error 2−n−1. Then compute h+ i using 4.37. This takes time

O((Bf (n+1)+Bg(n+1))((df (n+1)+dg(n+1))(bf (n+1)+bg(n+1))+(pf (n+1)+pg(n+1))).

(ii) Query the oracle for an approximation to f up to error 1 and use 4.43 to compute a
bound Mf on log ‖ f ‖. Do the same for g to obtain a bound Mg. This can be done
in time O(Bf (0)df (0)cf (0) + Bg(0)dg(0)cg(0)) and the constants have output-size
cf (0) + log df (0) and cg(0) + log dg(0) respectively. Let h be an approximation to f
up to error 2−n−1−Mg and i be an approximation to g up to error 2−n−1−Mf . Let
εf (x) := h(x)− f(x) and εg(x) := i(x)− g(x). Then

‖ h · i− f · g ‖=‖ εf · g + εg · f ‖≤‖ εf · g ‖ + ‖ εg · f ‖≤ 2−n.

Now, h · i can be computed using Theorem 4.37 in time

O((Bf (Nf) +Bg(Ng))((df (Nf) + dg(Ng))2(bf (Nf) + bg(Ng))2 + pf (Nf) + pg(Ng)))).

Where Nf := n+Mg + 1, Ng := n+Mf + 1.
�

Theorem 5.11. Let B, d, b, p be bounds on Bf , Bg, df , dg, bf , bg, pf , pg respectively.

39

(i) Addition,
C([0, 1])× C([0, 1]) 3 (f, g) 7→ f + g ∈ C([0, 1])

is (δC([0,1]),pq × δC([0,1]),pq, δC([0,1]),pq)-computable in time

O(B(n+ 1)(d(n+ 1)2b(n+ 1)2 + p(n+ 1))).

(ii) Multiplication,

C([0, 1])× C([0, 1]) 3 (f, g) 7→ f · g ∈ C([0, 1])

is (δC([0,1]),pq × δC([0,1]),pq, δC([0,1]),pq)-computable in time

O(n+B(N)(d(N)2b(N)2 + p(N))),

where N := n+ c(0) + log d(0).

Proof. We proceed as in 5.10, replacing the operations on polynomials by their counter-
parts for rational functions. The bounds given then follow immediately from 4.40 and
4.43. �

Theorem 5.12. Division,

{g ∈ C([0, 1])||g(x)| ≥ 1 for all x ∈ [0, 1]} 3 f 7→ 1/f ∈ C([0, 1])

is (δC([0,1]),pq, δC([0,1]),pq)-computable in time O(n+Bf (n+2)df (n+2)bf (n+2)+Bf (n+
2)pf (n+ 2)).

Proof. Let (fn)n be a δC([0,1]),pq-name of f ∈ {g ∈ C([0, 1])||g(x)| ≥ 1 for all x ∈ [0, 1]}
with breakpoints (~an)n and rational approximants (pkn/qkn)n. By the triangle inequality
we have

|pkn(x)/qkn(x)| ≥ |f(x)| − 2−n ≥ 1− 2−n

and hence
|pkn(x)| ≥ (1− 2−n)|qkn(x)| ≥ 1− 2−n.

It follows, that pkn + 2−n is minorised by 1 on its domain and

∣∣∣∣∣ qkn+2(x)
pkn+2(x) + 2−n−2 −

1
f(x)

∣∣∣∣∣ ≤ |qkn+2(x)| ·

∣∣∣∣f − pk
n+2
qk

n+2

∣∣∣∣
|pkn+2|

+ 2−n−2

≤ |qkn+2(x)| 2−n−2

(1− 2−n−2)|qkn+2(x)|
+ 2−n−2

≤ 2−n.

So the sequence of piecewise rational functions with breakpoints ~an+2 and rational ap-
proximants pkn+2 + 2−n−2 is a δC([0,1]),pq-name of 1/f . It can be computed in time
O(n+Bf (n+ 2)df (n+ 2)bf (n+ 2) +Bf (n+ 2)pf (n+ 2)). �

We now give two additional interesting closure properties of FPδC([0,1]),pq
(C([0, 1]))

- case distinctions at FP-points of ρ and taking square roots. While the first follows
from fairly standard arguments and thus will not be carried out in detail, the latter is
somewhat more involved.

40

Theorem 5.13. Case distinction,

C([0, 1])× C([0, 1])× [0, 1] 3 (f, g, a) 7→ h ∈ C([0, 1])

where f(a) = g(a) and

h(x) =
{
f(x) x ∈ [0, a]
g(x) x ∈ [a, 1]

is (δC([0,1]),pp×δC([0,1]),pp×ρc, δC([0,1]),pp)- and (δC([0,1]),pq×δC([0,1]),pq×ρc, δC([0,1]),pq)-FP2.

Theorem 5.14. The function x 7→
√
x has a POLYTIME-computable δC0,pq-name.

This result can also be found in [LHE01], although it is formulated in a somewhat
different framework. The proof is essentially an analysis of the computational complexity
of Newman’s Theorem a classic result in approximation theory.

Theorem 5.15 (Newman, [New64]). Let n ≥ 4, ξn = e
− 1√

n and

pn(x) :=
n−1∏
k=0

(x+ ξk),

rn(x) := x
pn(x)− pn(−x)
pn(x) + pn(−x) .

Then for all x ∈ [−1, 1] we have

||x| − r(x)| ≤ 3e−
√
n

So essentially, all we need to verify in order to establish 5.14 is that in the above
theorem, the denominators are ”well-behaved” and that we can approximate the numbers
ξn efficiently.

The following proposition can be easily verified using the power series of the exponen-
tial function.

Proposition 5.16. Given a νN × ν1-name of (n,m) ∈ N × N we can compute e−
1
n up

to precision 2−m in time polynomial in logn and m.

Proof of Theorem 5.14. Picking up the notation of 5.15, we define the even polynomials
Pn(x2) := x(pn(x)−pn(−x)) and Qn(x2) := pn(x)+pn(−x). Note that all the coefficients
of Qn(x) are positive, so for all x ∈ [0, 1] we have

Qn2(x) ≥ Qn2(0) = 2
n2−1∏
k=0

e−
k
n = 2e−(n3−n)/2 ≥ 2 · 3−(n3−n)/2

Define P̂n2 := 3(n3−n)/2Pn2 , Q̂n2 := 3(n3−n)/2Qn2 and consider the sequence (P̂n2/Q̂n2)n≥6.
By Newman’s Theorem, we have for all x ∈ [0, 1]:

| P̂n2(x)
Q̂n2(x)

−
√
x| ≤ 3e−n ≤ 2−n

41

and Q̂n2 is minorised by 1 on [0, 1]. It remains to verify that, given n ∈ N we can
compute some νpq-name of P̂n2

Q̂n2
in time polynomial in n. Using Proposition 5.16, we can

compute c ≤ e−1/n with
|c− e−1/n| ≤ 2−n2−n−4 logn−1

in time polynomial in n. For a, b ∈ [−1, 1], k ∈ N we have by the Mean Value Theorem

|ak − bk| ≤ k|a− b|

So for k ≤ n2

|ck − e−k/n| ≤ 2−n2−n−2 logn−1.

