
Logic Formalization and
Automated Deductive
Analysis of Business Rules
Johannes Schramm
Diplomarbeit an der Technischen Universität Darmstadt – 25. November 2014
1. Gutachter: Prof. Dr. Reiner Hähnle
2. Gutachter: Prof. Dr. Martin Ziegler
Betreuer: Richard Bubel

Erklärung

Hiermit versichere ich, die vorliegende Diplomarbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmitteln verwendet zu haben.

———————————————
Johannes Schramm
Darmstadt, den 25.11.2014

2

Abstract

Automated formal verification of certain properties of business rule management systems
(BRMS) is demanded by companies using such systems in productive environments. We
implement this process for certain termination properties of the BRMS Drools. Syntax
and structural operational semantics for fragments of the Drools Rule Language (DRL)
are defined and used to proof a termination criterion for DRL. The program verifying
these fragments is available to the public.

3

Acknowledgements

I would like to thank Prof. Dr. Reiner Hähnle and Prof. Dr. Martin Ziegler who made
this thesis possible. Furthermore, I am indebted to Maik Weinard from Capgemini who
supplied me with the real-world examples of business rules.
Special thanks go to Richard Bubel for giving me constant advice and support while

writing this thesis and helping me with many organizational issues.

4

Contents

Abstract 3

Acknowledgements 4

Contents 5

1. Introduction 7

2. Preliminaries 9
2.1. Drools Rule Engine . 9
2.2. Drools Rule Language . 12
2.3. The Rete Algorithm . 15
2.4. Term Rewriting Systems . 17

3. Theory 22
3.1. Syntax of DRLZ . 22
3.2. Semantics of DRLZ . 28
3.3. Termination Property for DRLZ . 35
3.4. Termination Criterion for DRLZ . 39

4. Implementation 45
4.1. Program Installation . 45
4.2. Program Operation . 46
4.3. Program Structure . 47
4.4. Parsing DRL . 49

5. Case Study 50
5.1. Subject . 50
5.2. Preparations . 54
5.3. Results . 58
5.4. Benchmarks . 60

6. Conclusion 62

Bibliography 63

Figures 64

5

Contents

Listings 65

Appendices 66

A. Investigated Rules and Related Data 67
A.1. Investigated Decision Table . 67
A.2. Investigated Rules . 67
A.3. Integer Term Rewriting Systems . 86
A.4. AProVE Results . 88

B. Javadoc 103
B.1. Package de.jss.drools . 103
B.2. Package de.jss.drools.analysis . 104
B.3. Package de.jss.drools.compiler . 106
B.4. Package de.jss.drools.lang . 115

6

1. Introduction

Business rule management systems (BRMS) play a crucial role in the organizational
processes of many companies, public agencies and other enterprises. BRMS provide
an abstraction layer to existing IT infrastructure which allows to capture the business
logic regarding the data and functions provided by the underlying systems. For a better
understanding of what business rules are, we would like to quote [5, p. 4-5]:

“A business rule is a statement that defines or constrains some aspect of the
business. It is intended to assert business structure or to control or influence
the behavior of the business. (...)

From the information system perspective, it pertains to the facts that are
recorded as data and constraints on changes to the values of those facts. That
is, the concern is what data may, or may not, be recorded in the information
system. (...) Accordingly, a business rule expresses specific constraints on the
creation, updating, and removal of persistent data in an information system.”

In most BRMS one can combine collections of business rules that circle around a
common topic in some kind of storage. Such storage is called rule base (RB). The
properties of RBs and especially the interaction of the rules within a given RB are the
central theme of this thesis. More formally, one could imagine a RB as a structure of the
following form:

rule1 : 〈preconditions1〉 −→ 〈conclusions1〉
rule2 : 〈preconditions2〉 −→ 〈conclusions2〉
rule3 : 〈preconditions3〉 −→ 〈conclusions3〉

...
...

...
...

rulen : 〈preconditionsn〉 −→ 〈conclusionsn〉

Here the preconditions of a rule define when it can be applied and the conclusions
define the effect of this application. Now one might ask how these preconditions and
conclusions influence each other and what happens when we repeatedly evaluate and
apply rules? In some cases, the answer could be that we enter a vicious circle. The effect
of one rule possibly makes the precondition of some other rule true; and the conclusion
is an effect which causes the next precondition to be true and so forth, thus creating a
never-ending cascade of effects.
In this thesis we introduce a way to detect some of these infinite loops and present

an implementation that is capable to execute this detection for certain RBs of the open-
source BRMS Drools. This implementation heavily relies on the software verification

7

1. Introduction

tool AProVE [8]. Like this tool our approaches can be categorized in the field of formal
software verification where one is interested in the automated verification of certain
properties of programs. From this perspective, we try to verify the termination property
for RBs, which can be considered as programs for the rule interpreter of Drools.
The demand for the formal verification of RBs of Drools came from Capgemini, an

IT company which provides consulting and custom software solutions. The software
engineers at Capgemini use Drools to develop register applications for public agencies in
Germany. From companies’ point of view, formal software verification can be seen under
two aspects: On the one hand, it provides useful help when developing and debugging
programs; on the other hand, it can help to assure certain software quality measures,
which are especially of interest when the provided programs need to be in accordance
with certain laws.
The RBs of Drools, which we cover in the theoretical part of this thesis, are restricted

and provide only a fraction of the features defined by the rule language of Drools. The
RBs of Drools, which we can practically analyze with our implementation, are even more
restricted and far away from the RBs used in productive environments. However, we
are able to cover many core concepts of Drools. In our case study we show that this is
sufficient to produce useful results with practical importance. We prepare a RB developed
at Capgemini and analyze this RB with our implementation. In this process we gather
valuable information about the RB and show that the restrictions of our implementation
are not of fundamental nature and could in principle be overcome, provided one is willing
to invest the necessary software development efforts. Hence our work can be seen as the
proof-of-concept and a first step towards the goal of an automated verification process
for Drools RBs that are relevant in real-world scenarios.
In Chapter 2 we present the basic concepts which are necessary for the rest of the

thesis. A brief overview of the Drools rule engine and the Drools Rule Language (DRL)
[10] is given. We shortly explain the Rete algorithm [6], which is the basis for Drools and
many other BRMS. Finally, we introduce the required formal framework, the so-called
term rewriting systems.

We start Chapter 3 with an introduction of syntax and structural operational semantics
of a fragment of DRL. These semantics are then used to define certain properties of
DRL; among them the most prominent is the termination property. In the last section of
the chapter we interrelate this termination property of rule bases with the termination
property of the term rewriting systems introduced earlier, which leads to a termination
criterion for DRL.
Chapter 4 gives a short guide on how to install and use the implementation. Here

we also present some details regarding the internal structure of the program and how it
reuses existing classes of Drools and utilizes AProVE [8].
In Chapter 5 we present Drools RBs that are anonymized versions of excerpts of RBs

used at Capgemini and explain the steps necessary to translate central aspects of these
RBs into the previously defined fragment of DRL. We use these translations to illustrate
the results and performance of the implementation.
The last chapter gives a brief summary of the results and final conclusions.

8

2. Preliminaries

This chapter introduces the basic concepts, notations, and terminology that are used
throughout the rest of the text. Most of its content is based on [2, 6, 7, 10].
We begin the first section with a short description of the rule engine (or runtime) of

Drools [10, p. 107]. The mechanics of this part of Drools are of great importance to us,
since it is responsible for the relationship of RBs and data provided by external systems.
In this context, the entities of data are called facts. We end this section with a brief
discussion of the shape and behavior the rule engine expects from such facts.
The next section presents an overview of the Drools Rule Language (DRL) [10, p. 187],

which is used to formulate the RBs for Drools. DRL is a feature-rich language with a
close relationship to the programming language Java [9]. Since DRL essentially possesses
the full expressive power of Java, it is far too comprehensive to be presented in detail.
Instead, we try to expose its general concepts and give an example of how Drools RBs
might look like.
The third section briefly introduces the Rete algorithm [6], which forms the basis

of Drools and many other BRMSs. This pattern-matching algorithm, allows efficient
handling of large numbers of facts and rules. A basic understanding of the ideas behind
this algorithm helps us to explain our later formalization.
Finally, we introduce term rewriting systems (TRS) [2] and conditional integer term

rewriting systems (ITRS) [7]. These systems have a mature theory of termination prop-
erties, which we utilize later. In the next chapter we show how to extract certain ITRS
from a given DRL, such that the termination of the ITRS guarantees the termination of
the respective DRL.

2.1. Drools Rule Engine

Drools Expert is the rule engine of the BRMS Drools and the primary objective of our
formalisation approaches. It is part of the JBoss Developer program organized by the
company Red Hat. Like all JBoss projects, it is written completely in the programming
language Java and is available as an open source software. At the moment of publication
the latest stable release of Drools Expert is version 6.1, which we from now on refer to
as simply Drools. For a complete documentation, see [10, p. 107].
Since the term rule engine can be rather ambiguous, we state more precisely that

Drools is a production rule system and based on the Rete algorithm [6]. This algorithm is
the core of most production rule systems and allows efficient handling of large numbers
of facts and rules by implementing a sophisticated caching strategy for intermediate
results. We give more details on this algorithm in Section 2.3. A production rule system

9

2. Preliminaries

consists of two parts: the working memory and the inference engine. The working
memory maintains a list of facts and other data, which represent the current state of
knowledge in the system. The inference engine holds the current RB and tries to match
its rules against the facts in the working memory. If a match is found, we say that the
matching rule is triggered. Once all matches are found, the triggered rules are prioritized
in a so-called agenda. The order of this agenda can be influenced directly through the
design of the RB. However, this order might also depend on other factors like the time
at which facts were asserted to the working memory, or the complexity of a rule and
many other criteria. After this prioritization step, which is called conflict resolution, the
actions defined by the rules on the agenda are executed in a batch process. We say the
rules fire. The whole process of pattern matching, conflict resolution, and rule firing is
called match-resolve-act cycle. The actions executed when firing a rule might change the
working memory. In this case, the current agenda is dismissed and the inference engine
returns to matching facts and rules. Thus, the triggering of a rule can result in a cascade
of other actions and conclusions. This is called forward chaining. A sequence of match-
resolve-act cycles caused by forward chaining, is called evaluation cycle. To emphasize
this dynamic behavior of rules and the possible manifestation of conclusions as facts in
the working memory, rules are sometimes called productions in this context.
Drools provides access to its working memory and inference engine through two Java

interfaces: StatelessKieSession and KieSession. The former does not maintain
the working memory after an evaluation cycle and is intended for short-lived tasks like val-
idation or calculation. The later maintains the working memory between evaluation cy-
cles and is intended for long-lived processes like real-time monitoring or real-time diagnos-
tics. Since we mainly focus on what happens inside a single evaluation cycle, this differ-
ence is not of importance to us; and we only briefly describe the KieSession interface.
This interface exposes the working memory through the method insert(Object o),
which inserts an object into the working memory. After all desired objects are inserted
into the working memory, one can start the evaluation cycle of the inference engine by
calling the method fireAllRules().
From this point of view, we can narrow the topic of this thesis and say that we are inter-

ested in the following question: Does a call of the method fireAllRules() terminate
for an arbitrary working memory and the given RB?
While we do not want to go into more details about the implementation of Drools,

we need a basic understanding of the nature of the objects used as facts in the working
memory. We discuss this in the next paragraphs.

Facts in Drools

Since Drools is written in Java and mostly used in Java environments it is natural to re-
present facts as Java objects. Indeed, Drools accepts any Java object as a fact. However,
some issues have to be considered before passing objects to Drools or when designing
classes that are meant to represent facts.
Drools uses a Java feature called introspection or reflection to analyze the objects

inserted into working memory. Java introspection allows the analysis of the class of an

10

2. Preliminaries

Listing 2.1: Example of a Java class used to represent facts
1 public class Flower {
2
3 private String color;
4 private String name;
5
6 public String getColor() {
7 return color;
8 }
9
10 public String getName() {
11 return name;
12 }
13
14 public void setColor(String color) {
15 this.color = color;
16 }
17
18 public void setName(String name) {
19 this.name = name;
20 }
21 }

object at the runtime. It reveals the public methods and fields, implemented interfaces,
and other valuable information about the object. It can also be used to call the received
methods, thus allowing to work with objects, whose classes are not available at compile
time. When introspecting an object, Drools assumes that certain characteristics of the
object represent so called attributes. We illustrate that with an example:
Consider the Java class in Listing 2.1. After introspection of an instance of the class

Flower, Drools assumes that the object has the attributes color and name. The
methods in Lines 6 to 12 are used to receive their respective values; they are called
getters. The methods in Lines 14 to 20 are used to set their respective values; these are
called setters.

Since Drools has only access to the signature of these methods it relies on their correct
implementation and expects a certain behavior. That is, the value of an attribute must
not change when calling a getter; and the call of a setter changes only the value of the
respective attribute. Furthermore, it is required to inform Drools about the change of
an attribute of a fact when it is done outside of Drools. This can be achieved by calling
the update(Object o) method of the KieSession interface.

The example in Listing 2.1 shows a simple class that acts well-behaved and like ex-
pected by Drools. The values of the attributes are stored in private fields and everything
is easily understood. However, this is not necessarily the case and it might not be trivial
to guarantee the expected behavior in the case of a more complex class. For such classes
software verification tools like KeY [3] can be used to test and verify the stated require-
ments. Since our thesis is about the analysis of RBs and not the analysis of Java code,
we do not discuss this topic further.
Instead, we choose another approach, which makes sure that the facts in our RBs

behave like expected. In Drools it is also possible to define the structure of a fact

11

2. Preliminaries

directly in a RB. For those facts a consistent behavior is guaranteed. We come back to
this feature at the end of the next section about the rule language of Drools.

2.2. Drools Rule Language

The Drools Rule Language (DRL) is used to formulate RBs for Drools. DRL has a close
relationship to the programming language Java [9] and incorporates some of its notions
and reuses Java syntax directly in numerous cases. However, there are some unique
features which facilitate the declaration of facts and rules, which we want to present in
this section. DRL possesses many other interesting features and is far too comprehensive
to be discussed in detail. For a complete documentation, refer to [10, p. 187]. In this
section we illustrate some of the core features of DRL with a concrete example of a simple
RB and explain the intent behind the used constructs.
Listing 2.2 shows a simple Drools RB written in DRL. Line 1 shows what some readers

might identify as a Java namespace declaration. We come back to this topic, when we
discuss facts in DRL. For now it suffices to imagine that it defines the name of the
RB. Lines 3 to 8 show the first rule of the RB. Line 3 indicates the beginning of a
rule declaration and also defines the name of the rule. Line 4 indicates the start of

Listing 2.2: Example of a rule base written in DRL
1 package mother.goose.rhymes;
2
3 rule "Roses are red"
4 when
5 Flower(color == "red", name == "Rose")
6 then
7 System.out.println("We found a red rose.");
8 end
9
10 rule "Violets are blue?"
11 when
12 $f : Flower(color != "blue", name == "Violet")
13 then
14 System.out.println("We need to fix some violet.");
15 modify ($f) { setColor("blue") }
16 end
17
18 rule "Violets are blue!"
19 when
20 Flower(color == "blue", name == "Violet")
21 then
22 System.out.println("We found a blue violet.");
23 end
24
25 rule "Sugar is sweet and so are you"
26 when
27 Sugar($sweetness : sweetness) and $p : Person(sweetness == $sweetness)
28 then
29 System.out.format("Maybe this is you: %s.\n", $p);
30 end

12

2. Preliminaries

the conditional part of the rule which defines when a rule can be applied. This part is
also called the left-hand side (LHS) of the rule. In this case, the LHS consists of the
single Line 5 which shows what is called a pattern in the idiom of Drools. Patterns
are the most important conditional constructs of Drools, since they allow to refer to
the facts in the working memory. We explain the meaning of the pattern in Line 5 as
follows: The rule "Roses are red" matches every fact in the working memory such
that its type is Flower, when considered as a Java object. Furthermore, each matched
fact needs to have the attributes color and name with the values "red" respectively
"Rose". The part of the pattern between the parentheses defines what is called the
constraints of the pattern. Note that here the operator == does not have the usual
Java semantics, that is the constraint color == "Red" has the meaning of the Java
statement color.equals("Red"). Line 6 indicates the start of the consequence part
of the rule which defines what happens when a rule is fired. This part is also called the
right-hand side (RHS) of the rule. Generally, the RHS of a rule can be an arbitrary
sequence of Java statements and essentially defines a Java method. In this instance, the
RHS consists of the single Line 7 which prints the string "We found a red rose."
to the current standard output.
The first rule of this RB is very simple, in the sense that it just tests the existence of

certain facts in the working memory and the RHS does not even depend on those facts.
Typically, one wants to refer to the facts matched on the LHS of a rule in the RHS of
that rule. This can be achieved using the so-called pattern bindings. An example of such
a pattern binding can be found in Line 12. Here we have a pattern very similar to the
one in Line 5, however, it is preceded with the variable $f followed by a colon. This
statement binds a fact matched by the respective pattern to the variable $f which is then
also available on the RHS of the rule. For example, Line 15 modifies the fact bound to
the variable $f by changing the attribute color to the value "blue". The statement in
Line 15 is Drools specific and not found in standard Java. There are other Drools specific
statements similar to modify which insert or retract facts from the working memory.
Despite the obvious meaning of modify, an important aspect of this statement is that it
also informs Drools about a change of the working memory. Thus, firing the second rule
of our example would cause Drools to skip the current agenda and return to matching
mode.
To discuss this behavior in more detail, imagine a working memory which contains

a single fact with type Flower and attributes with values "yellow" respectively
"Violet". Only the second rule is applicable, hence Drools fires this rule. Now Drools
returns to the matching mode and finds that only the third rule is applicable and thus
fires this rule. After this the agenda is empty and Drools stops the evaluation cycle,
which illustrated an example of forward chaining. It is also noteworthy in this example
that firing the second rule changes the matched fact in such a way that this rule does
not match the same fact in the next match-resolve-act cycle. Without the constraint
color != "blue" our supposed working memory would cause a never-ending loop.
Drools would modify the same fact over and over again even though the value of the
attribute color is already "blue". In most cases this is not the desired behavior and
one is interested in rules which are not repeatedly applicable to the same facts. This

13

2. Preliminaries

behavior is related to the so-called self-deactivation property of rules, which we formally
define in Section 3.3.
So far all considered rules referred to single facts on their respective LHS, since they

contained only one pattern. Another important feature of Drools is the join of multiple
facts in the working memory. An example of this shows the last rule of our RB. The
intended meaning of its LHS is: This rule is applicable, when there is a fact of type
Sugar and a fact of type Person in the working memory, such that both have the
same value of their attribute sweetness. This is achieved using the operator and and
the so-called attribute bindings. The statement between the first parentheses of Line 27
binds the value of the attribute sweetness of the currently considered fact with the
type Sugar to the variable $sweetness. This variable is then used as a part of the
constraint of the second pattern of the LHS.
In general, we need to understand that Drools creates a match for each fact in the

working memory to which a rule is applicable. If a rule refers to multiple facts, it creates
a match for every n-tuple of facts which satisfies the stated constraints. This means the
number of possible matches of a single rule is generally in a polynomial relationship to
the number of facts in the working memory where the leading exponent is determined
by the number of patterns of that rule.

Facts in DRL

As mentioned in Section 2.1, Drools uses Java introspection or reflection to analyze the
structure of facts. Here the Java namespace declaration at the beginning of a RB plays an
important role. Drools searches in the current Java class path for the class corresponding
to a fact and assumes that the fully qualified name of this class begins with the defined
package. That is, in the case of Listing 2.2, Drools assumes that patterns matching the
type Flower refer to facts which are instances of a class with the fully qualified name
mother.goose.rhymes.Flower. In case that the classes of the facts are defined
in different packages, we can use the DRL statement import, which defines the fully
qualified name of each class and works quite similar to its Java counterpart.
These mechanisms are commonly used in productive environments, since here the

model of the facts is most likely not only used in DRL, but also in other contexts and
should thus be independent of Drools. For our theoretical considerations, the use of these
constructs has the major drawback: they break the self-sustenance of RBs and we need
to view RBs using these features in the context of a complete Java environment. Luckily,
DRL has a feature which allows us to directly define the structure of facts inside RBs.
Listing 2.3 shows a possible declaration of the facts used in Listing 2.2. The syntax

is self-explanatory. Drools translates such type declarations to Java classes, which look
very similar to the one in Listing 2.1 and uses them in the background. Another benefit
of the direct declaration of types, is that it also guarantees the expected behavior of facts,
which we discussed in Section 2.1. Yet, in real-world scenarios this feature is mainly used
to define the structure of facts, which represent intermediate results, created inside the
evaluation cycle of a rule, and are not accessed outside of Drools. This has also to do
with the complicated procedure necessary to instantiate and handle such facts outside of

14

2. Preliminaries

Listing 2.3: Example of a type declaration written in DRL
1 declare Flower
2 color : String
3 name : String
4 end
5
6 declare Sugar
7 sweetness : Integer
8 end
9
10 declare Person
11 firstName : String
12 lastName : String
13 sweetness : Integer
14 end

Drools. Nevertheless, these issues are irrelevant for our theoretical analysis and we use
this feature to define the structure of facts in Section 3.1 to make the considered RBs
self-sustained objects.

2.3. The Rete Algorithm

Drools is a production rule system and this type of rule engine is in most cases based on
the Rete algorithm [6] or on some of its variations. This algorithm, developed by Charles
L. Forgy in 1974, describes the implementation of an sophisticated pattern matching
strategy which performs well for large numbers of facts and rules. The main idea be-
hind this algorithm is the caching of the intermediate results that occur in the pattern
matching process. Hence this algorithm is a typical example for a programming strategy
which trades working memory for processor time in an efficient and beneficial way.
The caching of the intermediate results happens in a so called Rete which is the Greek

term for network; and indeed, a Rete has an in-memory representation of a directed
acyclic graph, which can be visualized as a network. Such network represents all rules
of the given RB and is generated at run-time by the inference engine. In the matching
process, facts from the working memory traverse this network following the directions of
the edges. Each Rete has a single initial node which represents the entry of the network
and, in most cases, many terminal nodes which represent the exits of the network. The
terminal nodes relate to the matches for the rules in the compiled RB. This means, if a
fact traverses the Rete from the initial node to a terminal node, we find a match for the
associated rule.
Figure 2.1 shows a possible Rete for the Drools RB from Listing 2.2. We use this

graphic to illustrate more details of the structure of these networks. A Rete can be
further divided into the so called α-network and β-network. The α-network is connected
to the initial node and its last layer forms the so called α-memory. The β-network is
located between the α-memory and the terminal nodes.

15

2. Preliminaries

Figure 2.1.: Rete of the rule base in Listing 2.2

Initial

α-memory

Terminals

α-network

β-network

instanceof
Flower

instanceof
Sugar

instanceof
Personname ==

"Rose"

name ==
"Violet"

color ==
"red"

color ==
"blue"

color !=
"blue"

sweetness ==
$sweetness

I

α1

α2 α3

α4 α5 α6 α7 α8

β1

T1 T2 T3 T4

Alpha Network

The α-network consists of α-nodes and forms a discrimination network, which divides
the facts using simple criteria, which can be tested for an individual fact. An α-node
has a single input and possibly many outputs. It represents a single test criterion for
a fact. Such a test typically compares an attribute of a fact to a constant value or
compares two attributes of the same fact. Another important test is the identification
of the object type, which is usually performed in the first layer of α-nodes, which are
directly connected to the initial node. If a fact passes the test in an α-node it is moved

16

2. Preliminaries

to the succeeding α-nodes until it eventually reaches the α-memory which forms the last
layer of the α-network. The α-memory caches the arriving facts for further use. All
facts stored in a node of the α-memory have passed the tests in the connected branch of
α-nodes. Hence they have passed all respective test conditions.
For example the node α1 in Figure 2.1 is a gateway for all facts of type Flower; and

the node α3 lets pass all facts of type Flower, which have an attribute name whose
value is "Violet". The node α6 is part of the α-memory and contains all facts coming
from node α3 which have an attribute color whose value is different from "blue".

Beta Network

The β-network consists of β-nodes and is responsible for the join of facts from the α-
memory. It is optional and only created, when at least one rule refers to at least two
facts on its LHS. A β-node has two inputs, which are called left and right, and possibly
many outputs. The left input receives tuples of facts and the right input receives a single
fact. Of course, the β-nodes directly connected to the α-memory receive on both sides
single facts. A β-node, typically has its own β-memory, which stores all tuples from the
left input and represents partial matches. If a fact enters the right side of the β-node
it is tested against the tuples in the β-memory and added to those tuples for which it
passes the test. Those tuples are then sent to the left side of the next β-node or directly
to a terminal node. The tests performed in β-nodes typically refer to the attributes of
two facts. However, there are more complex types of β-nodes, which might depend on
all facts coming from the inputs. For example, the DRL join operator not, which we
discuss in the next chapter, leads to a special kind of β-node.
Figure 2.1 contains the single β-node β1 which performs the join of facts from node

α7 and α8, that is facts of type Sugar, respectively, Person. It creates all possible
pairs, for which the first component is of type Sugar and the second component of type
Person. Next, the β-node tests for each pair if the value of the attribute sweetness
of both components is equal. Pairs, which pass this test, are send to the terminal node T4.

Note the important difference between certain constraints of patterns, which look quite
similar in plain DRL. That is, in terms of our example from Listing 2.2, the handling of
a constraint, like for color == "Red" invokes a completely different mechanism than
the handling of a constraint like sweetness == $sweetness. This difference plays
a crucial role in our later formalization.

2.4. Term Rewriting Systems

A term rewriting system (TRS) is an abstract rewriting system (A,→), where the object
set A is a set of terms and the rewrite relation → is a binary relation over A. Since
we want a convenient notation to define such rewrite relations, a more sophisticated
definition is needed. This is achieved using so-called rewrite rules, which also cover
the replacement of subterms. Next, we introduce a special signature for terms handling
arithmetic integer expressions and a way to restrict the applicability of rewrite rules using

17

2. Preliminaries

certain conditional elements. This is necessary for the formulation of the conditional
integer term rewriting systems (ITRS), which we need for the analysis of termination
properties of Drools RB.
Most content of this section is taken from [2], which provides a comprehensive overview

of the field of rewriting systems. The definition of ITRSs and the related theorems come
from [7].
Now we begin with our formal introduction by defining the concept of signatures:

Definition 2.4.1 A TRS-signature Σ is a tuple Σ = (V,F , α), where:

(1) V = {v0, v1, v2, . . .} is a countable set of variable symbols.

(2) F = {f0, f1, f2, . . .} is a countable set of function symbols.

(3) α : F → N.

(4) V ∩ F = ∅.

Sometimes we write x, y, z instead of v0, v1, v2 and f, g, h instead of f0, f1, f2. We call
α(f) = n the arity of f . In this case, we call f an n-ary function symbol. The 0-ary
function symbols are called constant symbols.

Note that this definition of a signature is a little different from the one commonly
used when stating other formal systems, since we have no need for predicate symbols.
However, our signature gives rise to a set of terms in a well-known way:

Definition 2.4.2 The set of terms TΣ over a signature Σ is the smallest set such that:

(1) V ⊆ TΣ.

(2) If f ∈ F , α(f) = n, and t0, . . . , tn−1 ∈ TΣ then f(t0, . . . , tn−1) ∈ TΣ.

Sometimes we write T instead of TΣ when the signature is clear from the context.

In this section, we assume from now on the presence of an arbitrary given signature
Σ and most of the following definitions are relative to this Σ. As we want to be able to
probably define the rewriting of subterms of terms, we need the notion of positions:

Definition 2.4.3 Let t ∈ T be a term. The set Pos(t) ⊂ N∗ consists of words over the
alphabet N and is recursively defined as follows:

(1) If t is a constant or variable symbol then Pos(t) = {ε}.

(2) If t = f(t0, . . . , tn−1) then Pos(t) =
⋃n−1
i=0 {iπ|π ∈ Pos(ti)}.

We call the elements π ∈ Pos(t) the positions of t.

Pay attention that here and generally in the context of strings, we use the symbol ε to
refer to the empty word. Now we can precisely define the subterms of a given term and
how to replace them:

18

2. Preliminaries

Definition 2.4.4 Let t ∈ T be a term and π ∈ Pos(t) a position. The term t|π is
recursively defined as follows:

(1) t|ε = t.

(2) f(t0, . . . , tn−1)|iπ = ti|π.

We call t|π the subterm of t at position π.

Definition 2.4.5 Let t, s ∈ T be terms and π ∈ Pos(t) a position. The term t[s]π
denotes the result of the replacement of t|π in t with s.

Before we can define rewrite rules, we need some last ingredients that help us to clarify,
when we are allowed to make such replacements. These are substitutions and matching
terms:

Definition 2.4.6 Let σ : V → T be a function and t, s ∈ T terms. The function σ
is called substitution iff σ(x) 6= x for only finitely many x ∈ V. Then, we call the set
D(σ) = {x ∈ V|σ(x) 6= x} the domain of σ and say that, s matches t iff σ(s) = t. In
this case, we call D(σ) the necessary instantiation for the matching.

Here we can finally define what a rewrite rule is and how to translate a given set of
rewrite rules into a term rewrite relation:

Definition 2.4.7 Let l, r ∈ T be terms, such that l /∈ V. A rewrite rule is an expression
of the form

l→ r.

We use the symbol R to denote sets of rewrite rules.

Definition 2.4.8 Let R be a set of rewrite rules. The term rewrite relation →R is a
binary relation over T and defined as follows:

s→R t ≡
{

There exist l→ r ∈ R, π ∈ Pos(s), and σ : V → T
such that s|π = σ(l) and t = s[σ(r)]π.

In abuse of notation, we define the resulting term rewriting system R = (T ,→R). This
is not a problem, since it should always be clear from the context, whether we refer to
the set of rewrite rules or the actual term rewriting system.

In the context of term rewriting systems, one is generally interested in the transi-
tive closure →+

R of the rewrite relation →R. The termination property states that this
transitive closure exists for all terms:

19

2. Preliminaries

Definition 2.4.9 Let R be a term rewriting system. We say that R is terminating iff
there is no infinite sequence tn : N→ T of terms such that

t0 →R t1 →R t2 →R . . .

Since rewrite relations are generally infinite objects, one is interested in possibilities to
trace back their termination property to properties of the finite set of rewrite rules from
which they result. This can be achieved through the so-called reduction order:

Definition 2.4.10 Let > be a strict order on T . We call > a rewrite order iff it is
compatible with Σ-operations and closed under substitutions. That is:

(1) For all s1, s2 ∈ T , n ∈ N and f ∈ F with α(f) = n:

s1 > s2 implies f(t1, . . . , ti−1, s1, ti+1, . . . , tn) > f(t1, . . . , ti−1, s2, ti+1, . . . , tn)

for all t1, . . . , ti−1, ti+1, . . . , tn ∈ T and all i with 1 ≤ i ≤ n.

(2) For all s1, s2 ∈ T and all substitutions σ working on T :

s1 > s2 implies σ(s1) > σ(s2)

A reduction order is a well-founded rewrite order.

Theorem 2.4.11 The term rewriting system R terminates iff there exists a reduction
order > such that:

l > r for all l→ r ∈ R

.

Proof: See [2, p. 103]. �

Next, we define the integer term rewriting systems which we utilize later. Theoretically,
these systems have the same expressive power as plain term rewriting systems. However,
in practical applications, where performance becomes more of an issue, ITRSs are often
a more adequate choice. The following definitions are taken from [7].

Definition 2.4.12 An ITRS-signature ΣZ is a TRS-signature ΣZ = (V,F , α), such that:

(1) Z = {0, 1,−1, 2,−2, . . .} ⊆ F contains constant integer symbols.

(2) B = {true, false} ⊆ F contains constant boolean symbols.

(3) FA = {+,−, ∗, /,%} ⊆ F contains binary arithmetic operation symbols.

(4) FB = {∧,→} ⊆ F contains binary boolean operation symbols.

(5) FR = {>,≥,=, 6=,≤, <} ⊆ F contains binary relational operation symbols.

We write TZ instead of TΣZ .

20

2. Preliminaries

Definition 2.4.13 The set of pre-defined ITRS-rules DZ is defined as follows:

DZ = {◦(n,m)→ l | n,m, l ∈ Z, ◦ ∈ FA, n ◦m = l}
∪ {◦(a, b)→ c | a, b, c ∈ B, ◦ ∈ FB, a ◦ b = c}
∪ {◦(n,m)→ true | n,m ∈ Z, ◦ ∈ FR, n ◦m}
∪ {◦(n,m)→ false | n,m ∈ Z, ◦ ∈ FR,¬n ◦m}

For example, we have +(1, 2) → 3, <(4, 5) → true,∧(true, false) → false ∈ DZ.
These pre-defined rules are used to define the desired conditional integer term rewriting
systems.

Definition 2.4.14 Let l, r, c ∈ TZ, such that l /∈ B∪Z∪V and l does not contain symbols
from FA ∪ FB ∪ FR. A conditional rewrite rule is an expression of the form:

l→ r | c

We consider the rewrite rules l→ r from Definition 2.4.7 to be conditional rewrite rules
of the form l→ r | true and write l→ r instead of l→ r | c when c = true.

Definition 2.4.15 Let RZ be a finite set of conditional rewrite rules. The conditional
integer term rewrite relation →Z is a binary relation over TZ and defined as follows:

s→RZ t ≡
{

There exist l→ r | c ∈ RZ ∪ DZ, π ∈ Pos(s), and σ : V → TZ
such that s|π = σ(l), t = s[σ(r)]π and σ(c)→+

RZ
true.

In abuse of notation, we define the resulting conditional integer term rewriting system
RZ = (TZ,→RZ). This is not problem, since it should always be clear from the context,
whether we refer to the set of conditional integer rewrite rules or the actual conditional
integer term rewriting system.

21

3. Theory

This chapter describes the theoretical background of the termination criterion on which
we rely in our implementation. We start by formally defining the syntax of a fragment of
DRL which we call DRLZ. This name is chosen to emphasize that this fragment handles
facts whose attributes represent integer values. The introduced syntax is not abstract
and the resulting expressions are valid DRL: that is, Drools would accept them as actual
rule bases.
Next, we define structural operational semantics for the previously defined fragment.

We introduce a so-called abstract rule engine. This theoretical device allows us to simulate
certain properties of the inference process executed by Drools. An interesting aspect of
this formalism is the exposure of the non-deterministic choices made during the inference
process.
In the third section we define and show some useful properties of the previously defined

syntax and semantics. The most important among them is the termination property. We
also briefly discuss the Turing completeness of our abstract rule engine, which shows that
its termination property is generally not decidable.
In the last section we define and prove a sufficient termination criterion for our abstract

rule engine. We show how to extract certain ITRSs from the considered DRL expressions.
Then we prove that the termination of such ITRS guarantees that the abstract rule
engine terminates for an arbitrary working memory when executing the respective DRL
expression.

3.1. Syntax of DRLZ

In this section we introduce the syntax of the fragment DRLZ, which we examine in the
rest of this chapter. As mentioned in Section 2.2, DRL is a feature-rich language which
is used in productive environments and mostly business related scenarios. As such, it
presents certain obstacles when made the objective of a theoretical analysis.
Hence we are forced to skip many interesting features of DRL. However, we try to

preserve its core concepts and philosophy in our fragment DRLZ. One aspect of this goal
is the waiver of a syntactical abstraction layer: thus all expression of DRLZ are actually
valid DRL, which could be executed in Drools.
We formally define the syntax and some syntactical properties of DRLZ. This rather

technical task is executed by employing so called syntax- or railroad diagrams [11]. Fi-
nally, we compare features of full DRL like defined in [10, p. 187] and DRLZ. In this
process we argue why we think that DRLZ covers the core concepts of DRL.

22

3. Theory

Syntax Diagrams of DRLZ

Like already mentioned in Section 2.2, DRL has a close relation to the programming
language Java [9]. Many concepts of Java are only included in DRL for the convenience
of the programmer and can be considered, what is sometimes called, syntactical sugar.
Nevertheless, we require some Java related notions, which we briefly discuss now. In

our syntax diagrams, we assume the existence of well-defined nonterminals 〈Identifer〉,
〈Variable〉, 〈IntegerComparison〉, and 〈IntegerExpression〉. An instance of 〈Identifer〉
is an alphanumeric string which must not be equal certain keywords. For example
MyType, MyRule, and Atz2X1 are valid instances of 〈Identifier〉, while rule, 4fg+,
and white space are not. An instance of 〈Variable〉 is an 〈Identifier〉 with a direct pre-
fix of the symbol $. That is, $x, $var1, and $qweA34 are valid instances of 〈Variable〉,
while ger$ws is not. An instance of 〈IntegerComparison〉 is one of the Java operators
used to compare integer values. The expressions ==, !=, <, <=, >, and >= are valid
instances of 〈IntegerComparison〉. Finally, 〈IntegerExpression〉 refers to certain expres-
sions which are composed of arithmetic integer operators, integer literals, parentheses,
and instances of 〈Variable〉 in a common way. For example, 21 * ($v + 7) and 42
are valid instances of 〈IntegerExpression〉. Furthermore, we silently assume that most
literals and nonterminals in our syntax diagrams are separated by a finite sequence of so-
called whitespace characters and ignore this topic below. Now we begin with the formal
introduction of the syntax of DRLZ by introducing the concept of a package.

Definition 3.1.1 The nonterminal 〈Package〉 is defined by the following syntax diagram:

〈Package〉 ::=- dialect "mvel"

� �� 〈Type〉 �� �� 〈Rule〉 � -�

〈Type〉 ::=- declare 〈Identifier〉
� �� 〈Attribute〉 � end -�

〈Attribute〉 ::=- 〈Identifier〉 : Integer -�

〈Rule〉 ::=- rule 〈Identifier〉 when 〈LHS 〉 then 〈RHS 〉 end -�

The first instance of 〈Identifier〉 in an instance of 〈Rule〉, 〈Type〉, or 〈Attribute〉 is called
rule identifier, type identifier, respectively attribute identifier. We restrict 〈Package〉 such
that the following conditions hold:

(1) Rule identifiers are unique.

(2) Type identifier are unique.

(3) Attribute identifiers are unique in each instance of 〈Type〉.

Next, we introduce the nonterminals 〈LHS 〉 and 〈RHS 〉, which we left undefined for
the moment, to allow a neat arrangement of syntax diagrams and the related notations
and restrictions.