Let εk := ck − e−k/n. Then

|
n2−1∏
k=0

(x+ ξkn)−
n2−1∏
k=0

(x+ ck)| = |
n2−1∏
k=0

(x− ξkn)−
n2−1∏
k=0

(x+ ξk + εk)|

= |
n2−1∑
k=0

εk
∏
j<k

(x+ ξj)
∏
j>k

(x+ ξj + εj)|

≤ 2−n2−n−2 logn−1(n2 − 1)2n2−1

≤ 2−n−1.

And p̃n(x) =
∏n2−1
k=0 (x+ ck) can be computed in time polynomial in n using 4.9. Put

p̂n := 3(n3−n)/2p̃n.

Then p̂n can also be computed in time polynomial in n and we have for all x ∈ [0, 1]

|x(p̂n(x)− p̂n(−x))− P̂ 2
n(x2)| ≤ 2−n

and
|p̂n(x) + p̂n(−x)− Q̂2

n(x2)| ≤ 2−n.

So
√
x(p̂n(

√
x)− p̂n(−

√
x)) and p̂n(

√
x) + p̂n(−

√
x) define a νDm(x)-name of P̂n2

Q̂n2
, which

is uniformly POLYTIME computable in n. �

Corollary 5.17. Taking square roots,

{g ∈ C([0, 1]) | g(x) ≥ 0 for all x ∈ [0, 1]} 3 f 7→
√
f ∈ C([0, 1]),

is (δC([0,1]),pq, δC([0,1]),pq)-FP2.

Proof. According to Proposition 4.43 we can compute M ∈ N such that f ≤ 2M through-
out [0, 1] in second order polynomial time. Then f/22M maps [0, 1] into [0, 1], so by The-
orem 5.8 and Theorem 5.14 we can compute a δC([0,1]),pq-name of g :=

√
f/22M in second

order polynomial time. It follows, that
√
f = 2Mg is (δC([0,1]),pq, δC([0,1]),pq)-computable

in second-order polynomial time. �

42

5.3. Robustness of Definitions and Comparison of the Representations Intro-
duced. We are now going to study the relationship between the various representations
introduced with respect to the reduction-relation defined in Section 2 (Definition 2.10).
We will also justify some of the choices we made when defining the representations.

It seems natural to ask whether one really has to use piecewise polynomial- and ratio-
nal functions as discrete approximants to obtain a sensible Cauchy representation and
whether it would not suffice to represent a function by a globally fast converging sequence
of polynomials or rational functions. Let δC([0,1]),p denote the Cauchy representation in-
duced by νD[x] and δC([0,1]),q denote the Cauchy representation induced by νDm(x). It is
well known that δC([0,1]),p already fails to have a polynomial-time computable (or even
PSIZE) name for very simple functions and thus is a too weak representation - in fact,
by the Jackson-Bernstein Theorem, only infinitely many times differentiable functions
can have a PSIZE-δC([0,1]),p name (cf. Corollary 8.11 in [Ko91]; see also [LHE01] for a
more detailed discussion). We will give a simple example based on Markov’s inequality,
a fundamental inequality in approximation theory we are also going to need in Section
6. For a proof see e.g. [Che66].

Theorem 5.18 (Markov’s Inequality). Let P be a polynomial of degree d. Then

max
x∈[−1,1]

|P ′(x)| ≤ 2d2 max
x∈[−1,1]

|P (x)|.

Proposition 5.19. Let P be a polynomial of degree d. Then for all a, b ∈ R we have

max
x∈[a,b]

|P (k)(x)| ≤ (b− a)−k(2d)2k max
x∈[a,b]

|P (x)|.

Proposition 5.20. The function x 7→ |x−1/2| does not have a PSIZE δC([0,1]),p-name.

Proof. Let (Pn)n be a sequence of polynomials in D[x] with degrees (dn)n satisfying

|Pn(x)− |x− 1/2|| ≤ 2−n for all x ∈ [0, 1].

Then {
|Pn(x) + x− 1/2| ≤ 2−n for all x ∈ [0, 1/2]
|Pn(x)− x+ 1/2| ≤ 2−n for all x ∈ [1/2, 1]

.

So by 5.19 |P ′n(x) + 1| ≤ 8d2
n

2n for all x ∈ [0, 1/2]
|P ′n(x)− 1| ≤ 8d2

n
2n for all x ∈ [1/2, 1]

.

in particular |P ′n(1/2) + 1| ≤ 8d2
n

2n

|P ′n(1/2)− 1| ≤ 8d2
n

2n

.

Suppose that (dn)n is uniformly bounded by some polynomial Q ∈ N[x]. Then

8d2
n

2n ≤
8Q(n)2

2n → 0 as n→∞

so P ′n(1/2)→ 1 and P ′n(1/2)→ −1. Contradiction. �

43

On the other hand, global approximation by rational functions is equivalent to approx-
imation by piecewise rational functions. This is a consequence of Newman’s Theorem
(Theorem 5.15), which entails that the function-family

hn(x) =



0 −1 ≤ x ≤ −1/2− 2−n

2n(x+ 1
2 + 2−n) −1/2− 2−n ≤ x ≤ −1/2

1 −1/2 ≤ x ≤ 1/2
2n(1

2 + 2−n − x) 1/2 ≤ x ≤ 1/2 + 2−n

0 1/2 + 2−n ≤ x ≤ 1
can be approximated with exponentially small error by a single rational function on
[−1, 1]. One can then use this to ’simulate’ the characteristic function of an interval
and construct piecewise rational functions by superposition. For details see [LHE01],
Théorème 5.3.2 (cf. also [Ko91], Lemma 8.12) (the framework used there is different
from ours, but the proof given carries over easily).

Figure 1. The function h3, approaching the characteristic function of [− 1
2 ,

1
2].