23

3. Theory

Definition 3.1.2 The nonterminal 〈LHS 〉 is defined by the following syntax diagram:

〈LHS 〉 ::=- �〈Pattern〉� 〈And〉 �� 〈Not〉 �
� -�

〈Pattern〉 ::=- 〈PatternHead〉 (〈PatternBody〉) · · ·
〈PatternHead〉 ::=- �〈Variable〉 :� �� 〈Identifier〉 -�

〈PatternBody〉 ::=- �� , �� 〈Binding〉 �� ���� , �� 〈Constraint〉 �� �� -�

〈Binding〉 ::=- 〈Variable〉 : 〈Identifier〉 -�

〈Constraint〉 ::=- 〈Identifier〉 〈IntegerComparison〉 〈IntegerExpression〉 -�

〈And〉 ::=-
� and �� 〈LHS 〉 � -�

〈Not〉 ::=- not (〈LHS 〉) -�

An instance of 〈Identifier〉 which appears in a 〈PatternHead〉 is called pattern type iden-
tifier. An instance of 〈Variable〉 which appears in a 〈PatternHead〉 is called pattern
binding ; and an instance of 〈Variable〉 which appears at the beginning of a 〈Binding〉 is
called attribute binding. An instance of 〈Constraint〉 is called β-constraint iff it contains
〈Variable〉 which appear in attribute bindings outside the current 〈Pattern〉. All other
instances of 〈Constraint〉 are called α-constraints. In particular, an α-constraint which
contains no 〈Variable〉 at all is called constant constraint. Instances of 〈Not〉 are called
scope-delimiter. Furthermore, we restrict 〈LHS 〉 such that the following conditions hold:

(1) Each pattern type identifier is equal to some type identifier.

(2) Instances of 〈Variable〉 which appear in a pattern or attribute binding are unique.

(3) Instances of 〈Variable〉 which appear inside of an 〈IntegerExpression〉 must also ap-
pear in an attribute binding on the left side of the 〈IntegerExpression〉.

(4) Variables used in attribute bindings inside a scope-delimiter must not appear to the
right side of that scope-delimiter.

(5) Instances of 〈Constraint〉 are ordered such that the α-constraints appear before the
β-constraints.

The concepts of α- and β-constraints is in direct relation to the concepts of α- and
β-nodes from Section 2.3. The requirements on the order of these constraints is stated
to facilitate the introduction of the semantics of DRLZ in the next section, since they
are evaluated at different stages of the matching process.

24

3. Theory

Definition 3.1.3 The nonterminal 〈RHS 〉 is defined by the following syntax diagram:

〈RHS 〉 ::=-
� ; �� 〈Action〉 � -�

〈Action〉 ::=- � 〈Insert〉� 〈Delete〉 �� 〈Modify〉 �
� -�

〈Insert〉 ::=- insert (new 〈Identifier〉 (· · ·

· · ·
� , �� 〈IntegerExpression〉 �)) -�

〈Delete〉 ::=- delete (〈Variable〉) -�

〈Modify〉 ::=- modify (〈Variable〉) { · · ·

· · ·
� , �� 〈Identifier〉 = 〈IntegerExpression〉 � } -�

Furthermore, we restrict 〈RHS 〉 such that the following conditions hold:

(1) The first instance of 〈Identifier〉 in an 〈Insert〉 equals some type identifier and the
number of integer expressions equals the number of attributes related to that type
identifier.

(2) The first 〈Variable〉 in a 〈Delete〉 or 〈Modify〉 equals some pattern binding in the
current instance of 〈Rule〉.

(3) Instances of 〈Identifier〉 which appear in 〈Modify〉 are unique and equal some at-
tribute identifier in the instance of 〈Type〉 which is identified by the pattern type
identifier that corresponds to the pattern binding in the current 〈Modify〉.

(4) Instances of 〈Variable〉 which appear in an 〈IntegerExpression〉 equal attribute bind-
ings in the current instance of 〈Rule〉.

An instance of 〈Modify〉 is called β-modification if it contains a 〈Variable〉, which ap-
pears in an attribute binding outside the 〈Pattern〉 which corresponds to its pattern
binding. All other instances of 〈Modify〉 are called α-modifications. In particular, an
α-modification which contains no 〈Variable〉 at all is called constant modification.

We illustrate the previous definitions of the syntax of DRLZ with an example of an
instance of 〈Package〉, which is presented in Listing 3.1. The definition of the Java
dialect MVEL in Line 1 is necessary to facilitate a syntax for the modification of facts,
which allows the use of attribute names instead of the related setters. For a complete
documentation of MVEL, see [4]. In Lines 14 to 23 we find an instance of 〈LHS 〉, and
specifically an instance of 〈And〉. In Lines 14 to 18 and Lines 20 to 23 we find instances of
〈Pattern〉. In Lines 14 and 20 we find pattern bindings, and in Lines 15 and 21 – attribute
bindings. In Lines 16 and 17 we find α-constraints, where Line 16 contains a constant
constraint. In Line 22 we find a β-constraint. In Lines 25 to 32 we find an instance of
〈RHS 〉. In Lines 25 to 28 we find an α-modification. Line 29 gives us an example of an

25

3. Theory

Listing 3.1: Example of a rule base written in DRLZ

1 dialect "mvel"
2
3 declare A
4 x : Integer
5 y : Integer
6 end
7
8 declare B
9 z : Integer
10 end
11
12 rule R
13 when
14 $a : A(
15 $x : x,
16 y > 4,
17 y != $x
18)
19 and
20 B(
21 $z : z,
22 z < $x
23)
24 then
25 modify ($a) {
26 y = 10,
27 x = $x * 5
28 }
29 insert(new A(20, $x * $z));
30 end

instance of 〈Insert〉. This example shows that the concepts and notions introduced in
this section are not really hard to grasp; and the main challenge we are facing here is the
establishment of a clear and precise notation for these very concepts and notions, which
we need for the definition of the semantics of DRLZ in the next section.
Next, we compare our fragment to the complete language specification of DRL. In this

process we argue why we think that DRLZ covers the core concepts and philosophy of
DRL.

Comparison between DRLZ and DRL

Let us take a look at the language specification of DRL found in [10, p. 187]. If we
compare the 〈Package〉 which we find there to our definition of 〈Package〉, we see that
we omitted the features functions, queries, globals, and imports. Functions allow the
definition of a Java helper class inside a DRL file. While this might be convenient in
some cases, this is a clear case of syntactic sugar which we already mentioned earlier.
Queries are simply speaking instances of 〈LHS 〉 and allow the programmer to employ
the power of the pattern matching algorithm of Drools to receive filtered lists of objects
from working memory. This has also an convenience feature and has no direct relation
to the evaluation cycle of Drools.

26

3. Theory

Globals allow the definition of variables to which one might refer throughout an RB.
The values of these variables must be initialized outside of Drools before starting the
inference process. This is clearly an important feature of DRL, which is used in most
productive RBs. For example, if one wants to reason about dates and time, one might be
interested if a date lies in the future or in the past. This could be achieved by introducing
a global variable $now and supplying a proper initialization of its value. However, if we
take a closer look at the intended use of globals, we find the following sentence [10,
p. 199]: “It is strongly discouraged to set or change a global value from inside your
rules.” This basically means one should consider globals as immutable constant values
throughout the inference process. In the case of DRLZ, we can use integer literals to
emulate concrete instances of globals.
We already discussed certain aspects of import statements versus type declarations at

the end of Section 2.2; and that we use type declarations, since this makes the considered
RBs self-contained objects. In full DRL the expressive power of type declarations is
almost equal to the one of Java classes, especially in regards of the properties which are
relevant for the inference process. In comparison, the type declarations in DRLZ are very
restricted since they only allow attributes of type Integer. This is obviously one of
the biggest restrictions of DRLZ and we are not able to cover attributes which represent
collections of objects or complex structures. Basic data types, like for example Boolean,
Date, or String, however, can be encoded using integers and we exemplify this process
for the type String in Chapter 5.
Next, we compare our 〈Rule〉 to the one found in the full language specification of

DRL. We note that we omitted the so-called rule attributes. These are properties which
are mostly used to influence the conflict resolution of the inference engine. That is,
they control the order of rule execution when multiple rules are matching. In practice
this might be necessary to solve specific problems. Nevertheless, it is considered best
practice to assume an arbitrary rule order as stated in [10, p. 152]: “As a general rule,
it is a good idea not to count on rules firing in any particular order, and to author
the rules without worrying about a ‘flow’. However when a flow is needed a number of
possibilities exist beyond salience: agenda groups, rule flow groups, activation groups and
control/semaphore facts.” This means that on the one hand we lose expressiveness by
not supporting rule attributes and on the other hand we encourage the intended use of
DRL. We further discuss this topic in the next section.
The 〈LHS 〉 of rules in full DRL introduces additional operators which are used to com-

bine patterns. There we have the operators or, exists, and forall besides and and
not. Obviously, these operators are convenient to have, but they do not add expressive
power and can be reduced to and and not. The documentation makes this explicit
for the operator forall [10, p. 254]: “As a side note, forall(p1 p2 p3...) is
equivalent to writing: not(p1 and not(and p2 p3...)).” The same is true for
exists since exists(p1 p2 p3...) is equivalent to not(not(p1 p2 p3...)).
The operator or can be eliminated through DNF transformations and rule splitting. In
fact, the rule engine of Drools does exactly this in a preprocessing step when compiling
the Rete for a RB. The same is true for Boolean operators, like for example ||, which
are generally allowed in the constraints of patterns in DRL.

27

3. Theory

In full DRL the 〈RHS 〉 of a rule basically defines a Java methods. From this perspec-
tive, our definition of 〈RHS 〉 introduces a massive restriction to the expressive power
of DRLZ. However, like in the aforementioned cases, we find recommendations for the
intended use of 〈RHS 〉; we quote [10, p. 294]: “It is bad practice to use imperative or
conditional code in the RHS of a rule; as a rule should be atomic in nature (...). The
RHS part of a rule should also be kept small, thus keeping it declarative and readable.
(...) The main purpose of the RHS is to insert, delete or modify working memory data.”
The definition of 〈RHS 〉 in DRLZ enforces these recommendations.

3.2. Semantics of DRLZ

In this section we introduce structural operational semantics for the fragment DRLZ
which we have defined in the previous section. This task is necessary to define the
termination property for DRLZ in the next section. Furthermore, it gives us a better
understanding of the match-resolve-act cycle of Drools. An interesting aspect is the
exposure of the non-deterministic choice points which occur in the resolve stage of this
cycle.
We start with the definition of abstract working memories and abstracts matches which

serve as models for their concrete counterparts described in Section 2.2. Next, these
concepts are used to define semantics of instances of 〈LHS 〉 and 〈RHS 〉. This allows us
to capture the matching process, respectively the firing of rules. Finally, we introduce
the concept of an abstract rule engine, which is basically a relation that describes the
valid transitions between abstract working memories for packages of DRLZ. This step
interrelates the previously defined semantics of 〈LHS 〉 and 〈RHS 〉. At this point, we
further investigate the conflict resolution strategies of Drools which prioritize matches
and rules when multiple matches occur.

Abstract Working Memory

We model the abstract working memory of our abstract rule engine using elements of N
and Z. Finite subsets of N are used to represent the facts in the working memory and their
elements can be considered as abstract object pointers. Furthermore, we define a function
which maps such pointers to type identifiers, thus defining the types of our abstract
facts. Finally, we introduce a partial function which maps abstract object pointers and
attribute identifiers to elements of Z. This function represents the attribute values of the
facts in the working memory.

Definition 3.2.1 Let P be a package of DRLZ and I the set of instances of 〈Identifier〉
in P. An abstract working memory W for P is a tuple W = (O,Γ,A) such that:

(1) O ⊂ N is a finite set of abstract object pointers.

(2) Γ : O → I is a function such that Γ(o) is a type identifier in P for all o ∈ O.

(3) A : O×I ⇀ Z is a partial function such that A(o, a) is defined iff o ∈ O and a is an
attribute identifier in the instance of 〈Type〉 identified by Γ(o).

28

3. Theory

We illustrate this definition with an example of an abstract working memory for the
package shown in Listing 3.1.

Example 3.2.2 Suppose, we initialize the previously empty working memory of Drools
for the RB shown in Listing 3.1 with the following rule:

1 rule Initialize
2 then
3 insert(new A(6, 6));
4 insert(new A(5, 6));
5 insert(new B(3));
6 insert(new B(7));
7 insert(new B(2));
8 end

This rule is not part of DRLZ since 〈LHS 〉 is empty. Nevertheless, we show the related
abstract abstract working memory W0 = (O0,Γ0,A0):

O0 = {0, 1, 2, 3, 4}
Γ0 = {0 7→ A, 1 7→ A, 2 7→ B, 3 7→ B, 4 7→ B}
A0 = {(0,x) 7→ 6, (0,y) 7→ 6, (1,x) 7→ 5, (1,y) 7→ 6, (2,z) 7→ 3, (3,z) 7→ 7, (4,z) 7→ 2}

Next, we need a structure which represents the matches produced by the LHS of a rule.
This structure is composed of a pointer to the most recently matched object and a partial
function which represents variable bindings. While the pointer is only of intermediate
relevance for the matching process in 〈LHS 〉, the binding functions plays a crucial role
for the evaluation of 〈RHS 〉 and represents the relevant data for the actual match.

Definition 3.2.3 Let P be a package of DRLZ, W an abstract working memory for P,
and U the set of instances of 〈Variable〉 in P. An abstract match m in W is a tuple
m = (o, bv) such that:

(1) o ∈ O is an abstract object pointer representing the most recently matched fact.

(2) bv : U ⇀ Z is a partial function representing variable bindings.

We writeM to denote a set of abstract matches.

The semantics for 〈LHS 〉 and 〈RHS 〉 which we define next, depend on the semantics
of instances of 〈IntegerExpression〉. It is well-known how to define such semantics in
the context of a function, which represents the values of variables. In our case, this
function is bv. Hence we assume a well-defined semantics 〈e, bv〉 ⇒ z ∈ Z such that JeK
represents the element of Z to which the integer expression e evaluates for bv. In the next
section, we show that the restrictions to the syntax of DRLZ and the definition of the
semantics of 〈LHS 〉 ensure that the function bv is always defined properly and facilitates
the evaluation of integer expressions.

29

3. Theory

Semantics of LHS

We define a relation 〈L,W〉 ⇒M, such thatM represents the matches of the instance
L of 〈LHS 〉 in the abstract working memory W. We define this relation inductively over
the structure of the syntax of DRLZ. We start with the empty pattern which matches
all facts in the abstract working memory such that their type is the respective pattern
type identifier. Afterwards, we introduce semantics for pattern bindings and attribute
bindings which populate the variable binding function bv. At this point we are able to
evaluate α-constraints. Finally, we introduce semantics for the operators and and not
and define rules which allow the evaluation of β-constraints.

Definition 3.2.4 Let P be a package of DRLZ, W an abstract working memory for P,
M a set of abstract matches in W, and L an instance of 〈LHS 〉 in P. We define the
operational semantics 〈L,W〉 ⇒ M inductively over the syntactic structure of L, like
defined in Definition 3.1.2:

(Pattern)
M = {o ∈ O|Γ(o) = T} × {∅}

〈T(),W〉 ⇒M
where T is a type identifier.

(BindP)
〈T(),W〉 ⇒M M′ = {(o, {v 7→ o})|(o,∅) ∈M}

〈v:T(),W〉 ⇒M′

where v is an instance of 〈Variable〉.

(BindA)

〈P(B),W〉 ⇒M M′ = {(o, bv ∪ {v 7→ A(o, a)})|(o, bv) ∈M}
〈P(B,v:a),W〉 ⇒M′

where P is an instance of 〈PatternHead〉, B a possibly empty finite sequence of
instances of 〈Binding〉, and a an attribute identifier related to the pattern type
identifier in P .

(Consα,==)
〈P(B,Cα),W〉 ⇒M M′ = {(o, bv) ∈M|A(o, a) = JeK}

〈P(B,Cα,a==e),W〉 ⇒M
where Cα is a possibly empty finite sequence of α-constraints and e is an instance
of 〈IntegerExpression〉 which contains only variables appearing in B.

(And)

〈L,W〉 ⇒M1 〈P(B,Cα),W〉 ⇒M2 M′ = {m1 ◦m2|(m1,m2) ∈M1 ×M2}
〈L and P(B,Cα),W〉 ⇒M′

where m1 ◦m2 = (o1, bv,1) ◦ (o2, bv,2) = (o2, bv,1 ∪ bv,2).

30

3. Theory

(Consβ,==)

〈L and P(B,Cα,Cβ),W〉 ⇒M M′ = {(o, bv) ∈M|A(o, a) = JeK}
〈L and P(B,Cα,Cβ,a==e),W〉 ⇒M′

where Cβ is a possibly empty finite sequence of β-constraints and e contains at
least one variables appearing in attribute bindings in L.

(Not>)
〈L,W〉 ⇒M 〈L and K,W〉 ⇒ ∅
〈L and not(K),W〉 ⇒M

where K denotes an instance of 〈LHS 〉.

(Not⊥)
〈L and K,W〉 ⇒M M 6= ∅
〈L and not(K),W〉 ⇒ ∅

Furthermore, we have the rules (Consα,!=), (Consβ,!=), (Consα,<), (Consβ,<), (Consα,<=),
(Consβ,<=), (Consα,>), (Consβ,>), (Consα,>=) and (Consβ,>=) analogue to (Consα,==) re-
spectively (Consβ,==). Finally, there are special cases for the rules (Not>) and (Not⊥) iff
〈LHS 〉 starts with not:

(Not>,α)
〈K,W〉 ⇒ ∅ M = (∅,∅,∅)

〈not(K),W〉 ⇒M

(Not⊥,α)
〈K,W〉 ⇒M M 6= ∅
〈not(K),W〉 ⇒ ∅

We illustrate this definition with an example by deriving the abstract matches for the
instance of 〈LHS 〉 in Listing 3.1 in the abstract working memoryW0 from Example 3.2.2.

Example 3.2.5 We derive 〈L,W0〉 ⇒M0, where L is the instance of 〈LHS 〉 in Listing
3.1, i.e. $a : A($x : x, y > 4, y != $x) and $b : B($z : z, z < $x)
and W0 the abstract working memory from Example 3.2.2. First, we show the related
derivation for LA = $a : A($x : x, y > 4, y != $x):

M1 = {o ∈ O|Γ(o) = A} × {∅}
〈A(),W0〉 ⇒M1 M2 = {(o, {$a 7→ o})|(o,∅) ∈M1}

〈$a : A(),W0〉 ⇒M2

〈$a : A(),W0〉 ⇒M2 M3 = {(o, bv ∪ {$x 7→ A(o,x)})|(o, bv) ∈M2}
〈$a : A($x : x),W0〉 ⇒M3

31

3. Theory

〈$a : A($x : x),W0〉 ⇒M3 M4 = {(o, bv) ∈M3|A(o,y) > J4K}
〈$a : A($x : x, y > 4),W0〉 ⇒M4

〈$a : A($x : x, y > 4),W0〉 ⇒M4 M5 = {(o, bv) ∈M4|A(o,y) 6= J$xK}
〈$a : A($x : x, y > 4, y != $x),W0〉 ⇒M5

Here we applied the rules (Pattern), (BindP), (BindA), (Consα,>), (Consα,!=) and pro-
duced the following sets of abstract matches:

M1 = {(0,∅), (1,∅)}
M2 = {(0, {$a 7→ 0}), (1, {$a 7→ 1})}
M3 = {(0, {$a 7→ 0,$x 7→ 6}), (1, {$a 7→ 1,$x 7→ 5})}
M4 = M3

M5 = {(1, {$a 7→ 1,$x 7→ 5})}

Next, we show the respective derivation for LB = B($z : z):

M6 = {o ∈ O|Γ(o) = B} × {∅}
〈B(),W0〉 ⇒M6

〈B(),W0〉 ⇒M6 M7 = {(o, bv ∪ {$z 7→ A(o,z)})|(o, bv) ∈M6}
〈B($z : z),W0〉 ⇒M7

Here we applied the rules (Pattern), (BindA) and produced the following sets of abstract
matches:

M6 = {(2,∅), (3,∅), (4,∅)}
M7 = {(2, {$z 7→ 3}), (3, {$z 7→ 7}), (4, {$z 7→ 2})}

Finally, we can derive the matches for L = LA and B($z : z, z < $x):

〈LA,W0〉 ⇒M5 〈LB,W0〉 ⇒M7 M8 = {m1 ◦m2|(m1,m2) ∈M5 ×M7}
〈LA and LB,W0〉 ⇒M8

〈LA and LB,W0〉 ⇒M8 M0 = {(o, bv) ∈M8|A(o,z) < J$xK}
〈L,W0〉 ⇒M0

Here we applied the rules (And), (Consβ,<), and produced the following sets of abstract
matches:

M8 = {(2, {$a 7→ 1,$x 7→ 5,$z 7→ 3}), (3, {$a 7→ 1,$x 7→ 5,$z 7→ 7}),
(4, {$a 7→ 1,$x 7→ 5,$z 7→ 2})}

M0 = {(2, {$a 7→ 1,$x 7→ 5,$z 7→ 3}), (4, {$a 7→ 1,$x 7→ 5,$z 7→ 2})}

Notice, that we were able to resolve variables in instances of 〈IntegerExpression〉 using
the variable binding functions bv. This is always possible due to the restrictions to the
syntax and since instances of 〈Binding〉 are evaluated before α- and β-constraints.