Finally, we remark that the choice of the interval [0, 1] was essentially arbitrary.
Proposition 5.21. Let a, b ∈ R and let δC[a,b],pq denote the Cauchy representation of
C[a, b] induced by the notation of the set of piecewise rational functions with dyadic
rational coefficients and dyadic rational breakpoints(the endpoints of the interval being
given as ρ-names), defined analogously to 4.35. Then the mapping

C[a, b] 3 f(x) 7→ f(a+ t(b− a)) ∈ C[0, 1]
is (δC[a,b],pq, δC([0,1]),pq)-computable in second-order polynomial time and an analogous
result holds for the analogue of δC([0,1]),pp.
Remark 5.22. In the above Proposition it is crucial that the endpoints of the interval
are also encoded in the representation, since otherwise the result would depend on the
computability of a and b.

We now compare the representations introduced so far. Let δC([0,1]),e, δC([0,1]),m,
δC([0,1]),i denote the representations uniformly characterising evaluation, maximisation
and integration as defined in Section 5.1 respectively. It follows immediately from The-
orem 5.7 and Theorem 3.18 that δC([0,1]),pq � δC([0,1]),m and that δC([0,1]),pp � δC([0,1]),i.
It is equally obvious that δC([0,1]),m � δC([0,1]),e.

44

Proposition 5.23. The reduction δC([0,1]),m � δC([0,1]),e is strict.

Proof. We will show that the functional MAX is not (δC([0,1]),e × ρ, ρ)-FP2. Suppose
there exists some Oracle-Turing-machine M computing a (δC([0,1]),e × ρ × ρ, ρ)-FP2-
realiser of MAX, whose running time is bounded by some second-order polynomial
P (x, l). Let n be such that 2n ≥ P (n+ 3, idN + 3). Consider the family of functions

hn,k(x) =


0 x ∈ [0, k2n] ∪ [k+1

2n , 1]
(x− k

2n) x ∈ [k2n ,
2k+1
2n+1]

(k+1
2n − x) x ∈ [2k+1

2n+1 ,
k+1
2n]

Figure 2. The function h3,0. It is thin, but not steep.

Note that each hn,k has a δC([0,1]),e-name of size idN + 3, since idN is a modulus of
continuity for hn,k and the evaluations on discrete sample-points are encoded by ρ-names
which have size at most idN+3. Now, given such a δC([0,1]),e-name of hn,k and 1n+3, n ∈ N,
the machine M will only query the oracle P (n + 3, idN) times, so there is at least one
function hn,k0 such that the result of all the queries issued by the machine for evaluations
on dyadic numbers is zero. So the machine will have to produce the same output on
input (hn,k0 , 0, 1, 1n+3) as on input (λ(x).0, 0, 1, 1n+3), where the zero-function λ(x).0 is
given with modulus of continuity idN + 3. However, MAX(hn,k0 , 0, 1)− 2−n−3 ≥ 2−n−3.
Contradiction. �

Remark 5.24. (i) A somewhat stronger version of the above Proposition has already
been proved in [KMRZ12].

(ii) A similar argument can be used to show that there exists no Cauchy representation
of C([0, 1]) uniformly characterising EVAL (i.e. that δC([0,1]),e is not a Cauchy
representation). Using Theorem 2.22 in [Ko91] one can easily construct Cauchy
representations of C([0, 1]) non-uniformly characterising EVAL (for examples, see
[LHE01]). This shows that in general Theorem 3.20 does not admit a converse.

Proposition 5.25. The reduction δC([0,1]),pq � δC([0,1]),m is strict.
Proof. Consider the function-family

fm(x) := sin(2mπx)
2mπ .

Note that there exists a family of δC([0,1]),m-names of (fm)m with size uniformly bounded
by n + 3, since each of the functions has modulus of continuity idN. Consequently,

45

if idC([0,1]) were (δC([0,1]),m, δC([0,1]),pq)-FP2, then the family would have a family of
δC([0,1]),pq-names with size uniformly bounded by some polynomial P . However, any
continuous function uniformly approximating fm up to error 2−m−1 has at least 2m − 1
zeroes in [0, 1] and a piecewise rational function with M zeroes Bf breakpoints and de-
gree df satisfies Bfdf ≥M . This implies P (n+ 1) ≥ 2n−1 for all n. Contradiction. �

Figure 3. Right: The functions f1 to f4 employed in the proof of Proposition
5.25. Left: Any continuous approximation to fm up to error 2−m−1 has at least
2m − 1 zeroes.

Proposition 5.26. Evaluation
C([0, 1])× R 3 (f, x) 7→ f(x)

is not (δC([0,1]),i × ρc, ρ)-computable.
Proof. Suppose there exists a machine M computing a (δC([0,1]),i × ρc, ρ)-realiser of
EVAL. Let ψ ∈ Reg be a δC([0,1]),i-name of the zero function λx.0, consisting of a
δN→N-name of idN, encoding an L1-modulus of λx.0, and the ρ-name of 0 given by the
sequence (2−n)n ∈ Dω for each a, b ∈ D. Given ψ and a νωD-name of the constant se-
quence (1

2)n as an oracle and 1 as input, the machine M outputs an approximation to 0
up to error 1

2 after a finite number of steps T (n). In particular, the machine only queries
the oracle for approximations to integrals with dyadic endpoints

∫ b
a f(x)dx up to error

2−T (n). Now, let a := 1
2 − 2−T (n)−1, b := 1

2 + 2−T (n)−1 and consider the function

h(x) :=



0 x ∈ [0, a]
x−a
1
2−a

x ∈ [a, 1
2]

b−x
b−1

2
x ∈ [1

2 , b]

0 x ∈ [b, 1]

Note that
∫ 1

0 h(x)dx = 2−T (n)−1, so there exists a name ϕ of h which coincides with
ψ on all inputs of length smaller than T (n). The machine M will consequently yield
the same output as for the above input if one replaces ψ by ϕ. However, h(1

2) = 1 > 1
2 .

Contradiction. �

The above proposition illustrates that the representation δC([0,1]),i only encodes ’L1-
information’ of a function and would be more naturally defined as a mapping with
co-domain L1.

46

Figure 4. The function h employed in the proof of Proposition 5.26. It is very
thin and very steep.

Corollary 5.27. The reduction δC([0,1]),pp � δC([0,1]),i is strict.

The situation can be summarised in the following diagram, where an arrow represents
reducibility and an equality-sign represents equivalence

δC([0,1]),ix
δC[a,b],p −−−−→ δC([0,1]),pp −−−−→ δC([0,1]),pq δC([0,1]),q −−−−→ δC([0,1]),m −−−−→ δC([0,1]),e∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥
δC[a,b],p −−−−→ δC[a,b],pp −−−−→ δC[a,b],pq δC[a,b],q

none of the arrows reverses unless indicated, except perhaps the one joining δC([0,1]),pp
with δC([0,1]),pq and the one joining δC[a,b],pp with δC[a,b],pq. Note that also the relationship
between δC([0,1]),i and δC([0,1]),pq is unknown.

We conclude this section with the remark, that the question of whether the representa-
tions δC([0,1]),pp and δC([0,1]),pq are equivalent is directly tied to the (δC([0,1]),pp, δC([0,1]),pp)-
complexity of division.

Proposition 5.28. The following are equivalent
(i) δC([0,1]),pp ≡ δC([0,1]),pq

(ii) Division, as in Theorem 5.11 is (δC([0,1]),pp, δC([0,1]),pp)-computable in second order
polynomial time.

Proof. (i) ⇒ (ii) follows immediately from Theorem 5.11.
Suppose now that (ii) holds. Let P (x, l) be a second-order polynomial bounding the

running time of some (δC([0,1]),pp, δC([0,1]),pp)-realiser of division. Let f ∈ C([0, 1]) and
let (fn)n be (the image of) some δC([0,1]),pq-name of f . Let (gn)n and (hn)n be the
sequences of piecewise polynomials defined by the equation fn = gn/hn, given as νpp-
names respectively. Let M(gn) and M(hn) be constants majorising the logarithm of gn
and hn respectively. They can be computed in second-order polynomial time according
to Proposition 4.43. Given the constant sequence (hn)k we can compute some piecewise

47

polynomial function ĥn satisfying

‖ ĥn − 1/hn ‖≤ 2−n−M(gn)−M(hn)

in time P (n + M(gn) + M(hn), |hn|). Using 4.37 we can then compute gnĥn in time
uniformly bounded in `(hn), `(gn) and n. Let εn(x) = 1

hn(x) − ĥn(x). Then for all
x ∈ [0, 1] we have

| gn(x)
hn(x) − gn(x)ĥn(x)| =

∣∣∣∣∣gn(x)
(

1− ĥn(x)hn(x)
hn(x)

)∣∣∣∣∣
≤ |gn(x)(1− ĥn(x)hn(x))|

= |gn(x)(1− (1
hn(x) − εn(x))hn(x))|

= |gn(x)hn(x)εn(x)|
≤ 2−n.

So the sequence (gnĥn)n is a δC([0,1]),pp-name of f , which can be computed in time
uniformly bounded in `(hn), `(gn) and n. �

Proposition 5.29. The following are equivalent
(i) δC([0,1]),pp ≡ δC([0,1]),pq

(ii) The sequence (fm)m with

fm(x) =
{

2m if x ≤ 2−m
1
x otherwise

is an FP-point of δωC([0,1]),pp.
(iii) Some sequence (gm)m ∈ PPω satisfying ‖ gm − fm ‖∞≤ C for all m and some

C < 1 (where (fm)m is defined as in (ii)) is an FP-point of νωpp.

Proof. It is clear that (i) implies (ii) since the sequence (fm)m is clearly an FP-point of
δωC([0,1]),pq. Suppose now, that (ii) holds. We show that under this assumption division
is (δC([0,1]),pp, δC([0,1]),pp)-FP2. Let (gn)n be (the image of) some δC([0,1]),pp-name of g ∈
C([0, 1]) with g(x) ≥ 1 on [0, 1]. We query the oracle for g0 and use 4.43 to compute
a bound M on log ‖ g0 + 1 ‖. Now, using 5.8 and 5.10, we can compute the sequence
(2M (fM ◦ (2−Mgn)))n, which is a δC([0,1]),pp-name of 1/g in second order polynomial
time. It is also clear, that (ii) implies (iii). Suppose that (iii) holds. We use the
approximations to (fm)m given by the sequence (gm)m as a sequence of initial values for
the Newton-Raphson division algorithm. Note that fm = 1/hm, where

hm(x) :=
{

2−m x ≤ 2−m

x otherwise
.

Let Tm : C([0, 1])→ C([0, 1]), Tmf := 2f − hmf2. Note that T maps PP into PP. For all
f ∈ C([0, 1]) we have

‖ Tf − fm ‖∞=‖ 2f − hmf2 − 1/hm ‖∞≤‖ hm ‖∞‖ f − 1/hm ‖2∞=‖ f − 1/hm ‖2∞ .

48

So the fix-point iteration x0 := gm, xi+1 := Txi will yield an approximation to fm up
to error 2−n in logarithmically many steps. Consequently, (fm)m is an FP-point of
δωC([0,1]),pp. �

49

6. Representations of the Space of Real Analytic Functions
We are now going to study the functionals introduced in Section 5 on the space

Cω([0, 1]) of real analytic functions over [0, 1], that is, real-valued functions on [0, 1]
admitting a holomorphic extension to some open neighbourhood of [0, 1] in the complex
plane. In [KMRZ12] it is shown that, unlike in the case of continuous functions, there
exist representations of Cω([0, 1]) rendering MAX, INT and EVAL second-order poly-
nomial time computable such that every function has a linear-size name. Consequently,
the size of such a name can be expressed using constant parameters (i.e. parameters that
only depend on the represented function and not on the input-length) and bounds on
the time-complexity of operators on Cω([0, 1]) can be expressed as usual (parametrised)
first-order bounds. We give a representation of Cω([0, 1]) similar to those studied in
[KMRZ12] but closer to the representation δC([0,1]),pp introduced in Section 5 and give
quantitative bounds on the complexity of integration, evaluation, maximisation and some
elementary operations on Cω([0, 1]).

Definition 6.1. (i) A δCω([0,1])-name of f ∈ Cω([0, 1]) is a ρ∗c × (ρωc)∗× ν∗N× ν∗1 -name
of

(~x,~a, ~A, ~L) ∈ R∗ × (Rω)∗ × N× N,
with |~x| = |~a| = |~L| = | ~A| =: B such that

[0, 1] ⊆
B⋃

m=1
[xm − 1

4Lm
, xm + 1

4Lm
]

and f (j)(xm) = am,j · j! and |am,j | ≤ Am ·Ljm. We furthermore require Lm ≥ 2 and
x1 ≤ x2 ≤ · · · ≤ xB. Also, [xi, xi + 1

2Li
] ∩ [xi+1 − 1

2Li+1
, xi+1] must have diameter

at least 1
4Li

+ 1
4Li+1

.
(ii) A δCω ,pp of f ∈ Cω([0, 1]) is a ν∗D × (ν∗D[x])

ω × νN × ν1-name of (~a, ~Pn, A, L) ∈
D∗ × (D[x]∗)ω × N× N so that

0 = a1 < a2 < · · · < aBf
= 1, ak+1 − ak ≥ 1

L for all k

|Pi,n(x)− f(x)| ≤ 2−n for all x ∈ [ai, ai+1],
and

f (k)(x) ≤ A · Lk · k! for all x ∈ [0, 1]. (1)
Furthermore, we require that for all i, n, we have degPi,n ≤ df · (n+ logA+ 1) for
some constant df ∈ N and bPi,n = bf · (n+ logA) logL for some constant bf ∈ N.