32

3. Theory

Semantics of RHS

We define a relation 〈U,W, bv〉 ⇒ W ′ such that W ′ represents the new abstract working
memory after applying the actions defined in the instance U of 〈RHS 〉, based on the
abstract working memory W and the variable binding function bv.
The semantics of 〈RHS 〉 are canonical and follow common patterns known from struc-

tural operational semantics for imperative programming languages. We define how a
given working memory is changed for each action in the RHS of a rule when a certain
variable binding function from the matches of the LHS of that rule is selected. Finally,
we define the sequential composition of such actions.

Definition 3.2.6 Let P be a package of DRLZ, W and W ′ abstract working memories
for P, R an instance of 〈Rule〉 in P, L the instance of 〈LHS 〉 in R, and U the instance of
〈RHS 〉 in R. Furthermore, let 〈L,W〉 ⇒M and (o, bv) ∈M. We define the operational
semantics 〈U,W, bv〉 ⇒ W ′ inductively over the syntactic structure of U , like defined in
Definition 3.1.3:

(Delete)
O′ = O \ {bv(v)} Γ′ = Γ|O′ A′ = A|(O′ × I)

〈delete(v),W, bv〉 ⇒ W ′

where v is an instance of 〈Variable〉 appearing in a pattern binding in L.

(Insert)

O′ = O ∪ {o} Γ′ = Γ ∪ {o 7→ T} A′ = A ∪
⋃
i{(o, ai) 7→ JeiK}

〈insert(new T(e1, . . .,en)),W, bv〉 ⇒ W ′

where o = min(N \ O), (en) a sequence of integer expressions, and (an) is the
sequence of all attribute identifiers appearing in the instance of 〈Type〉 which is
identified by the type identifier T .

(Modify)

A′ = {(o, a, z) ∈ A|o 6= bv(v) ∨
∧
i a 6= ai} ∪

⋃
i{(bv(v), ai) 7→ JeiK}

〈modify(v){a1=e1, . . .,ak=ek},W, bv〉 ⇒ W ′

where O′ = O, Γ′ = Γ, (en) a sequence of integer expressions, and (ak) is some se-
quence of attribute identifiers appearing in the instance of 〈Type〉 which is identified
by the pattern type identifier related to the pattern binding v.

(Sequence)
〈U,W, bv〉 ⇒ W ′ 〈A,W ′, bv〉 ⇒ W ′′

〈U;A,W, bv〉 ⇒ W ′′

where A is an instance of 〈Action〉.

33

3. Theory

Example 3.2.7 We derive 〈U,W0, bv〉 ⇒ W2, where U is the instance of 〈RHS 〉 in
Listing 3.1, W0 the abstract working memory from Example 3.2.2, and bv the variable
binding function associated with the abstract object identifer 2 in M0 from Example
3.2.5, that is bv = {$a 7→ 1,$x 7→ 5,$z 7→ 3}.
First, we show the derivation for AM = modify ($a) {y = 10, x = $x*5 }:

A1 = {(o, a, z) ∈ A0|o 6= 1} ∪ {(1,y) 7→ J10K, (1,x) 7→ J$x*5K}
〈modify ($a) {y = 10, x = $x*5 },W0, bv〉 ⇒ W1

Here we applied the rule (Modify) and produced the following abstract working memory
W1 = (O1,Γ1,A1):

O1 = O0

Γ1 = Γ0

A1 = {(0,x) 7→ 6, (0,y) 7→ 6, (1,x) 7→ 25, (1,y) 7→ 10, (2,z) 7→ 3,
(3,z) 7→ 7, (4,z) 7→ 2}

Next, we show the derivation for AI = insert(new A(20, $x*$z)):

O2 = O1 ∪ {5} Γ2 = Γ1 ∪ {5 7→ A} A2 = A1 ∪ {(5,x) 7→ J20K, (5,y) 7→ J$x*$zK}
〈insert(new A(20, $x*$z)),W1, bv〉 ⇒ W2

Here we applied the rule (Insert) and produced the following abstract working memory
W2 = (O2,Γ2,A2):

O2 = {0, 1, 2, 3, 4, 5}
Γ2 = {0 7→ A, 1 7→ A, 2 7→ B, 3 7→ B, 4 7→ B, 5 7→ A}
A2 = {(0,x) 7→ 6, (0,y) 7→ 6, (1,x) 7→ 25, (1,y) 7→ 10, (2,z) 7→ 3,

(3,z) 7→ 7, (4,z) 7→ 2, (5,x) 7→ 20, (5,y) 7→ 15}

Finally, we can apply the rule (Sequence) and know that 〈U,W0, bv〉 ⇒ W2.

Abstract Rule Engine

Now that we have defined the semantics for 〈LHS 〉 and 〈RHS 〉, we can model the match-
resolve-act cycle of Drools. Specifically, we need to decide how to handle conflict reso-
lution. The relevant aspects of conflict resolution in our case are on the one hand the
prioritization of multiple matches for one rule; and on the other hand the prioritization
of rules, when multiple rules are triggered.
The order in which multiple matches for a given rule are processed by Drools depends

on many factors. For example, the order in which the facts are inserted into the working
memory is of great importance. Hereby, every update of a fact can influence the order.
Moreover, certain caching strategy can alter the order as the working memory grows. In
general, the realization of this order is rather opaque. Hence the correct functioning of
RBs should never rely on a specific order for the processing of matches.
As a consequence for our theoretical considerations, it is reasonable to assume an

arbitrary execution order for multiple matches. This translates to a non-deterministic

34

3. Theory

choice point in our semantics. The semantics we have introduced so far are deterministic.
That means that there is at most one M such that 〈L,W〉 ⇒ M for given L and W;
and at most one W ′ such that 〈U,W, bv〉 ⇒ W ′ for given U , W, and bv. To interrelate
these semantics, we need to choose a (o, bv) ∈M and we leave this choice arbitrary. We
make this explicit in our next definition:

Definition 3.2.8 Let P be a package of DRLZ, W and W ′ abstract working memories
for P, R an instance of 〈Rule〉 in P, LHS(R) the instance of 〈LHS 〉 in R, and RHS(R)
the instance of 〈RHS 〉 in R. We define the relation W ⇒R W ′ which models the valid
transitions between abstract working memories for the rule R:

(Rule)
〈LHS(R),W〉 ⇒M (o, bv) ∈M 〈RHS(R),W, bv〉 ⇒ W ′

W ⇒R W ′

Now we discuss the conflict resolution of Drools when multiple rules are triggered.
In contrast to the previously discussed conflict resolution, this strategy is completely
transparent. If there are no attributes which influence the control flow, the rules are
prioritized based on their order in the DRL file. However, like already mentioned at
the end of Section 3.1, it is considered bad practice to rely on a specific order for the
execution of rules. Again, we quote [10, p. 152]: “As a general rule, it is a good idea not
to count on rules firing in any particular order, and to author the rules without worrying
about a ‘flow’.” Hence it is justified to take the same approach as before and assume an
arbitrary conflict resolution strategy when multiple rules are triggered. This leads us to
the final definition of this section: the semantics of packages in DRLZ:

Definition 3.2.9 Let P be a package of DRLZ, W and W ′ abstract working memories
for P. We define the relation W ⇒P W ′ which models the valid transitions between
abstract working memories for the package P:

(Package)
R ∈ P W ⇒R W ′

W ⇒P W ′

3.3. Termination Property for DRLZ

In this section we define the termination property for packages in DRLZ using the seman-
tics from the previous section. Furthermore, we discuss Turing completeness of DRLZ
and show that the termination of DRLZ is generally undecidable.
The definition of our termination property resembles the termination property for term

rewriting systems, as given in Definition 2.4.9:

Definition 3.3.1 Let P be a package of DRLZ and W an abstract working memory for
P. We say that P is terminating for W iff there is no infinite sequence (Wn) of abstract
working memories such that W =W0 and

W0 ⇒P W1 ⇒P W2 ⇒P · · ·

We call P terminating iff P is terminating for all abstract working memories.

35

3. Theory

The termination of a package P implies that every derivation sequenceW0 ⇒P W1 ⇒P
W2 ⇒P · · · eventually ends in an abstract working memory Wn such that all rules in P
yield an empty set of matches in Wn. Like in the case of TRSs, it is certainly interesting
to investigate the related transitive closure⇒+

P of⇒P which could for example be used to
define the confluence property for P. However, due to time restrictions in this thesis we
limit ourselves to the termination property. In this context the self-deactivation property
is significant. That is, in a terminating package every rule is self-deactivating:

Definition 3.3.2 Let P be a package of DRLZ, R an instance of 〈Rule〉 in P and W an
abstract working memory for P. We say that R is self-deactivating for W iff there is no
infinite sequence (Wn) of abstract working memories such that W =W0 and

W0 ⇒R W1 ⇒R W2 ⇒R · · ·

We call R self-deactivating iff R is self-deactivating for all abstract working memories.

There is a sequence of matches (Mi) for sequences of abstract working memories,
like in Definition 3.3.2, such that 〈LHS(R),Wi〉 ⇒ Mi. The self-deactivation property
for R guarantees that such sequences of matches are finite and eventually reach the
empty set. Typically for self-deactivating rules are sequences of matches (Mi), such
that |Mi| is (strictly) decreasing. Rules used in productive environments often define
constraints which exclude the possibility to match the same fact twice. Listing 2.2 shows
a related technique, which we find also in Chapter 5. However, this is generally not a
characteristic for the self-deactivation of rules. Listing 3.2 presents an atypical example of
self-deactivation. The considered rule is obviously self-deactivating, since in the presence
of an fact of type B, eventually every fact of type A in the abstract working memory is
modified such that the value of the related attribute x is greater than 5. Nevertheless,
the related sequence |Mi| is increasing, since every application of this rule inserts another
fact of type B, which results in a higher number of pairs produced by the operator and
during the matching process. This example also exhibits the subtle considerations one
needs to take into account when looking for a termination criterion for DRLZ.
Next, we discuss the Turing completeness of our abstract rule engine, which shows

that the termination property for packages is generally not decidable.

Listing 3.2: Atypical example of self-deactivation in DRLZ

1 declare A x : Integer end
2 declare B x : Integer end
3
4 rule SD
5 when
6 $a : A($x : x, x < 5) and B()
7 then
8 insert(new B($x));
9 modify($a) {
10 x = $x + 1
11 }
12 end

36

3. Theory

Turing Completeness of DRLZ

Full DRL is obviously Turing complete since it incorporates the expressive power of Java.
However, despite the removal of most Java related features our fragment DRLZ remains
Turing complete. We consider two basic approaches to verify this, even though we do not
carry out the required formal proofs. On the one hand, it is sufficient to show that DRLZ
can be used to emulate reasoning via Horn clauses known from logic programming. On
the other hand, one could argue that DRLZ has the expressive power to simulate primitive
and µ-recursive functions.
Horn clauses are logical formulas used in logic programming, which can be written as

implications
p0 ∧ p1 ∧ · · · ∧ pn−1 → q

where pi and q are atomic formulas. Now one needs show that abstract working memories
can serve as a model for such formulas and that the rules of DRLZ can emulate the
reasoning with Horn clauses. It is intuitively clear that this is possible. Listing 3.3 shows
a representation in DRLZ of the following classical example:

human(x)→ mortal(x)
socrates(x)→ human(x)

The only surprise which one might find in Listing 3.3 is the use of the operator not.
The related construction ensures the self-deactivation of the rules and guarantees the

Listing 3.3: Emulation of Horn clauses in DRLZ

1 declare Human x : Integer end
2 declare Mortal x : Integer end
3 declare Socrates x : Integer end
4
5 rule HumansAreMortal
6 when Human($x : x) and not(Mortal(x == $x))
7 then insert(new Mortal($x))
8 end
9
10 rule SocratesIsHuman
11 when Socrates($x : x) and not(Human(x == $x))
12 then insert(new Human($x))
13 end

Listing 3.4: Emulation of functions in DRLZ

1 declare F e : Integer n0 : Integer n1 : Integer f : Integer end
2
3 rule EvaluateF
4 when $f : F($n0 : n0, $n1 : n1, e == 0)
5 then modify($f) {e = 1, f = 2 * $n0 + $n1}
6 end

37

3. Theory

termination of this specific package. However, our primary concern here is that this
construction also facilitates the intended behavior of the inference process.
The simulation of basic arithmetic functions in DRLZ is obviously not a problem.

Listing 3.4 shows an example for the function f(n0, n1) = 2n0 + n1. Here we represent
elements of functions Nn → N through facts with n + 2 attributes. The first attributes
indicates whether the function value is already evaluated and is crucial to suppress the
repeated evaluation of functions. The other attributes represent the function arguments
and the related function value.
The composition of functions can be realized through multiple rules. One rule for

every inner function, which ensures that the necessary values are present in the abstract
working memory; and another rule for the evaluation of the outer function. Listing 3.5
shows an example for the functions g(n0, n1) = n0 + n1 and f(n) = g(n, n) + 42.
The idea behind the construction used in Listing 3.5 can be extended to simulate

primitive and µ-recursion. Listing 3.6 shows an example which realizes the following
primitive recursive function:

f(n) = Σn
i=1i

Listing 3.7 implements the minimisation operator µ for an arbitrary function f : N→ N:

µ(f) = min f−1{0}

Due to time restrictions for this thesis, we are not able to carry out the formal proofs
related to the presented approaches. Yet, the rule bases exhibited in this section are
not only of interest in regards to the Turing completeness of DRLZ, but they also reveal
certain issues which one should keep in mind when investigating the termination of
packages.

Listing 3.5: Emulation of function composition in DRLZ

1 declare F e : Integer n : Integer f : Integer end
2 declare G e : Integer n0 : Integer n1 : Integer g : Integer end
3
4 rule EvaluateF
5 when $f : F($n : n, e == 0) and G($g : g, e == 1, n0 == $n, n1 == $n)
6 then modify($f) { e = 1, f = $g + 42 }
7 end
8
9 rule EvaluateFInitializeG
10 when F($n : n, e == 0) and not(G(n0 == $n, n1 == $n))
11 then insert(new G(0, $n, $n, 0))
12 end
13
14 rule EvaluateG
15 when $g : G($n0 : n0, $n1 : n1, e == 0)
16 then modify($g) { e = 1, g = $n0 + $n1 }
17 end

38

3. Theory

Listing 3.6: Emulation of primitive recursion in DRLZ

1 declare F e : Integer n : Integer f : Integer end
2
3 rule EvaluateF
4 when $f : F($n : n, e == 0) and F($p : f, e == 1, n == $n - 1))
5 then modify($f) { e = 1, f = $p + $n }
6 end
7
8 rule EvaluateFInitialize1
9 when $f : F(e == 0, n == 1)
10 then modify($f) { e = 1, f == 1 }
11 end
12
13 rule EvaluateFInitializeNMinus1
14 when F($n : n, n > 1, e == 0) and not(F(n == $n - 1))
15 then insert(new F(0, $n - 1, 0));
16 end

Listing 3.7: Emulation of µ-recursion in DRLZ

1 declare F e : Integer n : Integer f : Integer end
2 declare MuF e : Integer m : Integer end
3
4 rule EvaluateMuF
5 when $m : MuF(e == 0) and F($n : n, e == 1, f == 0)
6 then modify($m) { e = 1, m = $n }
7 end
8
9 rule EvaluateMuFInitialize0
10 when $m : MuF(e == 0) and not(F(n == 0))
11 then insert(new F(0, 0, 0));
12 end
13
14 rule EvaluateMuFInitializeNPlus1
15 when $m : MuF(e == 0) and F($n : n, e == 1, f > 0)
16 and not(F(n == $n + 1)) and not(F(n == 0))
17 then insert(new F(0, $n + 1, 0));
18 end

3.4. Termination Criterion for DRLZ

In this section, we present a sufficient termination criterion for certain packages in DRLZ.
The related theorem provides the theoretical background for the implementation de-
scribed in Chapter 4. The idea behind our termination criterion is to extract ITRSs from
packages in DRLZ, such that the termination of an ITRS guarantees the termination of
the related package. The rewrite rules of the considered ITRSs correspond to instances
of 〈Modify〉 and translate transitions between facts in abstract working memories to the
rewriting of terms representing such facts.
We start with the definition of the necessary restrictions to the fragment DRLZ:

39

3. Theory

Definition 3.4.1 Let DRLtZ denote the set of packages P in DRLZ, such that:

(1) P does not contain instances of 〈Delete〉, 〈Insert〉, or 〈Not〉.

(2) All instances of 〈Constraint〉 in P are α-constraints.

(3) All instances of 〈Modify〉 in P are α-modifications.

Next, we describe the procedure which extracts terms and rewrite rules from abstract
working memories and packages.

Extraction of Terms and Rewrite Rules

We define an integer term rewriting system RZ(P) for packages P ∈ DRLtZ, such that
each instance of 〈Modify〉 in P corresponds to a conditional rewrite rule s → t | c. The
term s reflects the type of the fact which is modified, t expresses the modifications to
attributes defined in the related instance of 〈Modify〉, and c is a result of the constraints
of the pattern which relates to the pattern binding of the instance of 〈Modify〉.

Listing 3.8: Example of a rule base written in DRLtZ
1 declare A
2 x : Integer
3 y : Integer
4 z : Integer
5 end
6
7 declare B
8 p : Integer
9 q : Integer
10 end
11
12 rule R1
13 when
14 $a : A($z : z, x == 1, y < $z)
15 then
16 modify ($a) {
17 x = $z + 3
18 }
19 end
20
21 rule R2
22 when
23 $a : A(z > 4) and $b : B(q == 5)
24 then
25 modify ($a) {
26 y = 7,
27 z = 5
28 }
29 modify ($b) {
30 p = 6
31 }
32 end

40

3. Theory

We use examples to illustrate the definitions which implement the translation of syn-
tactical and semantic structures of DRLZ to notions of signatures, terms and rewrite
rules. Listing 3.8 presents the rule base P0, which we use for this purpose. We start with
the definition of an ITRS-signature for packages in DRLZ:

Definition 3.4.2 Let P be a package of DRLZ. The package signature ΣZ(P) is an
ITRS-signature ΣZ(P) = (V,F , α), like specified in Definition 2.4.12, such that:

(1) F contains a function symbols fT for all type identifiers T in P.

(2) α(fT) = n, where n is the number of attributes associated with T .