Remark 6.2. δCω([0,1]) is a slightly adapted version of the representation α given in
[KMRZ12]. We have made some inessential additional requirements to avoid certain
trivial case-distinctions in our further discussion. The representation δCω ,pp is essen-
tially the representation δC([0,1]),pp from Section 5, enriched with information on the
differentiability of the represented function f . Note that unlike in the case of δC([0,1]),pp,
we do not require the piecewise-polynomial functions approximating f to be continu-
ous. In the case of δC([0,1]),pp this requirement came essentially with no loss of general-
ity, since, given a discontinuous approximation by piecewise polynomial functions, one
could always introduce ’joints’ on sufficiently small intervals around the breakpoints to

50

make the approximation continuous (so long as the number of breakpoints would grow
sub-exponentially in n). However, in the case of δCω ,pp we need the polynomials to ap-
proximate f on intervals of a size controlled by the parameters, so that their derivatives
approximate the derivatives of f in a rate controlled by the parameters. Apart from these
differences, the algorithms on δC([0,1]),pp-names found in Section 5 can be easily adapted
to apply to δCω ,pp-names. Another reason for choosing continuous approximants in the
continuous case is that the approximating functions are then Lipschitz continuous, which
allows for an efficient computation of the modulus of continuity of a represented func-
tion. Here, the logarithm of a Lipschitz-constant for f represented by a δCω ,pp-name is
given by logAf + logLf and max |f | on [0, 1] is bounded by Af - these estimates are
somewhat better than the more general ones found in Proposition 4.43. Note that ap-
proximations by discontinuous polynomials are also used in the discontinuous Galerkin
method in numerical analysis.

Again, the size of δCω ,pp- and δCω([0,1])-names is controlled by certain parameters. In
the case of δCω([0,1]) these are logAf , Lf and Bf , in the case of δCω ,pp these are logAf ,
Lf , df , log bf , Bf and pf , where pf is a bound on the size of a1, . . . , aBf

. So far it is
not obvious at all that every function in Cω([0, 1]) can be represented by a δCω ,pp-name.
This will be the main result of this section.

Theorem 6.3. δCω ,pp is a representation and the identity Cω([0, 1]) → Cω([0, 1]) is
(δCω([0,1]), δCω ,pp)-computable in time

O(B(n+ logA)3(n+ logA+ L)2),
where

A = max
k=0,...,B

Ak, L = max
k=0,...,B

Lk.

The piecewise polynomial function computed has B + 2 breakpoints of size O(logL), the
polynomials have degrees bounded by n+logA+1 and coefficient-size O((n+logA) logL).

Proof. Let f ∈ Cω([0, 1]), n ∈ N and let a δCω([0,1])-name of f be given by x1, . . . , xB,
A1, . . . , AB, L1, . . . , LB and (ai,j)i=1,...,B,j∈N. We construct an approximation to f by
piecewise polynomials up to error 2−n. Let i < B. By assumption, the interval

[xi, xi + 1
2Li

] ∩ [xi+1 −
1

2Li+1
, xi+1]

has diameter at least 1
4Li

+ 1
4Li+1

and contains xi + 1
4Li

. Let ci ∈ D be an approximation
to xi + 1

4Li
up to error min{ 1

8Li
, 1

8Li+1
}. Let c0 := 0 and cB := 1. Note that for all

i ∈ {0, . . . , B − 1}
[ci, ci+1] ⊆ [xi+1 −

1
2Li+1

, xi+1 + 1
2Li+1

].

Put Ni := n+ logAi+1 + 2 and

Pi :=
Ni∑
j=0

ai+1,j(x− xi+1)j .

Then for all x ∈ [ci, ci+1]
|f(x)− Pi(x)| ≤ 2−n−1.

51

Now, let Ci := logAi+1 + logLi+1 + 3. Note that 2Ci is a Lipschitz-constant for Pi on
[xi+1 − 1

2Li+1
, xi+1 + 1

2Li+1
], since

|P ′i (x)| ≤
Ni∑
k=1

kAi+1L
k
i+1

(1
2Li+1

)k−1
≤ 2Ai+1Li+1

∞∑
k=1

k

2k = 4Ai+1Li+1.

Let ãi,j be a dyadic rational approximation of ai,j up to error 2−n−logNi−2 and x̃i a
dyadic rational approximation of xi up to error min{2−n−Ci−2, 1

8Li+1
}. The polynomial

P̃i :=
Ni∑
j=0

ãi+1,j(x− x̃i+1)j

then approximates f on [ci, ci+1] up to error 2−n−1, since

|Pi(x)− P̃i(x)| ≤ |Pi(x+ xi+1 − x̃i+1)− P̃i(x)|+ |Pi(x)− Pi(x+ xi+1 − x̃i+1)|

with

|Pi(x+ xi+1 − x̃i+1)− P̃i(x)| ≤
Ni∑
k=0
|ai+1,k − ãi+1,k||x− x̃i+1|k

≤
Ni∑
k=0

2−n−3(|x− xi+1|+ |xi+1 − x̃i+1|)k

≤ 2−n−3
∞∑
k=0

(1
2

)k
≤ 2−n−2

and
|Pi(x)− Pi(x+ xi+1 − x̃i+1)| ≤ 2C |xi+1 − x̃i+1| ≤ 2−n−2.

Note that the above estimate is correct, since for x ∈ [ci, ci+1] we have

x+ xi+1 − x̃i+1 ∈ [xi+1 −
1

2Li+1
, xi+1 + 1

2Li+1
].

The complexity of the computation of P̃i is majorised by the complexity of the polynomial
translation algorithm (4.7), where the degree is given by Ni, the size of the coefficients
is bounded by n + logNi + 2 and the size of x̃i+1 is bounded by n + Ci + 2, so the
complexity is bounded by

O(N2
i (n+ logNi)(n+ Ci) +N3

i (n+ Ci)2)

which simplifies to
O(N3

i (n+ Ci)2).
Since there are B such polynomials to compute, the total complexity is given by

O(
B∑
k=0

N3
k (n+ Ck)2) = O(B(logA+ n)3(n+ logA+ L)2).

52

where A = maxk=0,...,B Ak, L = maxk=0,...,B Lk. By Proposition 4.7, the coefficients of
the thus computed polynomials are bounded by

n+ log(n+ logA+ 2) + 2 + (n+ logA+ 1)(n+ logA+ logL+ 3).

Using Lemma 3.7, we may now truncate the coefficients to obtain a smaller output. Note
that according to the proof of 4.7 the logarithm of the coefficients of P̃i in the monomial
basis is bounded by logA + N logL + N , so according to Lemma 3.7, we can compute
for each i a polynomial

Qi(x) =
Ni∑
j=0

bi+1,jx
j

with coefficient-size logA + N logL + N + n + logN + 1 satisfying |bi+1,j − âi+1,j | ≤
2−n−1−logN , where âi+1, j is the jth coefficient of P̃i in the monomial basis, and thus

‖ Qi − P̃i ‖≤ 2−n−1.

According to Lemma 3.7, this normalisation step takes time

O((n+ logA)(n+ logA+ logL)).

�

Remark 6.4. (i) Actually, the representations δCω([0,1]) and δCω ,pp are equivalent, since
δCω ,pp allows for efficient function evaluation, which in turn allows to retrieve the
coefficients of the Taylor series (cf. [Mü87] and [KMRZ12]).

(ii) Since δCω ,pp is a seemingly natural representation of Cω([0, 1]) which renders max-
imization, evaluation and integration second-order polynomial time computable
and since non-uniformly these problems are equivalent, one might hope that δCω ,pp

characterises some of them. In fact, as we will show in a moment, it does nonuni-
formly characterise evaluation but does not uniformly characterise any of them (cf.
[KMRZ12] ’Optimality Questions’).

Proposition 6.5. δCω ,pp nonuniformly characterises evaluation, that is, the functional

EVAL : Cω([0, 1])× [0, 1]→ R, (f, x) 7→ f(x)

with parameters represented by ρc|[0,1] and image space represented by ρ.

Proof. As mentioned before, evaluation of a real analytic function in polynomial time
allows for retrieving its Taylor-coefficients in polynomial time and the additional param-
eters are constants and thus trivially computable in polynomial time, which shows that
δCω([0,1]) non-uniformly characterises EVAL. For details, see the proof of ’α �p β̃’ in
[KMRZ12]. The result then follows from Theorem 6.3 and Proposition 3.14. �

Remark 6.6. A more general version of the above proposition Proposition can be found
in [KMRZ12], Remark 4.2.

Proposition 6.7. The natural embedding Cω([0, 1]) → C([0, 1]) is (δCω ,pp, δC([0,1]),pp)-
FP2.

53

Proof. A δCω ,pp-name immediately yields an approximation to f by piecewise polynomial
functions (~Pn)n with discontinuities at the breakpoints (~an)n. To obtain a δC([0,1]),pp-
name we need to introduce ’joints’ to make the approximating functions continuous. For
this, recall that C := logAf + logLf is a Lipschitz-constant for f on [0, 1]. For each k

define arn,k := an,k + 2−C(n+2)−1, aln,k := ck − 2−C(n+2)−1 and

lk(x) := Pn,k(aln,k) +
x− aln,k
arn,k − aln,k

(Pk+1(arn,k)− Pk(aln,k))

on [aln,k, arn,k]. We then have for all x ∈ [aln,k, arn,k]

|f(x)− lk(x)| ≤ |f(aln,k)− lk(aln,k)|+ |lk(x)− l(aln,k)|+ |f(x)− f(aln,k)|

with |f(x)− f(aln,k)| ≤ 2−n−2, |f(aln,k)− lk(aln,k)| ≤ 2−n−1 and |l(x)− l(aln,k)| ≤ 2−n−2.
In order to compute a νD[x]-name of li, we simply need to evaluate the polynomials Pn,i
in aln,k and aln,k, which can be done in second-order polynomial time according to 4.6,
and then perform some elementary arithmetic operations. Observe that arn,k − aln,k is
a power of 2, so we do not have to perform actual divisions (i.e. we can compute li
exactly). �

Corollary 6.8. (i) Every polynomial-time computable real analytic function on [0, 1]
(in the sense of Definition 1.1) is an FP-point of δC([0,1]),pp.

(ii) More generally, every polynomial-time computable real analytic function on [a, b],
where a, b ∈ D is an FP-point of δC[a,b],pp.

Proof. Item (i) immediately follows from Propositions 6.5, 6.7 and 3.14 and Example
3.16. If f ∈ Cω([a, b]) is computable in polynomial time, then so is f̂(x) := f(a+x(b−a)),
where x ∈ [0, 1]. The result then follows from (i) and Proposition 5.21. �

We can now prove Theorem 1.4, which we may also state more uniformly

Theorem 6.9. Let f be an efficiently constructible function over the interval [0, 1].
Then f ∈ FPδC([0,1]),pq

(C([0, 1])). In particular, f and MAX(f, ·, ·) are polynomial-time
computable functions. Moreover, a δC([0,1]),pq-name of f can be computed in polynomial
time, given polynomial-time computable δCω ,pp-names (or δCω([0,1])-names) of the basic
functions used to construct f . If the construction of f does not involve divisions or
square-roots, then f is already an FP-point of δC([0,1]),pp, so in particular, INT(f, ·, ·) is
a polynomial-time computable function.

Proof. Corollary 6.8 asserts the claim for all polynomial-time computable real analytic
functions. According to Theorem 5.11, the set FPδC([0,1]),pq

(C([0, 1])) is ’uniformly’
closed under addition, multiplication and division. Theorem 5.13 and Corollary 5.17
show the closure under case distinctions at polynomial-time computable points and tak-
ing square roots. Because of Corollary 6.8 and Proposition 5.21, the same holds true
for FPδC[a,b],pq(C([a, b])), where a, b ∈ D. Now, any efficiently constructible function
f ∈ C([0, 1]) can be written in the form

f := f1 ◦ f2 ◦ · · · ◦ fs

54

where f1, . . . , fs are efficiently constructible functions over compact intervals with dyadic
rational endpoints, whose construction does not involve composition. It follows that the
fi’s are FP-points of FPδC[ai,bi],pq(C([ai, bi])) for appropriate ai, bi ∈ D. Using Proposi-
tion 5.21 and the remark following Theorem 5.8 we can write

f := f̃1 ◦ f̃2 · · · ◦ f̃s

where f̃i ∈ FPδC([0,1]),pq
(C([0, 1])) for i = 1, . . . , s. So, by Theorem 5.8, f is an FP-

point of δC([0,1]),pq. The case where the construction of f does not involve square-roots
and divisions is proved analogously and the fact, that a name of f can be computed
in polynomial time, given polynomial-time computable names of the basic functions
involved in the construction follows from the constructive nature of the theorems involved
in this proof. �

Now, since as mentioned before, δCω ,pp behaves essentially like δC([0,1]),pp, we are able
to formulate an analogue to Theorem 5.7 for the space Cω([0, 1]).