For our example we know that the signature ΣZ(P0) contains the function symbols fA
and fB in addition to the pre-defined function symbols of ITRSs. Furthermore, we have
α(fA) = 3 and α(fB) = 2. Next, we define terms which are used to represent types and
integer expressions:

Definition 3.4.3 Let P be a package of DRLZ. We define the following terms:

(1) The term representation for types tT = fT (v0, . . . , vn−1), where T is a type identifier
in P, v0, . . . , vn−1 ∈ V are distinct variables, and n = α(fT).

(2) The term representation for integer expressions te denotes the canonically defined
term representing the integer expression e in P.

For example, we can extract two term representations for types from Listing 3.8: Line
1 to 5 give tA = fA(v0, v1, v2) and Line 7 to 10 translate to tB = fB(v0, v1). Then, we
present some of the term representations for integer expression which we can extract
from Listing 3.8: Line 14 gives t1 = 1 and t$z = v0, Line 17 contains t$z + 3 = v0 + 3,
and the integer expression in Line 26 translates to t7 = 7.
So far the variables in tT and te are independent. Next, we define a relationship between

the variables of tT and te and introduce term representations for integer expressions which
incorporate attribute bindings. In packages of DRLtZ, integer expressions either appear
in α-constraints or α-modifications. Hence, every integer expression has an associated
type identifier T , where T is either the pattern type identifier of the current instance of
〈Pattern〉 or the pattern type identifier associated with the pattern binding of the current
instance of 〈Modify〉. It is obvious how to resolve attribute bindings such that variables
in te correspond to variables tT . We denote the result of the necessary replacement of
variables in te with tbe.
The application of the described procedure to the representations for integer expression

from our example yields the following terms: tb1 = 1, tb$z = v2, tb$z + 3 = v2 + 3, and
tb7 = 7. Let us introduce terms for instances of 〈Modify〉 and 〈Constraint〉:

41

3. Theory

Definition 3.4.4 Let P be a package of DRLtZ. We define the following terms:

(1) The term representation for modifications tM = fT (t0, . . . , tn−1) where M is an
instance of 〈Modify〉 in P, T the pattern type identifier corresponding to the pattern
binding in M , and ti = vi iff 〈Modify〉 does not contain the attribute represented by
vi and ti = tbe otherwise, where e is the integer expression following the respective
attribute identifier.

(2) The term representation for constraints tC denotes the canonically defined term
representing the α-constraint C in P.

In Listing 3.8 we find instances of 〈Modify〉 in Line 16 to 18, Line 25 to 28, and
Line 29 to 31, which we denote with M0, M1, and M2. We have tM0 = fA(v2 + 3, v1, v2),
tM1 = fA(v0, 7, 5) and tM2 = fB(6, v1). Afterwards, we find four instances of 〈Constraint〉
in Line 14 and 23, which we denote with C0, C1, C2, and C3. This gives the terms
tC0 = (v0 = 1), tC1 = (v1 < v2), tC2 = (v2 > 4), and tC3 = (v1 = 5). Finally, we have the
necessary tools to define rewrite rules for instances of 〈Modify〉, 〈Rule〉, and 〈Package〉:

Definition 3.4.5 Let P be a package of DRLtZ. We define the following conditional
rewrite rules and term rewriting systems:

(1) rM = (tT → tM | tC0 ∧ · · · ∧ tCn−1), where M is an instance of 〈Modify〉 in P, T the
pattern type identifier corresponding to the pattern binding in M , and Ci are the
instances of 〈Constraint〉 in the respective pattern.

(2) RZ(R) = {rM |M instance of 〈Modify〉 in R}, where R is an instance of 〈Rule〉 in P.

(3) RZ(P) =
⋃
RR(R) is the term rewriting system for the package P.

The integer term rewriting system RZ(P0) for our example from Listing 3.8 is given
below:

rM0 : fA(v0, v1, v2)→ fA(v2 + 3, v1, v2) | v0 = 1 ∧ v1 < v2

rM1 : fA(v0, v1, v2)→ fA(v0, 7, 5) | v2 > 4
rM2 : fB(v0, v1)→ fB(6, v1) | v1 = 5

Before we can state our termination criterion, we need one last definition which gives
term representations for the facts in abstract working memories:

Definition 3.4.6 Let P be a package of DRLZ and W an abstract working memory for
P. We define the term representation for facts to,W = fΓ(o)(A(o, a0), . . . ,A(o, an−1)),
where o ∈ O and ai is are the respective attribute identifiers associated with the type
identified by Γ(o).

Suppose we execute the actions insert(new A(1, 2, 3)) and insert(new B(4,
5)) in an empty abstract working memory W for P0. The resulting abstract work-
ing W ′ memory would yield the term representations for facts t0,W ′ = fA(1, 2, 3) and
t1,W ′ = fB(4, 5).

42

3. Theory

The Termination Criterion

We use the definitions stated above to formulate a sufficient termination criterion for
the packages of DRLtZ. We interrelate the termination property of packages P with the
respective property of the integer term rewriting systemRZ(P) such that the termination
of RZ(P) guarantees the termination of P. The prove of our termination criterion follows
basically by construction and an argument about certain limit points in infinite sequences
of abstract working memories.
We begin with the statement of a lemma, which allows the extraction of term rewriting

steps from the semantics for rules in DRLtZ:

Lemma 3.4.7 Let P be a package of DRLtZ and W, W ′ abstract working memories for
P. Furthermore, let R be an instance of 〈Rule〉 in P such that

W ⇒R W ′.

Then, there exists an instance M of 〈Modify〉 in R and an abstract object identifier o ∈ O
such that

to,W →rM to,W ′

is a valid rewrite step in RZ(P).

Proof: The statement follows by induction over the semantics of TRS and DRLZ. �

We do not carry out the cumbersome proof required to formally verify Lemma 3.4.7.
However, it is intuitively clear that the above statement is valid. The 〈RHS 〉 of rules in
DRLtZ allow only the modification of facts. Therefore, at least one fact o is modified in
the transition W ⇒R W ′. This fact o satisfied the α-constraints of the related pattern
in the abstract working memory W. The construction of the rewrite rule rM guarantees
the validity of the rewrite step to,W →rM to,W ′ .
Finally, we present our desired termination criterion:

Theorem 3.4.8 Let P be a package of DRLtZ. The following statement holds:

RZ(P) terminating −→ P terminating.

Proof: We prove this by contraposition. Suppose P is non-terminating, then we have
an infinite sequence (Wn) of abstract working memories and an infinite sequence (Rn) of
rules in P such that:

W0 ⇒R0 W1 ⇒R1 W2 ⇒R2 · · ·

Since the rules of P do not contain instances of 〈Delete〉 or 〈Insert〉, we know that no
facts are created or deleted in this process, that is Oi = Oi+1 =: O. We also know that
each rule must contain at least one instance of 〈Modify〉 that is why at least one o ∈ O
is matched by LHS(Ri) and modified in RHS(Ri).

43

3. Theory

Since setO is finite and the sequence (Wn) is infinite, we know that at least one abstract
object pointer in O is matched infinitely often. Let (im) be a sequence of indices, such
that o ∈ O is matched by LHS(Rij) in every step of the following sequence:

Wi0 ⇒Ri0
Wi1 ⇒Ri1

Wi2 ⇒Ri2
· · ·

We denote the related instances of 〈Modify〉 with Mij . Lemma 3.4.7 guarantees that

to,Wi0
→Mi0

to,Wi1
→Mi1

to,Wi2
→Mi2

· · ·

is an infinite application of rewrite rules of RZ(P). �

For our example it is obvious that RZ(P0) is non-terminating. It is not a problem to
find the following infinite term rewrite sequence:

fB(0, 5)→rM2
fB(6, 5)→rM2

fB(6, 5)→rM2
fB(6, 5)→rM2

· · ·

In this case, our termination criterion does not guarantee the termination of the pack-
age P0. Note, that our criterion is not a characterization of termination in the sense that
the non-termination of RZ(P) implies the non-termination of P. Still, our result might
be an indicator for the non-termination of P0.

Indeed, P0 is non-terminating. Assume an abstract working memory W such that
fA(0, 7, 5) and fB(6, 5) are the term representations for the facts in W. Let R2 be the
second rule of P0. We can derive the following infinite sequence:

W ⇒R2 W ⇒R2 W ⇒R2 · · ·

In the next chapter we showcase our implementation which allows the automated
extraction of the described integer term rewriting systems from packages of DRLtZ. Then,
we discuss how to use AProVE to test the termination property of the extracte ITRSs.
In Chapter 5 we give practical applications of our termination criterion and show the
proof of termination for a rule base which is used in productive environments.

44

4. Implementation

In this chapter we present our implementation and explain how to install and use it.
Furthermore, we briefly describe the structure of the related source code and discuss the
approach we chose to process DRL. At the moment of publication the implementation
should be considered a prototype. The current version is 0.9.1.
The first section states the system requirements and dependencies which are necessary

to setup and run the implementation. In the next section we show how to use the
command line interface of the program and explain its core features. Afterwards, we
instruct the reader how to use AProVE to evaluate the ITRSs which are produced by
the implementation. Section 4.3 illustrates the overall program structure and describes
the components of the implementation. Finally in the last section, we give some details
on how the program parses DRL and which classes and libraries of the Drools project
are utilized in this process.

4.1. Program Installation

The latest source code and binary version of the implementation is available online at
https://github.com/jss-de/drools-checker. The implementation is written
in Java and depends on the Java Runtime Environment (JRE) version 1.7 to be executed.
There are two possibilities to install the implementation itself and the required de-

pendencies: compiling the implementation from source with the build automation tool
Maven; or downloading the binary version of the implementation and its dependencies
from their respective vendors. We recommend the first option, since Maven automatically
downloads the required dependencies from remote repositories.
To build the implementation with Maven, install Maven and download the source

code of the implementation. Open a terminal and navigate to the root directory of the
downloaded source code. This directory should contain the file pom.xml. Here execute
the following commands:

mvn package -Dmaven.test.skip=true
mvn install dependency:copy-dependencies -Dmaven.test.skip=true

During successful execution of these commands Maven creates the directory target
in the current location, which then contains the file drools-checker-0.9.1.jar
and the directory dependency. The file drools-checker-0.9.1.jar is a Java
archive which contains the implementation itself. The directory dependency contains
the required dependencies. At this point the installation is finished.

45

4. Implementation

To manually install the program, download the file drools-checker-0.9.1.jar
which can be found under the aforementioned URL. Acquire the following Java libraries,
which should be available online and are provided by their respective vendors:

antlr-runtime-3.5.jar mvel2-2.2.1.Final.jar
commons-cli-1.2.jar protobuf-java-2.5.0.jar
drools-compiler-6.1.0.Final.jar slf4j-api-1.7.2.jar
drools-core-6.1.0.Final.jar slf4j-log4j12-1.5.6.jar
ecj-4.3.1.jar slf4j-simple-1.6.2.jar
junit-4.8.1.jar stax-utils-20070216.jar
kie-api-6.1.0.Final.jar xmlpull-1.1.3.1.jar
kie-internal-6.1.0.Final.jar xpp3_min-1.1.4c.jar
log4j-1.2.14.jar xstream-1.4.7.jar

Create the directory dependency in the location of drools-checker-0.9.1.jar
and store the aforementioned Java libraries in this directory. This completes the instal-
lation.

4.2. Program Operation

The main feature of the program is the implementation of the algorithm described in
Section 3.4, which generates ITRSs for rule bases in DRLtZ. We ease some of the related
restrictions of the syntax. For example, we can parse RB without the declaration of the
MVEL dialect. Furthermore, the program can translate files in DRL format to a custom
XML format which exposes the intermediate representation of DRL in the program. This
feature is intended for debugging purposes.
The functionality of the program is accessible via a command line interface. The layout

of this interface follows common standards. To display the documentation of this inter-
face, open a terminal and navigate to the location of drools-checker-0.9.1.jar.
Here execute the command java -jar drools-checker-0.9.1.jar -H. Listing
4.1 show the output of this command. For example, the following command generates the
ITRS for the DRL file test.drl and stores it in the file test.inttrs: java -jar
drools-checker-0.9.1.jar -I test.drl -O test.inttrs -T INTTRS.

Listing 4.1: Command line interface of the implementation
1 usage: java -jar drools-checker-0.9.1.jar [-H] [-I <arg>]
2 [-O <arg>] [-T <arg>] [-V]
3 -H,--help display this help and exit
4 -I,--input <arg> specify input file
5 -O,--output <arg> specify output file
6 -T,--type <arg> specify output type:
7 INTTRS for integer term rewriting system
8 XML for extensible markup language
9 -V,--version output version information and exit

46

4. Implementation

The termination property of the generated ITRS can then be evaluated with AProVE.
It is possible to install and use AProVE locally, but in some cases it might be more
convenient to use its web interface which can be found online at http://aprove.
informatik.rwth-aachen.de/.

4.3. Program Structure

The source code of the implementation is organized in a Maven project and consists
of four Java packages, 29 classes and 2174 lines of source code. Figure 4.1 provides
an UML diagram which gives an overview of these packages, selected classes, and their
dependencies. Furthermore, it showcases the dependency between our implementation
and the Drools project. The complete documentation of the source code can be found in
Appendix B.
The package de.jss.drools stores the command line interface and contains the

main entry point of the application. The package de.jss.drools.lang represents

Figure 4.1.: UML diagram of program packages and selected classes

Type

Rule

Package

+getRules():List<Rule>
+getTypes():List<Type>

XMLGenerator

DRLParser

INTTRSReporter

PackageReporter

+parse(outputStream:OutputStream, pkg:Package)

CLI

+main(args:String[])

CodeGenerator

+parse(outputStream:OutputStream, pkg:Package)

CodeParser

+parse(inputStream:InputStream):Package

DrlParser

KnowledgeBuilderImpl

de.jss.drools.lang

«external»
org.drools.compiler.*

de.jss.drools.analysis

de.jss.drools

de.jss.drools.compiler

47

4. Implementation

Listing 4.2: XML representation of Line 10 to 16 of Listing 2.2
1 <rule name="Violets are blue?">
2 <conditions>
3 <pattern binding="$f" type="mother.goose.rhymes.Flower">
4 <constraint attribute="color" expression=""blue"" relation="!=" />
5 <constraint attribute="name" expression=""Violet"" relation="==" />
6 </pattern>
7 </conditions>
8 <consequences>
9 <message value="System.out.println("We need to fix some violet.")" />
10 <action binding="$f" type="Modification">
11 <assignment attribute="color" expression=""blue"" />
12 </action>
13 </consequences>
14 </rule>

the model of the application and encapsulates classes which are used to build the ab-
stract syntax tree (AST) that is used for the internal representation of DRL. The package
de.jss.drools.compiler contains classes which parse DRL files into ASTs and gen-
erate XML files from ASTs. Finally, the package de.jss.drools.analysis contains
the classes which implement the algorithm that generates ITRSs from ASTs.
The package de.jss.drools is easily understood, since it consists of the single class

CLI which implements the command line interface and contains the main entry point of
the application. Here we use the Apache Commons CLI library [1] to provide a standard
conform command line interface.
The package de.jss.drools.lang contains classes used to build the abstract syn-

tax tree of DRL files and represents the data model of the implementation. The root of the
AST is represented through the class Package. This class instantiates list of the classes
Rule and Type which represent the second level of the AST. This schema continues to
cover different aspects of DRL, like, for example, attributes, conditions, consequences,
patterns or bindings. As an example, Listing 4.2 displays the XML representation of the
AST of the second rule of Listing 2.2.
The central classes of the package de.jss.drools.compiler are DRLParser and

XMLGenerator. The class DRLParser is used to parse DRL files and creates the
internal AST representation of their content. In the next section we give more details
about the implementation of DRLParser and its dependencies to classes from the Drools
project. The class XMLGenerator generates XML files from ASTs and can be used to ex-
pose their structure. Listing 4.2 showcases this functionality. The class XMLGenerator
implements a common XML serialization pattern and uses the library provided by the
StAX Utilities Project (https://java.net/projects/stax-utils/) to create
standard conform XML documents.
Finally, the abstract base class PackageReporter and its concrete implementation

ITRSReporter are stored in the package de.jss.drools.analysis. The class
ITRSReporter implements the algorithm described in Section 3.4 and generates integer
term rewriting systems for DRL rule bases represented by ASTs. Since AProVE does not

48

4. Implementation

have native support for the operators == and != it is necessary to add another translation
step, which transforms these operators using >= and <= respectively < and >.

4.4. Parsing DRL

When confronted with the task to programmatically analyze DRL files, we investigated
possibilities to reuse existing classes of the libraries provided by Drools. Here the class
InternalKnowledgePackage is used for the internal representation of DRL and the
class KnowledgeBuilderImpl creates the respective instances from DRL files. These
instances provide most of the information we need for our evaluation. However, some
necessary properties are not accessible since KnowledgeBuilderImpl compiles the
RHS of rules to Java bytecode. In this process, it hides some required details, like for
example pattern bindings. The class KnowledgeBuilderImpl itself depends on the
classes PackageDescr and org.drools.compiler.compiler.DrlParser. The
class DrlParser creates a low-level representation of the considered DRL in the form
of PackageDescr instances. These instances expose the details which are hidden in
the instances of InternalKnowledgePackage.
Our implementation of DRLParser utilizes all of the aforementioned classes to create

high-level representations of DRL in the form of InternalKnowledgePackage in-
stances and low-level representations of DRL in the form of PackageDescr instances.
These objects are then traversed in parallel and relevant information is gathered from
the InternalKnowledgePackage whenever possible and from the PackageDescr
if necessary.

49

5. Case Study

In this chapter we show practical applications of our implementation by analyzing a rule
base used in productive environments and present the related data and results. Next, we
describe the preparations which are necessary to analyze this particular RB and discuss
how to possibly automatize these preparations. At the end of the chapter we give some
benchmarks, which are based on the data of this case study.
The considered RB is taken from an actual project at Capgemini. Due to a non-

disclosure agreement we cannot expose the original data. Nevertheless, we are able to
present here an anonymized version of this RB. We use the name Capgemini rule base
(CRB) to refer to the investigated RB.
Like mentioned in Chapter 3 and 4, we can only analyze certain RBs which lie in the

fragment DRLZ. To be able to analyze the CRB, we are required to manually translate
it to this fragment. Since this translation process is cumbersome, we limit ourselves to a
selected set of three rules of the CRB. Most of this translation process can be automated.
Notice that there is one preparation step which can not be automated based on the

sole information from the CRB. This preparation step is necessary, since the CRB does
not terminate for an arbitrary working memory and relies on certain assumptions about
the number of facts in the working memory. We discuss this in detail in Section 5.1 and
5.2 and present possible solution approaches. Here we also demonstrate that most of the
restrictions of the implementation are not of fundamental nature and their overcoming
is only a matter of software development efforts, which were not possible in this thesis
due to time restrictions.
In the first section we give a rough outline of the CRB and describe its purpose staying

in the limits of our non-disclosure agreement. In the next section we describe the neces-
sary translation steps, which enabled us to analyze the CRB. In Section 5.3 we present
the results of this analysis and show the benefits that an automated analysis could have
for the development process of the CRB. In the last section we present some benchmarks
and discuss the performance of our implementation and AProVE when confronted with
the translated parts of the CRB.

5.1. Subject

As mentioned before, we are bound to a non-disclosure agreement and cannot expose
too much details about the CRB. Hence the examples and figures we present in this
chapter are taken from an anonymized version of the actual rule base used at Capgemini.
Nevertheless, we are able to give a rough outline of its structure and purpose.
The CRB is used to decide about the visibility of certain data in some client-server

context. Here the client sends a request for data to the server. The server loads the

50

5. Case Study

requested data from a database and stores it in intermediate objects. These objects
together with an object representing information about the client and the request itself
are then passed to the working memory of the CRB. Depending on these objects, the
CRB divides the data in three categories: visible, partially visible, and invisible. In
following steps, the server uses this categorization to compile a response to the client.
The CRB is used to process a single request at a time. Hence it is not confronted

with an arbitrary working memory and thus relies on the assumption that the working
memory contains exactly one instance of the object which represents the request of the
client. This restriction of the working memory plays a crucial role in the preparations
we describe in Section 5.2.
The CRB is stored in a collection of so-called decision tables. This format allows

the compact representation of the Drools RBs which consist of many rules with similar
structure. A decision table begins with a rule template followed by the data which is used
to generate the actual rules from this template. The first two or three rows of a decision
table define the rule template and each following row provides data which is combined
with the template to define a rule. The first column of a decision table represents the rule
name. The following columns either have the header condition or action and relate to
the LHS respectively the RHS of rules. Figure 5.1 shows an example of a decision table
which mirrors Rule 1 and 3 of Listing 2.2. For a complete documentation of decision
tables in Drools, see [10, p. 164].

Figure 5.1.: Decision table for Rule 1 and 3 of Listing 2.2

Rule Name Condition Condition Action
Flower

color ==
"$param"

name ==
"$param"

System.out.println
("$param");

Roses are red. red Rose We found a red rose.
Violets are blue. blue Violet We found a blue violet.

Drools supports multiple file formats for decision tables, among them Excel spread-
sheets, which are used for the development of RBs at Capgemini. The CRB is part of a
collection of Excel spreadsheets which define 27 rule bases containing 815 decision tables
and 3479 rules. The CRB itself contains an average of 320 rules which are grouped in 30
decision tables. We selected one of these decision tables for further investigation. The
selected decision table has 40 columns and 51 rows, and defines 49 rules. Figure 5.2 gives
an overview of the selected decision table. A complete and more readable version can
be found in the appendix in Figure A.1, A.2, and A.3. The Columns 2 to 4 describe the
LHS of rules and the Columns 5 to 40 the RHS of rules. The LHS of rules is used to
select certain data objects and the request object from the working memory. The RHS
defines whether the selected data object should be marked as visible, partially visible,
or invisible in the context of the provided request. The Columns 5 to 38 are used to

51

5. Case Study

Figure 5.2.: Investigated decision table – Overview
C

O
N

D
IT

IO
N

C
O

N
D

IT
IO

N
C

O
N

D
IT

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

A
C

T
IO

N
A

C
T

IO
N

Request($senderGroup : senderGroup) and $param

String action="%";

if("01".equals($senderGroup)) { action = "$param"; }

if("02".equals($senderGroup)) { action = "$param"; }

if("03".equals($senderGroup)) { action = "$param"; }

if("04".equals($senderGroup)) { action = "$param"; }

if("05".equals($senderGroup)) { action = "$param"; }

if("06".equals($senderGroup)) { action = "$param"; }

if("07".equals($senderGroup)) { action = "$param"; }

if("08".equals($senderGroup)) { action = "$param"; }

if("09".equals($senderGroup)) { action = "$param"; }

if("10".equals($senderGroup)) { action = "$param"; }

if("11".equals($senderGroup)) { action = "$param"; }

if("12".equals($senderGroup)) { action = "$param"; }

if("13".equals($senderGroup)) { action = "$param"; }

if("14".equals($senderGroup)) { action = "$param"; }

if("15".equals($senderGroup)) { action = "$param"; }

if("16".equals($senderGroup)) { action = "$param"; }

if("17".equals($senderGroup)) { action = "$param"; }

if("18".equals($senderGroup)) { action = "$param"; }

if("19".equals($senderGroup)) { action = "$param"; }

if("20".equals($senderGroup)) { action = "$param"; }

if("21".equals($senderGroup)) { action = "$param"; }

if("22".equals($senderGroup)) { action = "$param"; }

if("23".equals($senderGroup)) { action = "$param"; }

if("24".equals($senderGroup)) { action = "$param"; }

if("25".equals($senderGroup)) { action = "$param"; }

if("26".equals($senderGroup)) { action = "$param"; }

if("27".equals($senderGroup)) { action = "$param"; }

if("28".equals($senderGroup)) { action = "$param"; }

if("29".equals($senderGroup)) { action = "$param"; }

if("30".equals($senderGroup)) { action = "$param"; }

if("31".equals($senderGroup)) { action = "$param"; }

if("32".equals($senderGroup)) { action = "$param"; }

if("33".equals($senderGroup)) { action = "$param"; }

if(action.equals("N") && !"0" .equals($ds.getVisibility())) {

$ds.setVisibility("0"); update($ds); }

if(action.equals("H") && !"1" .equals($ds.getVisibility())) {

$ds.setVisibility("1"); update($ds); }

R
u

le
 N

a
m

e
D

a
ta

 S
e
t

ID
L

H
S

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

N
H

R
u

le
 1

D
a
ta

S
e
t1

$
d
s
 :
 D

a
ta

S
e
t1

()
J

J
J

J
J

J
N

J
J

J
N

H
H

J
J

J
J

J
J

J
N

N
N

N
J

N
N

N
J

N
N

N
N

R
u

le
 2

D
a
ta

S
e
t2

$
d
s
 :
 D

a
ta

S
e
t2

()
J

J
J

J
J

J
N

J
J

J
J

N
N

J
J

J
J

J
J

J
J

J
N

N
J

N
N

J
J

J
J

J
N

R
u

le
 3

D
a
ta

S
e
t3

$
d
s
 :
 D

a
ta

S
e
t3

()
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

N
J

J
N

J
J

J
J

N
N

R
u

le
 4

D
a
ta

S
e
t4

$
d
s
 :
 D

a
ta

S
e
t4

()
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

N
J

J
N

J
J

J
J

J
J

R
u

le
 5

D
a
ta

S
e
t5

$
d
s
 :
 D

a
ta

S
e
t5

()
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

N
J

J
N

J
J

J
J

N
N

R
u

le
 6

D
a
ta

S
e
t6

$
d
s
 :
 D

a
ta

S
e
t6

()
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

N
J

J
N

J
J

J
J

N
N

R
u

le
 7

D
a
ta

S
e
t7

$
d
s
 :
 D

a
ta

S
e
t7

()
J

J
J

J
J

J
N

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

N
J

N
N

J
J

J
J

J
N

R
u

le
 8

D
a
ta

S
e
t8

$
d
s
 :
 D

a
ta

S
e
t8

()
J

J
J

J
J

J
N

J
J

J
J

H
H

J
J

J
J

J
J

J
J

J
J

N
J

N
N

J
J

J
J

J
N

R
u

le
 9

D
a
ta

S
e
t9

=
=

 "
A

"
$
d
s
 :
 D

a
ta

S
e
t9

(i
d
 =

=
 "

A
")

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 1

0
D

a
ta

S
e
t1

0
=

=
 "

A
"

$
d
s
 :
 D

a
ta

S
e
t1

0
(i
d
 =

=
 "

A
")

J
J

J
J

J
J

N
J

J
J

J
H

H
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 1

1
D

a
ta

S
e
t1

1
!=

 "
A

"
$
d
s
 :
 D

a
ta

S
e
t1

1
(i
d
 !

=
 "

A
")

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 1

2
D

a
ta

S
e
t1

2
$
d
s
 :
 D

a
ta

S
e
t1

2
()

J
J

J
J

J
J

N
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 1

3
D

a
ta

S
e
t1

3
$
d
s
 :
 D

a
ta

S
e
t1

3
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 1

4
D

a
ta

S
e
t1

4
$
d
s
 :
 D

a
ta

S
e
t1

4
()

J
J

J
J

J
J

N
J

J
J

N
H

H
J

J
J

J
J

J
J

J
J

N
N

J
N

N
J

J
N

N
N

N

R
u

le
 1

5
D

a
ta

S
e
t1

5
$
d
s
 :
 D

a
ta

S
e
t1

5
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

N
N

N
N

J
N

N
N

J
J

J
J

N

R
u

le
 1

6
D

a
ta

S
e
t1

6
$
d
s
 :
 D

a
ta

S
e
t1

6
()

J
J

J
J

J
J

N
J

J
J

J
H

H
J

J
J

J
J

J
J

J
J

N
N

J
N

N
J

J
J

J
N

N

R
u

le
 1

7
D

a
ta

S
e
t1

7
$
d
s
 :
 D

a
ta

S
e
t1

7
()

J
J

J
J

J
J

N
J

J
J

N
H

H
J

J
J

J
J

J
J

N
N

N
N

J
J

N
N

J
N

N
N

N

R
u

le
 1

8
D

a
ta

S
e
t1

8
!=

 "
B

"
$
d
s
 :
 D

a
ta

S
e
t1

8
(i
d
 !

=
 "

B
")

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

N
N

J
N

N
J

J
J

J
J

N

R
u

le
 1

9
D

a
ta

S
e
t1

9
=

=
 "

B
"

$
d
s
 :
 D

a
ta

S
e
t1

9
(i
d
 =

=
 "

B
")

J
J

J
J

N
J

N
N

N
N

N
N

N
J

N
N

N
J

J
N

J
J

N
N

J
N

N
J

N
N

N
N

N

R
u

le
 2

0
D

a
ta

S
e
t2

0
$
d
s
 :
 D

a
ta

S
e
t2

0
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

N
N

J
N

N
J

J
J

J
J

N

R
u

le
 2

1
D

a
ta

S
e
t2

1
$
d
s
 :
 D

a
ta

S
e
t2

1
()

J
J

J
J

J
J

N
J

J
J

N
N

N
J

J
J

J
J

J
J

J
J

N
N

J
N

N
J

J
N

N
N

N

R
u

le
 2

2
D

a
ta

S
e
t2

2
$
d
s
 :
 D

a
ta

S
e
t2

2
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 2

3
D

a
ta

S
e
t2

3
$
d
s
 :
 D

a
ta

S
e
t2

3
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 2

4
D

a
ta

S
e
t2

4
$
d
s
 :
 D

a
ta

S
e
t2

4
()

H
H

H
H

J
H

H
H

H
H

H
H

H
H

H
H

H
J

J
J

H
H

N
N

H
N

N
H

H
N

N
N

N

R
u

le
 2

5
D

a
ta

S
e
t2

5
$
d
s
 :
 D

a
ta

S
e
t2

5
()

J
J

J
J

J
J

N
J

J
J

N
N

N
J

J
J

J
J

J
J

J
J

J
N

J
J

N
J

J
N

N
N

N

R
u

le
 2

6
D

a
ta

S
e
t2

6
$
d
s
 :
 D

a
ta

S
e
t2

6
()

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
N

J
J

N
J

J
J

J
J

J

R
u

le
 2

7
D

a
ta

S
e
t2

7
$
d
s
 :
 D

a
ta

S
e
t2

7
()

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J

R
u

le
 2

8
D

a
ta

S
e
t2

8
$
d
s
 :
 D

a
ta

S
e
t2

8
()

J
J

J
J

J
J

N
J

J
J

N
N

N
J

J
J

J
J

J
J

J
J

J
N

J
J

N
J

J
N

N
N

N

R
u

le
 2

9
D

a
ta

S
e
t2

9
$
d
s
 :
 D

a
ta

S
e
t2

9
()

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
N

J
J

N
J

J
J

J
J

J

R
u

le
 3

0
D

a
ta

S
e
t3

0
$
d
s
 :
 D

a
ta

S
e
t3

0
()

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J

R
u

le
 3

1
D

a
ta

S
e
t3

1
$
d
s
 :
 D

a
ta

S
e
t3

1
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 3

2
D

a
ta

S
e
t3

2
$
d
s
 :
 D

a
ta

S
e
t3

2
()

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

N

R
u

le
 3

3
D

a
ta

S
e
t3

3
$
d
s
 :
 D

a
ta

S
e
t3

3
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 3

4
D

a
ta

S
e
t3

4
$
d
s
 :
 D

a
ta

S
e
t3

4
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
J

N
J

J
J

J
N

N

R
u

le
 3

5
D

a
ta

S
e
t3

5
$
d
s
 :
 D

a
ta

S
e
t3

5
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

N
N

N
N

J
N

N
N

J
J

J
J

N

R
u

le
 3

6
D

a
ta

S
e
t3

6
$
d
s
 :
 D

a
ta

S
e
t3

6
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

R
u

le
 3

7
D

a
ta

S
e
t3

7
$
d
s
 :
 D

a
ta

S
e
t3

7
()

J
J

J
J

J
J

N
J

J
J

N
N

N
J

J
J

J
J

J
J

J
J

J
N

J
J

N
J

J
N

N
N

N

R
u

le
 3

8
D

a
ta

S
e
t3

8
$
d
s
 :
 D

a
ta

S
e
t3

8
()

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J

R
u

le
 3

9
D

a
ta

S
e
t3

9
$
d
s
 :
 D

a
ta

S
e
t3

9
()

J
J

J
J

J
J

N
N

N
N

N
N

N
N

J
N

N
J

J
J

J
J

J
N

J
J

N
J

N
N

N
N

N

R
u

le
 4

0
D

a
ta

S
e
t4

0
$
d
s
 :
 D

a
ta

S
e
t4

0
()

J
J

J
J

J
J

N
J

J
J

N
N

N
J

J
J

J
J

J
J

J
J

J
N

J
J

N
J

J
N

N
N

N

R
u

le
 4

1
D

a
ta

S
e
t4

1
$
d
s
 :
 D

a
ta

S
e
t4

1
()

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J

R
u

le
 4

2
D

a
ta

S
e
t4

2
$
d
s
 :
 D

a
ta

S
e
t4

2
()

J
J

J
J

J
J

N
J

J
J

N
N

N
J

J
J

J
J

J
J

J
J

N
N

J
N

N
J

J
N

N
N

N

R
u

le
 4

3
D

a
ta

S
e
t4

3
$
d
s
 :
 D

a
ta

S
e
t4

3
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

N
N

J
N

N
J

J
J

J
J

N

R
u

le
 4

4
D

a
ta

S
e
t4

4
$
d
s
 :
 D

a
ta

S
e
t4

4
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

N
N

J
N

N
J

J
J

J
J

N

R
u

le
 4

5
D

a
ta

S
e
t4

5
$
d
s
 :
 D

a
ta

S
e
t4

5
()

J
J

J
J

J
J

N
N

N
N

N
N

N
N

J
N

N
J

J
J

J
J

J
N

J
J

N
J

N
N

N
N

N

R
u

le
 4

6
D

a
ta

S
e
t4

6
$
d
s
 :
 D

a
ta

S
e
t4

6
()

J
J

J
J

J
J

N
J

J
J

N
N

N
J

J
J

J
J

J
J

J
J

J
N

J
J

N
J

J
N

N
N

N

R
u

le
 4

7
D

a
ta

S
e
t4

7
$
d
s
 :
 D

a
ta

S
e
t4

7
()

J
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
J

J
N

N
N

N
N

N
N

N
N

J
N

N
N

N

R
u

le
 4

8
D

a
ta

S
e
t4

8
$
d
s
 :
 D

a
ta

S
e
t4

8
()

J
J

J
J

J
J

N
J

J
J

N
H

H
J

J
J

J
J

J
J

J
J

N
N

J
N

N
J

J
J

J
N

N

R
u

le
 4

9
D

a
ta

S
e
t4

9
$
d
s
 :
 D

a
ta

S
e
t4

9
()

J
J

J
J

J
J

N
J

J
J

J
N

N
J

J
J

J
J

J
J

J
J

J
N

J
N

N
J

J
J

J
J

N

X
X

X

52

5. Case Study

distinguish the request by one of its attributes and, depending on this attribute, the
visibility is set, which happens in the Columns 39 and 40. The entries ‘J’ (green) define
complete visibility, the entries ‘H’ (yellow) correspond to partial visibility, and the entries
‘N’ (magenta) translate to invisibility.
At this point is where the question arises: why the RHS of rules is used to further

distinguish the request object as this could and should already be done on the LHS of
rules? Especially, since it is considered bad practice to use conditional code in the RHS of
a rule (see [10, p. 282]). The answer to this question is related to certain requirements of
the customer of Capgemini. A design of the decision table, which is more conform to the
philosophy of Drools, would lead to a different structure; and the current structure of the
table gives a good overview of the relation between certain types of data and requests.
This is a desired property which plays an important role in the communication process
between Capgemini and their customer. Albeit, for our investigation it is necessary to
shift these conditional constructs from the RHS to the LHS of the rules.

Listing 5.1: Overview of the structure of Rule 17
1 package com.capgemini.rulebase;
2
3 ...
4
5 import com.capgemini.model.DataSet17;
6 import com.capgemini.model.Request;
7
8 ...
9
10 rule "Rule 17"
11 when
12 Request($id : id, $senderGroup : senderGroup) and $ds : DataSet17()
13 then
14 String action="%";
15 ...
16 if("10".equals($senderGroup)) {
17 action = "J";
18 }
19 if("11".equals($senderGroup)) {
20 action = "N";
21 }
22 if("12".equals($senderGroup)) {
23 action = "H";
24 }
25 ...
26 if(action.equals("N") && !"Invisible".equals($ds.getVisibility())) {
27 $ds.setVisibility("Invisible");
28 update($ds);
29 }
30 if(action.equals("H") && !"Partial".equals($ds.getVisibility())) {
31 $ds.setVisibility("Partial");
32 upate($ds);
33 }
34 end
35
36 ...

53

5. Case Study

The DRL representation of the selected decision table forms the basis for our investi-
gation. It has 5686 lines of code and each rule is defined through 115 lines of code. Since
we are required to manually prepare this code for further analysis, we limit ourselves
to three selected rules, namely Rule 16, 17, and 18. Listing 5.1 shows essential parts
of the DRL defining Rule 17 and gives the reader an overview of the considered DRL.
The complete DRL representation of Rule 16, 17 and 18 can be found in the appendix
in Listing A.1.
Keep in mind, that the LHS of these rules is relative sparse and only used to bind

certain attributes of the request and the data object. The actual workload of the rule
happens on the RHS. A local variable action is defined, whose values is set to either
"J", "H", or "N", depending on the attribute senderGroup of the request object.
The values "J", "H", and "N" correspond to the respective entries in the decision table.
Depending on the value of the variable action, the visibility of the data object is
modified. It is also noteworthy that the visibility is only modified when the value of
action is "H" or "N", since the decision table relies on the assumption that all data
objects are initially marked as visible. Therefore, in many cases the considered rules do
not modify the working memory at all.
These rules are not in the required form that we discussed in Chapter 3. To facilitate

an analysis regardless of this situation, a series of translation steps is necessary which is
described in the next section.