Theorem 6.10. (i) Evaluation

Cω([0, 1])× [0, 1] 3 (f, x) 7→ f(x) ∈ R

is (δCω ,pp × ρc, ρ)-computable in time

O(Bf (n+logAf+logLf+pf)+d2
f (n+logAf)2(n+logAf+logLf)(n+logAf+bf logLf))

and (δCω([0,1]) × ρc, ρ)-computable in time

O(Bf (n+ logAf)3(n+ logAf + Lf)2).

(ii) Parametrised maximisation

Cω([0, 1])× [0, 1]× [0, 1] 3 (f, a, b) 7→ max
x∈[a,b]

f(x) ∈ R

is (δCω ,pp × ρc × ρc, ρ)-computable in time

O(Bfd5
f (n+ logA)7(bf logL+ df)2 +Bfd

2
f (n+ logA)2p2

f).

and (δCω([0,1]) × ρc × ρc, ρ)-computable in time

O(Bf (n+ logAf)3(n+ logAf + Lf)2 +Bf (n+ logAf)7(logLf)2).

(iii) Parametrised integration

Cω([0, 1])× [0, 1]× [0, 1] 3 (f, a, b) 7→
∫ b

a
f(x) ∈ R

is (δCω ,pp × ρc × ρc, ρ)-computable in time

O(Bfdf (n+ logAf)2(bf (n+ logAf + log df + pf) logL+ df (n+ logAf + pf)2)).

and (δCω([0,1]) × ρc × ρc, ρ)-computable in time

O(Bf (n+ logAf)3(n+ logAf + Lf)2).

55

Proof. The proof is analogous to that of Theorem 5.7. The logarithm of a Lipschitz-
constant of f is given by logA+logL and the absolute value of f on [0, 1] is bounded
by A, which yields the slightly improved bounds stated. The complexity-bounds
for δCω([0,1]) then follow from Theorem 6.3.

�

Remark 6.11. The complexity bounds obtained here for evaluation and maximisation,
given a δCω([0,1])-name, are fairly crude - better bounds would be obtained by working
with δCω([0,1]) directly without taking the ’detour’ over δCω ,pp and invoking the Transla-
tion Algorithm 4.7, which in both cases dominates the overall complexity.

Finally, we observe that δCω ,pp renders some natural operations on Cω([0, 1]) second-
order polynomial-time computable. The case of differentiation requires some technical
preparation.

Lemma 6.12. (i) Let r > 1. Then we have

k ≤ rk

e ln r
for all k ∈ N.

(ii) More generally,

kd ≤
(

d

e ln r

)d
rk.

Theorem 6.13. Let A,B,L p, be a bounds on Af ,Ag,Bf ,Bg,Lf ,Lg,pf ,pg respectively.
(i) Addition

Cω([0, 1])× Cω([0, 1]) 3 (f, g) 7→ f + g ∈ Cω([0, 1]),

is (δCω ,pp× δCω ,pp, δCω ,pp)-computable in time O(Bdfbf (n+ logA)2 logL+Bp+L)
(ii) Multiplication

Cω([0, 1])× Cω([0, 1]) 3 (f, g) 7→ f · g ∈ Cω([0, 1]),

is (δCω ,pp × δCω ,pp, δCω ,pp)-computable in time

O(Bd2b2(n+ logA)4(logL)2 +Bp+ L),

(iii) Iterated Anti-Differentiation

Cω([0, 1])× N 3 (f,m) 7→ f (−m) ∈ Cω([0, 1]),

where f (−m) is the unique function satisfying (f (−m))(k)(0) = 0 for k < m and
(f (−m))(m) = f , is (δCω ,pp × ν1, δCω ,pp)-computable in time

O
(
Bf (n+ logAf)df

[
m2(log(df (n+ logAf)))2 +mbf (n+ logAf) logLf log(df (n+ logAf))

])
.

The output parameters are Af (−m) = Af , Lf (−m) = Lf , df (−m) := df + m and
bf (−m) := bf + log df + 2.

(iv) Iterated Differentiation

Cω([0, 1])× N 3 (f,m) 7→ f (m) ∈ Cω([0, 1])

56

is (δCω ,pp × ν1, δCω ,pp)-computable in time

O(m2BfN(logN)2 +mBfbfN logN),

where N = 2df (n+logA+m logL+2m logm+2m log df+m log 20+3). The output
parameters are df (m) = 6df+2df log df ,bf (m) := bf+m log log df , Af (m) := 4mmmALm

and Lf (m) := 2Lf .

Proof. The results (i) and (ii) follow almost immediately from Theorem 5.10, we only
have to tread the additional parameters.

(i) If for all x ∈ [0, 1] we have f (k)(x) ≤ Af · Lkf · k! and g(k)(x) ≤ Ag · Lkg · k!, then

f (k)(x) + g(k)(x) ≤ Af · Lkf · k! +Ag · Lkg · k! ≤ (Ag +Af)(max{Lf , Lg})kk!.

So in addition to a δC([0,1]),pp-name of f + g, obtained via 5.10, we output Af +Ag
and max{Lf , Lg}.

(ii) Picking up the notation in (i), we have

(fg)(k)(x) =
k∑
i=0

(
k

i

)
f i(x)gk−i(x) ≤

k∑
i=0

(
k

i

)
AfL

i
f i!AgLk−ig (k− i)! = AfAg(Lf +Lg)kk!.

So in addition to a δC([0,1]),pp-name of f + g, obtained via 5.10, we output Af · Ag
and Lf + Lg. Note that a bound on | log f(x)| on [0, 1] is given by logAf , so we
may replace the bound cf (0) + log df (0) found in 5.10 by this.