5.2. Preparations

In this section we describe the preparations and translation steps which are necessary
to analyze the previously selected rules. Most of these translations could be easily auto-
mated and are based solely on the information found in the considered DRL. However,
like already mentioned, to function properly the CRB relies on certain assumptions about
the working memory. To produce relevant results, it is necessary to incorporate these
assumptions in our preparations.
The order in which we execute the translation steps is more or less arbitrary and many

steps are interchangeable. The order we chose should promote a neat presentation and
is maybe not optimal when one wants to automate the described process, since then the
performance is more of an issue.
In the first translation step we eliminate the intermediate variable action, which is

used to store results of comparisons of the attribute binding $senderGroup to certain
string literals. Depending on these comparisons the working memory is modified or not
touched at all. It is clear how to contract the related if statements to make the variable
action dispensable. In this process, we also eliminate conditional constructs which do
not lead to a modification of the working memory. Listing 5.2 shows this translation step
for the previously considered parts of Rule 17.
Next, we make the RB a self-contained object by replacing the import statements with

appropriate type declarations. Listing 5.3 shows an example of such type declarations
for Rule 17 from Listing 5.2. In this translation step we also introduce shortcuts for

54

5. Case Study

Listing 5.2: Elimination of variable action in the RHS of Rule 17
1 rule "Rule 17"
2 when
3 Request($id : id, $senderGroup : senderGroup) and $ds : DataSet17()
4 then
5 ...
6 if("11".equals($senderGroup) && !"Invisible".equals($ds.getVisibility())) {
7 $ds.setVisibility("Invisible");
8 update($ds);
9 }
10 if("12".equals($senderGroup)) && !"Partial".equals($ds.getVisibility())) {
11 $ds.setVisibility("Partial");
12 upate($ds);
13 }
14 ...
15 end

attribute and type names to facilitate a more compact presentation. The creation of
the introduced type declarations is a simple process in which one only needs to list all
attributes of each type to which the RB refers. If one has access to the Java classes which
are referenced via the import statements, it would also be feasible to use the same Java
introspection features as Drools. This means one basically mimics the process described
at the end of Section 2.1.
After changing the type declarations we need to adjust the rules, since we modified

the value type of most attributes. This leads us to our next translation step. In the
considered RB the value type of most attributes is String. In general, strings and
integers behave quite differently and are not interchangeable, since they have different
genuine operators with different semantics. However, in our RB we do not use many of
these operators. We only test the equality, respectively, inequality of attributes and string
literals. Then, we set the value of attributes to certain string literals. This is typical for
most rules in the CRB and many other Drools RBs. In such case, a transition between
integers and strings which preserves the core of the semantics of each rule is canonical.
One simply needs to create an index of all distinct string literals in the considered RB
and make appropriate replacements of string literals and related operators.
We assign well distinguished integer literals to each string literal. These integer literals

are then used to replace the string literals in the RB. In the same step we replace the string

Listing 5.3: Appropriate type declarations for Rule 17
1 declare D17
2 vi : Integer
3 end
4
5 declare R
6 id : Integer
7 sg : Integer
8 end

55

5. Case Study

Listing 5.4: Replacement of string literals in Rule 17
1 rule Rule17
2 when
3 R($id : id, $senderGroup : sg) and $ds : D17($visibility : vi)
4 then
5 ...
6 if($senderGroup == 11 && $visibility != 100) {
7 modify($ds) {
8 setVi(100)
9 }
10 }
11 if($senderGroup == 12 && $visibility != 101) {
12 modify($ds) {
13 setVi(101)
14 }
15 }
16 ...
17 end

operator String.equals(String s) and its negation with the integer operators ==
respectively !=. Listing 5.4 shows this translation step for the parts of Rule 17 which are
shown in Listing 5.2. We choose to replace string literals like "10" through the obvious
integer literals and use the values 100 and 101 to represent the literals "Invisible"
respectively "Partial". Other preparations shown in Listing 5.4 are the adjustment of
the rule identifier and the use of the Drools statement modify instead of the update
statement.
Afterwards, we begin with the deconstruction of the conditional constructs in the RHS

of the rules. The remaining conditional constructs compare constant values with variables
which are bound to attributes. It is obvious, how to shift one of those if statements

Listing 5.5: Splitting and shift of conditional constructs to LHS of Rule 17
1 ...
2 rule Rule17G11N
3 when
4 R(sg == 11) and $ds : D17(vi != 100)
5 then
6 modify($ds) {
7 setVi(100)
8 }
9 end
10
11 rule Rule17G12H
12 when
13 R(sg == 12) and $ds : D17(vi != 101)
14 then
15 modify($ds) {
16 setVi(101)
17 }
18 end
19 ...

56

5. Case Study

to the LHS of the rule. In order to incorporate all statements we need to create a copy
of Rule 17 for each remaining if statement whose RHS contains only the respective
conditional construct. Then we can shift the conditions in the RHS to the LHS of the
newly created copies of Rule 17. Listing 5.5 shows this translation step.
The RB, which we obtain after the last translation step, lies in the fragment DRLtZ

and we can analyze it with our implementation. This analysis yields that the CRB does
not terminate for an arbitrary working memory. One can already see this by looking at
the code in Listing 5.5. Suppose, we have two request objects in working memory so that
their attribute sg has the value 11, respectively 12. Next, assume the working memory
contains at least one data object of type D17. In this case, Drools would repeatedly
combine the data object with each request object and alter the visibility of the data
object back and forth in an infinite loop.
While it is certainly and interesting result that we can expose the non-termination

of the CRB for an arbitrary working memory, we already knew this before and want to
capture the intended functionality of the CRB. In order to do this, we need to incorporate
the aforementioned assumptions about the working memory into the DRL of the rule
base. Our solution approach is to encode data and request as a single object. This
preparation step is shown in Listing 5.6.
Let us take a closer look at what we just did here. In the context of the CRB, we know

Listing 5.6: Merge of request and data objects for Rule 17
1 ...
2
3 declare DR17
4 id : Integer
5 sg : Integer
6 vi : Integer
7 end
8
9 ...
10
11 rule Rule17G11N
12 when
13 $dr : DR17(sg == 11, vi != 100)
14 then
15 modify($rd) {
16 setVi(100)
17 }
18 end
19
20 rule Rule17G12H
21 when
22 $dr : DR17(sg == 12, vi != 101)
23 then
24 modify($dr) {
25 setVi(101)
26 }
27 end
28
29 ...

57

5. Case Study

that the working memory should contain exactly one object of type R. We can express this
more formally using the terms of Chapter 3. We should only consider abstract working
memories W for which the following statement is true:

∀o1, o2 ∈ O(R = Γ(o1) = Γ(o2)→ o1 = o2) (5.1)

Consequently, we know that LHSs like, for example, defined in Line 4 and 13 of Listing
5.5 can never simultaneously produce a match. Furthermore, we know that the CRB
does not modify the request object. Thus, the pairings between objects of type R and
D17 matched by the DRL operator and are basically pairings between constant integer
values and the values of the data object. Accordingly, the behavior of the CRB would not
change if these constant integer values were provided as attributes of the data objects,
which therefore justifies our last preparation step.
This explanation also shows that the automatization of the last step of our prepara-

tions is not a trivial task. On the one hand, we require access to formal specifications,
which model the restrictions to the working memory, like exemplified in (5.1). On the
other hand, we need to analyze the complete RB to confirm certain properties, like in
our case that the request object is not modified.

The DRLZ representation of Rule 16, 17, and 18 except the last preparation step
can be found in Listing A.2. The representation which incorporates the last prepara-
tion step can be found in Listing A.3. We prepared a version of Listing A.3 which is
used to demonstrate that we can identify certain error scenarios. We assume there is a
typo in the rule template of the considered decision table. Here the value of the cell con-
taining if("11".equals($senderGroup)) { action = "$param" } should be
changed to if("12".equals($senderGroup)) { action = "$param" }. If we
would carry out the same preparations as before for this defective version of the decision
table, the typo would propagate to a change of Line 13 of Listing 5.6, respectively Line
111 of Listing A.3. In these lines the integer literal 11 would be replaced with 12.

5.3. Results

In this section, we present the results of the analysis of the CRB based on the preparations
made in the previous section. We show excerpts of the ITRSs that were generated using
our implementation and discuss the related evaluations of AProVE.
Listing 5.7 shows the ITRS which results from the rules given in Listing 5.5. The

complete ITRS for the Rule 16, 17, and 18 in that respective preparation step can be

Listing 5.7: Excerpt of the ITRS in Listing A.4
1 D17(vi) -> D17(100) [vi > 100]
2 D17(vi) -> D17(100) [vi < 100]
3 D17(vi) -> D17(101) [vi > 101]
4 D17(vi) -> D17(101) [vi < 101]

58

5. Case Study

found in Listing A.4. It is quite obvious that this ITRS does not terminate and AProVE
has no trouble to generate the related proof which can be found in Listing A.6.
In this case, the termination criterion from Section 3.4 cannot guarantee the termi-

nation of the CRB for an arbitrary working memory. And indeed, we already discussed
in the last section a concrete working memory for which the CRB does not terminate.
We also discussed the assumptions about the working memory on which the CRB relies
that are related to this result. In the case of the CRB, we already knew about these
assumptions before and found a way to incorporate them properly. However, this might
not generally be the case. This result shows that our implementation can help to reveal
certain assumptions about the working memory on which a RB relies.
Listing 5.8 presents the ITRS which results from the rules in Listing 5.6. The complete

ITRS can be found in Listing A.5. Listing 5.9 shows an excerpt of the related AProVE
report. The complete AProVE report can be found in Listing A.7. This report gives us
an example of a successful proof of termination of the related ITRS; thus we can apply
our termination criterion and know that the termination of Rule 16, 17, and 18 from the
investigated decision table of the CRB is guaranteed if one provides a working memory
which respects the requirements of CRB.
Finally, we show that our implementation can theoretically help to detect certain error

scenarios. Assume the typo described at the end of the last section. This typo would
propagate to a change in Line 1 and 2 of Listing 5.8 respectively Line 21 and 22 of Listing
A.5. These lines would contain the value 12 instead of 11. Listing 5.10 shows an excerpt
of the AProVE report for this scenario. The complete AProVE report can be found in
Listing A.8.

Listing 5.8: Excerpt of the ITRS in Listing A.5
1 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 11 && sg <= 11 && vi < 100]
2 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 11 && sg <= 11 && vi > 100]
3 DR17(id, sg, vi) -> DR17(id, sg, 101) [sg >= 12 && sg <= 12 && vi < 101]
4 DR17(id, sg, vi) -> DR17(id, sg, 101) [sg >= 12 && sg <= 12 && vi > 101]

Listing 5.9: Excerpt of the AProVE report in Listing A.7
1 YES
2 proof of crb-2.inttrs
3 # AProVE Commit ID: 2e6638c59cfd6c865410a35d3360fc0074b41f84 ffrohn 20140725
4
5
6 Termination of the given IRSwT could be proven:
7
8 (0) IRSwT
9 (1) IRSwTTerminationDigraphProof [EQUIVALENT, 56.9 s]
10 (2) TRUE
11
12
13 ...

59

5. Case Study

Listing 5.10: Excerpt of the AProVE report in Listing A.8
1 NO
2 proof of crb-3.inttrs
3 # AProVE Commit ID: 2e6638c59cfd6c865410a35d3360fc0074b41f84 ffrohn 20140725
4
5
6 Termination of the given IRSwT could be disproven:
7
8 (0) IRSwT
9 (1) IRSwTTerminationDigraphProof [EQUIVALENT, 56.6 s]
10 (2) IRSwT
11 (3) IntTRSUnneededArgumentFilterProof [EQUIVALENT, 0 ms]
12 (4) IntTRS
13 (5) FilterProof [EQUIVALENT, 0 ms]
14 (6) IntTRS
15 (7) IntTRSPeriodicNontermProof [COMPLETE, 11 ms]
16 (8) NO
17
18 ...
19
20 (6)
21 Obligation:
22 Rules:
23 DR17(x58, x59) -> DR17(x58, 100) :|: x58 >= 12 && x58 <= 12 && x59 > 100
24 DR17(x67, x68) -> DR17(x67, 101) :|: x67 >= 12 && x67 <= 12 && x68 < 101
25
26 --
27
28 (7) IntTRSPeriodicNontermProof (COMPLETE)
29 Normalized system to the following form:
30 f(pc, x58, x59) -> f(1, x58, 100) :|: pc = 1 && (x58 >= 12 && x58 <= 12 && x59 > 100)
31 f(pc, x67, x68) -> f(1, x67, 101) :|: pc = 1 && (x67 >= 12 && x67 <= 12 && x68 < 101)
32 Witness term starting non-terminating reduction: f(1, 12, 101)
33
34 ...

We see that our typo would lead to a non terminating ITRS. This result is a strong
indicator of some kind of error in the considered RB, especially, if a previous analysis
was able to guarantee the termination of this RB. A closer look at Listing 5.10 reveals a
witness for a non-terminating reduction in Line 32 and the related rules in Line 23 and
24. This information could be used to trace back the typo in the original decision table.

5.4. Benchmarks

In this section we present some benchmarks created during our case study. These bench-
marks were created on a personal computer with an Intel R© CoreTM 2 Quad processor
running at 2.8 GHz frequency and 3.7 GiB working memory.
The runtime of our implementation, while generating the ITRSs presented in the pre-

vious section, was measured using the Linux command time. The result of this mea-
surement can be found in Figure 5.3. This benchmark shows that the runtime of our
implementation is almost neglectable and unproblematic.

60

5. Case Study

Figure 5.3.: Benchmark of the runtime of the implementation

Real User Sys
Generation of Listing A.4 0m1.415s 0m1.817s 0m0.040s
Generation of Listing A.5 0m1.414s 0m1.860s 0m0.033s

Figure 5.4.: Benchmark of the runtime of AProVE

Time
Generation of Listing A.6 0m0.140s
Generation of Listing A.7 0m56.9s
Generation of Listing A.8 0m56.6s

Figure 5.5.: Benchmark of the runtime of AProVE – Different sample sizes

Time
Input Line 1 - 10 of Listing A.6 0m0.403s
Input Line 1 - 20 of Listing A.6 0m1.083s
Input Line 1 - 30 of Listing A.6 0m2.248s
Input Line 1 - 40 of Listing A.6 0m5.119s
Input Line 1 - 50 of Listing A.6 0m9.906s
Input Line 1 - 60 of Listing A.6 0m20.3s
Input Line 1 - 70 of Listing A.6 0m36.5s
Input Line 1 - 78 of Listing A.6 0m56.6s

The reports of AProVE provide their own time measurement and Figure 5.4 summa-
rizes the relevant data. Since the runtime of AProVE is significant, we conducted another
test in which we tested the runtime of AProVE for differently sized ITRSs. The first
sample contained the first 10 lines of Listing A.5; the second sample – the first 20 lines,
and so on. Figure 5.5 shows the generated results. We can see the asymptotic exponential
increase of the runtime which is typical for many fields of automated theorem proving.
However, the ITRS generated by our implementation could be optimized and one can

eliminate certain redundancies, which would lead to better performance. This can be
achieved using approaches like symmetric reduction or subsumption.

61

6. Conclusion

In this thesis we combined both theoretical and practical approaches towards the goal
of an automated deductive analysis of the Business Rule Management System Drools.
Furthermore, our case study showed that these approaches are applicable in real-world
scenarios and yield useful results for the development process of Drools rule bases.
A central aspect of the theoretical work presented in Chapter 3 is the definition of a

formalism, which allows us to capture the internal structure of the inference engine of
Drools and give structural operational semantics to certain expressions in DRL. Never-
theless, Drools and DRL undergo rapid development; and DRL can not be considered a
stable language. During the creation of this thesis we witnessed four stable releases of
Drools, namely version 5.5, 5.6, 6.0, and 6.1. At the moment of publication version 6.2 is
another release candidate. Most of these versions brought minor changes to syntax and
semantics of DRL or introduced new language features. For example, an interesting new
feature are so-called fine grained property change listeners, which has direct impact on
the semantics of DRL. This feature introduces new requirements to the classes used for
the representation of facts and needs to be explicitly activated. In this case, Drools will
only reevaluate facts, if the value of an attribute is actually changed by a modification.
This suppresses the repeated modification of facts, which might not change the values of
attributes. Therefore, it is crucial to keep track with the current development of Drools.
Next, in Chapter 3 we presented and discussed the termination criterion. To be useful

in practice, it was necessary to put side conditions on allowed working memories. The
general nature of these side conditions is specific to applications. In our case study we
incorporated them directly into the translation process. For a more general approach, it
remains to formalize these side conditions as e.g. logical formulas and to apply theorem
provers or solvers to support the termination analyzer.
The implementation presented in Chapter 4 is the first prototype which allows the

automated extraction of integer term rewriting systems from certain Drools rule bases. It
demonstrates the practical accessibility of Drools and DRL for formal software verification
approaches and produces useful results in combination with AProVE. However, if one is
interested in the goal of a fully automated analysis of Drools rule bases, which are used
in productive environments, further development is needed.
In Chapter 5 we have shown how to bridge the gap between our theoretical con-

siderations and problems which occur in productive environments. In this process we
encountered and described certain obstacles. Hereby, we have shown that these are not
fundamental in nature and can be overcome with adequate efforts. Furthermore, we have
shown that our approaches lead to results with practical relevance.
Overall we presented the proof-of-concept for the automated deductive analysis of

business rules in Drools.

62

Bibliography

[1] Apache Commons CLI Team — The Apache Software Foundation. Apache Com-
mons CLI, 2014. http://commons.apache.org/proper/commons-cli/.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, 1998.

[3] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in Computer
Science. Springer, 2007.

[4] Mike Brock et al. MVEL Language Guide for 2.0, 2014. http://mvel.
codehaus.org/Language+Guide+for+2.0.

[5] Business Rules Group. Defining Business Rules ∼ What Are They Really?, 2000.
http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_
3ed.pdf.

[6] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19:17 – 37, 1982.

[7] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and Stephan
Falke. Proving termination of integer term rewriting. In Rewriting Techniques and
Applications, 20th International Conference, RTA 2009, Brasília, Brazil, volume
5595 of Lecture Notes in Computer Science, pages 32 – 47. Springer, 2009.

[8] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Auto-
mated Termination Proofs with AProVE. In Rewriting Techniques and Applications,
15th International Conference, RTA 2004, Aachen, Germany, volume 3091 of Lec-
ture Notes in Computer Science, pages 210 – 220. Springer, 2004.

[9] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci-
fication. The Java Series. Addison-Wesley, 3rd edition, 2005.

[10] JBoss Drools Team. Drools Documentation, Version 6.1.0.Final, 2014. http:
//docs.jboss.org/drools/release/6.1.0.Final/drools-docs/pdf/
drools-docs.pdf.

[11] Wikipedia. Syntax diagram — Wikipedia, The Free Encyclopedia, 2014.
http://en.wikipedia.org/w/index.php?title=Syntax_diagram&
oldid=627859901, accessed 2014-10-07.

63

Figures

2.1. Rete of the rule base in Listing 2.2 . 16

4.1. UML diagram of program packages and selected classes 47

5.1. Decision table for Rule 1 and 3 of Listing 2.2 51
5.2. Investigated decision table – Overview . 52
5.3. Benchmark of the runtime of the implementation 61
5.4. Benchmark of the runtime of AProVE . 61
5.5. Benchmark of the runtime of AProVE – Different sample sizes 61

A.1. Investigated decision table – Column A to H 68
A.2. Investigated decision table – Column I to X 69
A.3. Investigated decision table – Column Y to AN 70

64

Listings

2.1. Example of a Java class used to represent facts 11
2.2. Example of a rule base written in DRL . 12
2.3. Example of a type declaration written in DRL 15

3.1. Example of a rule base written in DRLZ 26
3.2. Atypical example of self-deactivation in DRLZ 36
3.3. Emulation of Horn clauses in DRLZ . 37
3.4. Emulation of functions in DRLZ . 37
3.5. Emulation of function composition in DRLZ 38
3.6. Emulation of primitive recursion in DRLZ 39
3.7. Emulation of µ-recursion in DRLZ . 39
3.8. Example of a rule base written in DRLtZ 40

4.1. Command line interface of the implementation 46
4.2. XML representation of Line 10 to 16 of Listing 2.2 48

5.1. Overview of the structure of Rule 17 . 53
5.2. Elimination of variable action in the RHS of Rule 17 55
5.3. Appropriate type declarations for Rule 17 55
5.4. Replacement of string literals in Rule 17 56
5.5. Splitting and shift of conditional constructs to LHS of Rule 17 56
5.6. Merge of request and data objects for Rule 17 57
5.7. Excerpt of the ITRS in Listing A.4 . 58
5.8. Excerpt of the ITRS in Listing A.5 . 59
5.9. Excerpt of the AProVE report in Listing A.7 59
5.10. Excerpt of the AProVE report in Listing A.8 60

A.1. DRL representation of Rule 16, 17, and 18 67
A.2. DRLZ representation of Rule 16, 17, and 18 — Preparation steps 1 to 4 . 76
A.3. DRLZ representation of Rule 16, 17, and 18 — Preparation steps 1 to 5 . 81
A.4. ITRS for Listing A.2 . 86
A.5. ITRS for Listing A.3 . 87
A.6. AProVE report for Listing A.4 . 88
A.7. AProVE report for Listing A.5 . 91
A.8. AProVE report for a defective version of Listing A.5 96

65

Appendices

66

A. Investigated Rules and Related Data

This appendix contains data, rules, and results, which form the basis for the case study
presented in Chapter 5. The first section shows a detailed version of the investigated
decision table. The next section exhibits the DRL and DRLZ representation of Rule
16, 17, and 18 from this decision table. The third section gives the ITRSs which were
generated using our implementation. The last section portrays the related AProVE
results.