(iii) Let fn+1 be the piecewise polynomial function given by the δCω ,pp-name of f ap-
proximating f up to error 2−n−1. For each polynomial of fn+1 compute the m-fold
anti-derivative up to error 2−n−1 using Proposition 4.14 (i.e. approximate the
coefficients up to error 2−n−log d where d is the degree of fn+1). The piecewise-
polynomial function thus obtained approximates f up to error 2−n. By the Mean
Value Theorem, A and L, such that equation (1) is satisfied for f (−m) are given by
Af and Lf , the degree of the output-polynomial is df (n + logA + 2) + m and its
coefficient-size is at most

bf (n+ logA) logL+ n+ log(df (n+ logA+ 2)),

so we may put df (−m) := df + m and bf (−m) := bf + log df + 2. According to
Proposition 4.14, the total complexity is given by

O
(
Bf (n+ logA)df

[
m2(log(df (n+ logA)))2 +mbf (n+ logA) logL log(df (n+ logA))

])
.

(iv) Let d ≥ m. For x0 ∈ [0, 1] consider the Taylor-polynomial

Tx0(x) =
d∑
j=0

f (j)(x0)
j! (x− x0)j .

Note that f is analytic on B(x0,
1

2L) and that |Tx0(x) − f(x)| ≤ A2−d for all x ∈
B(x0,

1
2L). Now, for every x ∈ [x0− 1

2L , x0 + 1
2L] there exists a ξ ∈ [x0− 1

2L , x0 + 1
2L]

such that

T (m)
x0 (x)− f (m)(x) = f (d+1)(ξ)

(d−m+ 1)!(x− x0)d−m+1.

57

Using the estimate (1), we obtain

|T (m)
x0 (x)− f (m)(x)| ≤ ALm(d+ 1)m2m−d−1.

Now Lemma 6.12 yields

(d+ 1)m ≤
(

m

e ln
√

2

)m
(
√

2)d+1

so

|T (m)
x0 (x)− f (m)(x)| ≤ ALm

(
m

e ln
√

2

)m
2m−d/2−1/2 ≤ ALm2mmm2m−d/2−1/2. (2)

Let x ∈ [ak, ak+1]. Let P be the polynomial given by the δCω ,pp-name of f approx-
imating f up to error 2−d+logA+1. Note that P has degree df · d. By Markov’s
inequality (more precisely, Proposition 5.19) we have

|P (m)(x)− T (m)
x0 (x)| ≤ Lm4md2m

f d2m max{|P (x)− Tx0(x)| | x ∈ [x0 − 1
2L , x0 + 1

2L]}
≤ Lm4md2m

f d2m(2logA+1−d +A2−d).

Again, Lemma 6.12 yields

d2m ≤
(2m
e ln
√

2

)2m
(
√

2)d ≤ 5mm2m(
√

2)d.

So we obtain

|P (m)(x)− T (m)
x0 (x)| ≤ ALm20md2m

f m2m(21−d/2 + 2−d/2). (3)

Consequently, if

d ≥ 2(n+ logA+m logL+ 2m logm+ 2m log df +m log 20 + 3)

then equations (1) and (2) yield

|P (m)(x)− f (m)(x)| ≤ |P (m)(x)− T (m)
x0 (x)|+ |T (m)

x0 (x)− f (m)(x)| ≤ 2−n.

The polynomial P has degree

d′ := 2df (n+ logA+m logL+ 2m logm+ 2m log df +m log 20 + 3)

and P (m) can be obtained using Proposition 4.13 in timeO(d′m2(log d′)2+md′bf log d′),
where d′ is the degree of P . Since there are Bf differentiations to perform the com-
plexity of this step is O(Bfd′m2(log d′)2 +Bfmd

′bf log d′). It remains to compute
the new parameters A′f , L′f , d′f , b′f such that equation (1) is satisfied for f (m) with
A′f , L′f ,such that the degree of P (m) is bounded by d′f (n+ logA+ 1) and such that
the coefficient-size of P (m) is bounded by b′f (n+ logA′) logL′. Equation (1) yields

f (m+k)(x) ≤ ALm+k(m+ k)! ≤ ALm+k(m+ k)mk!

and by Lemma 6.12

(m+ k)m ≤
(

m

e ln 2

)m
2m+k ≤ mm4m2k.

58

So we may put A′f := 4mmmALm and L′f := 2Lf . In order to obtain a bound on
the degree of P we may then put

d′f := 2df
(

1 + m logm+ 2m log df +m log 5 + 2
n+ logA+m logL+ 2m+m logm+ 1

)
which can be very roughly estimated by

d′f ≤ 6df + 2df log df .
The coefficient-size of the new polynomials is bounded by

bf (n+ logA) logL+m log d′,
so we may put b′f := bf +m log log df .

�

59

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge Uni-

versity Press, 2009.
[BPR08] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic Ge-

ometry - second edition. Springer, 2008. available online at http://perso.univ-rennes1.fr/marie-
francoise.roy/bpr-ed2-posted2.pdf - retrieved May 1st 2012.

[Che66] E. W. Cheney. Introduction to Approximation Theory. AMS Chelsea, 1966.
[Fü09] Martin Fürer. Faster integer multiplication. SIAM Journal on Computing, 39-3:979–1005, 2009.
[Kaw11] Akitoshi Kawamura. On function spaces and polynomial-time computability, 2011. ongoing work.

Preprint available online at www-imai.is.s.u-tokyo.ac.jp/ kawamura/dagstuhl.pdf - retrieved August
21st 2012.

[KC10] Akitoshi Kawamura and Stephen A. Cook. Complexity theory for operators in analysis. Proceedings
of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pages 495–502, 2010.

[KMRZ12] Akitoshi Kawamura, Norbert Th. Müller, Carsten Rösnick, and Martin Ziegler. Parameterized uniform
complexity in numerics: from smooth to analytic, from NP-hard to polytime. unpublished preprint,
2012.

[Ko91] Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser, 1991.
[LHE01] S. Labhalla, H.Lombardi, and E.Moutai. Espaces métriques rationnellement présentés et complexité,

le cas de l’espace des fonctions réelles uniformément continues sur un intervalle compact. Theoretical
Computer Science, 250:265–332, 2001.

[Mü87] Norbert Th. Müller. Uniform computational complexity of taylor series. In Automata, Languages and
Programming, volume 267 of Lecture Notes in Computer Science, pages 435–444. Springer, 1987.

[New64] D. J. Newman. Rational approximation to |x|. Michigan Math. Journal, 11:11–14, 1964.
[Rud87] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1987.
[SS71] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Computing, 7:281–292, 1971.
[Usp48] J.V. Uspensky. Theory of Equations. MacGraw Hill, 1948.
[Vin36] A.J.H. Vincent. Sur la résolution des équations numériques. Journal de Mathématiques Pures et

Appliquées, pages 341–372, 1836.
[Wei00] Klaus Weihrauch. Computable Analysis. Springer, 2000.