A.1. Investigated Decision Table

Figure A.1, A.2, and A.3 show Column A to H, Column I to X, respectively, Column Y
to AN of the investigated decision table.

A.2. Investigated Rules

Listing A.1 contains the DRL representation of Rule 16, 17, and 18 of the decision table
presented in the previous section. Listing A.2 shows the DRLZ representation of Rule 16,
17, and 18 which results from Listing A.1 after the first four translation steps described
in Section 5.2. Listing A.3 presents the DRLZ representation of Rule 16, 17, and 18
which results from Listing A.1 after all translation steps described in Section 5.2.

Listing A.1: DRL representation of Rule 16, 17, and 18
1 package com.capgemini.rulebase;
2
3 import com.capgemini.model.DataSet16;
4 import com.capgemini.model.DataSet17;
5 import com.capgemini.model.DataSet18;
6 import com.capgemini.model.Request;
7
8 rule "Rule 16"
9 when
10 Request($senderGroup : senderGroup) and $ds : DataSet16()
11 then
12 String action="%";
13 if("01".equals($senderGroup)) {
14 action = "J";
15 }
16 if("02".equals($senderGroup)) {
17 action = "J";
18 }
19 if("03".equals($senderGroup)) {
20 action = "J";
21 }
22 if("04".equals($senderGroup)) {

67

A. Investigated Rules and Related Data

Figure A.1.: Investigated decision table – Column A to H

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A B C D E F G H
CONDITION CONDITION CONDITION ACTION ACTION ACTION ACTION

R
e
q
u
e
s
t(

$
s
e
n
d
e
rG

ro
u
p
 :

s
e
n
d
e
rG

ro
u
p
)

a
n
d
 $

p
a
ra

m

S
tr

in
g
 a

c
ti
o
n
=

"%
";

if
("

0
1
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

0
2
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

0
3
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

Rule Name Data Set ID LHS 1 2 3

Rule 1 DataSet1 $ds : DataSet1() J J J

Rule 2 DataSet2 $ds : DataSet2() J J J

Rule 3 DataSet3 $ds : DataSet3() J J J

Rule 4 DataSet4 $ds : DataSet4() J J J

Rule 5 DataSet5 $ds : DataSet5() J J J

Rule 6 DataSet6 $ds : DataSet6() J J J

Rule 7 DataSet7 $ds : DataSet7() J J J

Rule 8 DataSet8 $ds : DataSet8() J J J

Rule 9 DataSet9 == "A" $ds : DataSet9(id == "A") J J J

Rule 10 DataSet10 == "A" $ds : DataSet10(id == "A") J J J

Rule 11 DataSet11 != "A" $ds : DataSet11(id != "A") J J J

Rule 12 DataSet12 $ds : DataSet12() J J J

Rule 13 DataSet13 $ds : DataSet13() J J J

Rule 14 DataSet14 $ds : DataSet14() J J J

Rule 15 DataSet15 $ds : DataSet15() J J J

Rule 16 DataSet16 $ds : DataSet16() J J J

Rule 17 DataSet17 $ds : DataSet17() J J J

Rule 18 DataSet18 != "B" $ds : DataSet18(id != "B") J J J

Rule 19 DataSet19 == "B" $ds : DataSet19(id == "B") J J J

Rule 20 DataSet20 $ds : DataSet20() J J J

Rule 21 DataSet21 $ds : DataSet21() J J J

Rule 22 DataSet22 $ds : DataSet22() J J J

Rule 23 DataSet23 $ds : DataSet23() J J J

Rule 24 DataSet24 $ds : DataSet24() H H H

Rule 25 DataSet25 $ds : DataSet25() J J J

Rule 26 DataSet26 $ds : DataSet26() J J J

Rule 27 DataSet27 $ds : DataSet27() J J J

Rule 28 DataSet28 $ds : DataSet28() J J J

Rule 29 DataSet29 $ds : DataSet29() J J J

Rule 30 DataSet30 $ds : DataSet30() J J J

Rule 31 DataSet31 $ds : DataSet31() J J J

Rule 32 DataSet32 $ds : DataSet32() J J J

Rule 33 DataSet33 $ds : DataSet33() J J J

Rule 34 DataSet34 $ds : DataSet34() J J J

Rule 35 DataSet35 $ds : DataSet35() J J J

Rule 36 DataSet36 $ds : DataSet36() J J J

Rule 37 DataSet37 $ds : DataSet37() J J J

Rule 38 DataSet38 $ds : DataSet38() J J J

Rule 39 DataSet39 $ds : DataSet39() J J J

Rule 40 DataSet40 $ds : DataSet40() J J J

Rule 41 DataSet41 $ds : DataSet41() J J J

Rule 42 DataSet42 $ds : DataSet42() J J J

Rule 43 DataSet43 $ds : DataSet43() J J J

Rule 44 DataSet44 $ds : DataSet44() J J J

Rule 45 DataSet45 $ds : DataSet45() J J J

Rule 46 DataSet46 $ds : DataSet46() J J J

Rule 47 DataSet47 $ds : DataSet47() J N N

Rule 48 DataSet48 $ds : DataSet48() J J J

Rule 49 DataSet49 $ds : DataSet49() J J J

X

68

A. Investigated Rules and Related Data

Figure A.2.: Investigated decision table – Column I to X

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

I J K L M N O P Q R S T U V W X
ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION

if
("

0
4
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

0
5
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

0
6
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

0
7
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

0
8
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

0
9
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
0
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
1
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
2
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
3
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
4
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
5
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
6
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
7
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
8
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

1
9
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

J J J N J J J N H H J J J J J J

J J J N J J J J N N J J J J J J

J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J

J J J N J J J J J J J J J J J J

J J J N J J J J H H J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J J H H J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J J J J J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J N H H J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J J H H J J J J J J

J J J N J J J N H H J J J J J J

J J J N J J J J N N J J J J J J

J N J N N N N N N N J N N N J J

J J J N J J J J N N J J J J J J

J J J N J J J N N N J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J J N N J J J J J J

H J H H H H H H H H H H H H J J

J J J N J J J N N N J J J J J J

J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J

J J J N J J J N N N J J J J J J

J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J

J J J N J J J J N N J J J J J J

J J J J J J J J J J J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J N N N J J J J J J

J J J J J J J J J J J J J J J J

J J J N N N N N N N N J N N J J

J J J N J J J N N N J J J J J J

J J J J J J J J J J J J J J J J

J J J N J J J N N N J J J J J J

J J J N J J J J N N J J J J J J

J J J N J J J J N N J J J J J J

J J J N N N N N N N N J N N J J

J J J N J J J N N N J J J J J J

N N N N N N N N N N N N N N J J

J J J N J J J N H H J J J J J J

J J J N J J J J N N J J J J J J

69

A. Investigated Rules and Related Data

Figure A.3.: Investigated decision table – Column Y to AN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Y Z AA AB AC AD AE AF AG AH AI AJ AK AL AM AN
ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION ACTION

if
("

2
0
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

2
1
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

2
2
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

2
3
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

2
4
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

2
5
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

2
6
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

2
7
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

2
8
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

2
9
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

3
0
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

3
1
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

3
2
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
("

3
3
".

e
q
u
a
ls

($
s
e
n
d
e
rG

ro
u
p
))

 {

a
c
ti
o
n
 =

 "
$
p
a
ra

m
";

 }

if
(a

ct
io

n
.e

q
u

al
s(

"N
")

 &
&

 !
"0

"

.e
q

u
al

s(
$d

s.
ge

tV
is

ib
ili

ty
()

))
 {

$d
s.

se
tV

is
ib

ili
ty

("
0

")
; u

p
d

at
e(

$d
s)

; }

if
(a

ct
io

n
.e

q
u

al
s(

"H
")

 &
&

 !
"1

"

.e
q

u
al

s(
$d

s.
ge

tV
is

ib
ili

ty
()

))
 {

$d
s.

se
tV

is
ib

ili
ty

("
1

")
; u

p
d

at
e(

$d
s)

; }

20 21 22 23 24 25 26 27 28 29 30 31 32 33 N H

J N N N N J N N N J N N N N

J J J N N J N N J J J J J N

J J J J N J J N J J J J N N

J J J J N J J N J J J J J J

J J J J N J J N J J J J N N

J J J J N J J N J J J J N N

J J J J N J N N J J J J J N

J J J J N J N N J J J J J N

J J J J N J N N J J J J J N

J J J J N J N N J J J J J N

J J J J N J N N J J J J J N

J J J J N J N N J J J J J N

J J J J N J N N J J J J J N

J J J N N J N N J J N N N N

J N N N N J N N N J J J J N

J J J N N J N N J J J J N N

J N N N N J J N N J N N N N

J J J N N J N N J J J J J N

N J J N N J N N J N N N N N

J J J N N J N N J J J J J N

J J J N N J N N J J N N N N

J J J J N J N N J J J J J N

J J J J N J N N J J J J J N

J H H N N H N N H H N N N N

J J J J N J J N J J N N N N

J J J J N J J N J J J J J J

J J J J J J J J J J J J J J

J J J J N J J N J J N N N N

J J J J N J J N J J J J J J

J J J J J J J J J J J J J J

J J J J N J N N J J J J J N

J J J J J J J J J J J J J N

J J J J N J N N J J J J J N

J J J J N J J N J J J J N N

J N N N N J N N N J J J J N

J J J J N J N N J J J J J N

J J J J N J J N J J N N N N

J J J J J J J J J J J J J J

J J J J N J J N J N N N N N

J J J J N J J N J J N N N N

J J J J J J J J J J J J J J

J J J N N J N N J J N N N N

J J J N N J N N J J J J J N

J J J N N J N N J J J J J N

J J J J N J J N J N N N N N

J J J J N J J N J J N N N N

N N N N N N N N N J N N N N

J J J N N J N N J J J J N N

J J J J N J N N J J J J J N

X X

70

A. Investigated Rules and Related Data

23 action = "J";
24 }
25 if("05".equals($senderGroup)) {
26 action = "J";
27 }
28 if("06".equals($senderGroup)) {
29 action = "J";
30 }
31 if("07".equals($senderGroup)) {
32 action = "N";
33 }
34 if("08".equals($senderGroup)) {
35 action = "J";
36 }
37 if("09".equals($senderGroup)) {
38 action = "J";
39 }
40 if("10".equals($senderGroup)) {
41 action = "J";
42 }
43 if("11".equals($senderGroup)) {
44 action = "J";
45 }
46 if("12".equals($senderGroup)) {
47 action = "H";
48 }
49 if("13".equals($senderGroup)) {
50 action = "H";
51 }
52 if("14".equals($senderGroup)) {
53 action = "J";
54 }
55 if("15".equals($senderGroup)) {
56 action = "J";
57 }
58 if("16".equals($senderGroup)) {
59 action = "J";
60 }
61 if("17".equals($senderGroup)) {
62 action = "J";
63 }
64 if("18".equals($senderGroup)) {
65 action = "J";
66 }
67 if("19".equals($senderGroup)) {
68 action = "J";
69 }
70 if("20".equals($senderGroup)) {
71 action = "J";
72 }
73 if("21".equals($senderGroup)) {
74 action = "J";
75 }
76 if("22".equals($senderGroup)) {
77 action = "J";
78 }
79 if("23".equals($senderGroup)) {
80 action = "N";
81 }
82 if("24".equals($senderGroup)) {
83 action = "N";
84 }

71

A. Investigated Rules and Related Data

85 if("25".equals($senderGroup)) {
86 action = "J";
87 }
88 if("26".equals($senderGroup)) {
89 action = "N";
90 }
91 if("27".equals($senderGroup)) {
92 action = "N";
93 }
94 if("28".equals($senderGroup)) {
95 action = "J";
96 }
97 if("29".equals($senderGroup)) {
98 action = "J";
99 }
100 if("30".equals($senderGroup)) {
101 action = "J";
102 }
103 if("31".equals($senderGroup)) {
104 action = "J";
105 }
106 if("32".equals($senderGroup)) {
107 action = "N";
108 }
109 if("33".equals($senderGroup)) {
110 action = "N";
111 }
112 if(action.equals("N") && !"0".equals($ds.getVisibility())) {
113 $ds.setVisibility("0");
114 update($ds);
115 }
116 if(action.equals("H") && !"1".equals($ds.getVisibility())) {
117 $ds.setVisibility("1");
118 upate($ds);
119 }
120 end
121
122 rule "Rule 17"
123 when
124 Request($senderGroup : senderGroup) and $ds : DataSet17()
125 then
126 String action="%";
127 if("01".equals($senderGroup)) {
128 action = "J";
129 }
130 if("02".equals($senderGroup)) {
131 action = "J";
132 }
133 if("03".equals($senderGroup)) {
134 action = "J";
135 }
136 if("04".equals($senderGroup)) {
137 action = "J";
138 }
139 if("05".equals($senderGroup)) {
140 action = "J";
141 }
142 if("06".equals($senderGroup)) {
143 action = "J";
144 }
145 if("07".equals($senderGroup)) {
146 action = "N";

72

A. Investigated Rules and Related Data

147 }
148 if("08".equals($senderGroup)) {
149 action = "J";
150 }
151 if("09".equals($senderGroup)) {
152 action = "J";
153 }
154 if("10".equals($senderGroup)) {
155 action = "J";
156 }
157 if("11".equals($senderGroup)) {
158 action = "N";
159 }
160 if("12".equals($senderGroup)) {
161 action = "H";
162 }
163 if("13".equals($senderGroup)) {
164 action = "H";
165 }
166 if("14".equals($senderGroup)) {
167 action = "J";
168 }
169 if("15".equals($senderGroup)) {
170 action = "J";
171 }
172 if("16".equals($senderGroup)) {
173 action = "J";
174 }
175 if("17".equals($senderGroup)) {
176 action = "J";
177 }
178 if("18".equals($senderGroup)) {
179 action = "J";
180 }
181 if("19".equals($senderGroup)) {
182 action = "J";
183 }
184 if("20".equals($senderGroup)) {
185 action = "J";
186 }
187 if("21".equals($senderGroup)) {
188 action = "N";
189 }
190 if("22".equals($senderGroup)) {
191 action = "N";
192 }
193 if("23".equals($senderGroup)) {
194 action = "N";
195 }
196 if("24".equals($senderGroup)) {
197 action = "N";
198 }
199 if("25".equals($senderGroup)) {
200 action = "J";
201 }
202 if("26".equals($senderGroup)) {
203 action = "J";
204 }
205 if("27".equals($senderGroup)) {
206 action = "N";
207 }
208 if("28".equals($senderGroup)) {

73

A. Investigated Rules and Related Data

209 action = "N";
210 }
211 if("29".equals($senderGroup)) {
212 action = "J";
213 }
214 if("30".equals($senderGroup)) {
215 action = "N";
216 }
217 if("31".equals($senderGroup)) {
218 action = "N";
219 }
220 if("32".equals($senderGroup)) {
221 action = "N";
222 }
223 if("33".equals($senderGroup)) {
224 action = "N";
225 }
226 if(action.equals("N") && !"0".equals($ds.getVisibility())) {
227 $ds.setVisibility("0");
228 update($ds);
229 }
230 if(action.equals("H") && !"1".equals($ds.getVisibility())) {
231 $ds.setVisibility("1");
232 upate($ds);
233 }
234 end
235
236 rule "Rule 18"
237 when
238 Request($senderGroup : senderGroup) and $ds : DataSet18(id != "B")
239 then
240 String action="%";
241 if("01".equals($senderGroup)) {
242 action = "J";
243 }
244 if("02".equals($senderGroup)) {
245 action = "J";
246 }
247 if("03".equals($senderGroup)) {
248 action = "J";
249 }
250 if("04".equals($senderGroup)) {
251 action = "J";
252 }
253 if("05".equals($senderGroup)) {
254 action = "J";
255 }
256 if("06".equals($senderGroup)) {
257 action = "J";
258 }
259 if("07".equals($senderGroup)) {
260 action = "N";
261 }
262 if("08".equals($senderGroup)) {
263 action = "J";
264 }
265 if("09".equals($senderGroup)) {
266 action = "J";
267 }
268 if("10".equals($senderGroup)) {
269 action = "J";
270 }

74

A. Investigated Rules and Related Data

271 if("11".equals($senderGroup)) {
272 action = "J";
273 }
274 if("12".equals($senderGroup)) {
275 action = "N";
276 }
277 if("13".equals($senderGroup)) {
278 action = "N";
279 }
280 if("14".equals($senderGroup)) {
281 action = "J";
282 }
283 if("15".equals($senderGroup)) {
284 action = "J";
285 }
286 if("16".equals($senderGroup)) {
287 action = "J";
288 }
289 if("17".equals($senderGroup)) {
290 action = "J";
291 }
292 if("18".equals($senderGroup)) {
293 action = "J";
294 }
295 if("19".equals($senderGroup)) {
296 action = "J";
297 }
298 if("20".equals($senderGroup)) {
299 action = "J";
300 }
301 if("21".equals($senderGroup)) {
302 action = "J";
303 }
304 if("22".equals($senderGroup)) {
305 action = "J";
306 }
307 if("23".equals($senderGroup)) {
308 action = "N";
309 }
310 if("24".equals($senderGroup)) {
311 action = "N";
312 }
313 if("25".equals($senderGroup)) {
314 action = "J";
315 }
316 if("26".equals($senderGroup)) {
317 action = "N";
318 }
319 if("27".equals($senderGroup)) {
320 action = "N";
321 }
322 if("28".equals($senderGroup)) {
323 action = "J";
324 }
325 if("29".equals($senderGroup)) {
326 action = "J";
327 }
328 if("30".equals($senderGroup)) {
329 action = "J";
330 }
331 if("31".equals($senderGroup)) {
332 action = "J";

75

A. Investigated Rules and Related Data

333 }
334 if("32".equals($senderGroup)) {
335 action = "J";
336 }
337 if("33".equals($senderGroup)) {
338 action = "N";
339 }
340 if(action.equals("N") && !"0".equals($ds.getVisibility())) {
341 $ds.setVisibility("0");
342 update($ds);
343 }
344 if(action.equals("H") && !"1".equals($ds.getVisibility())) {
345 $ds.setVisibility("1");
346 upate($ds);
347 }
348 end

Listing A.2: DRLZ representation of Rule 16, 17, and 18 — Preparation steps 1 to 4
1 declare R
2 id : Integer
3 sg : Integer
4 end
5
6 declare D16
7 vi : Integer
8 end
9
10 declare D17
11 vi : Integer
12 end
13
14 declare D18
15 vi : Integer
16 end
17
18 rule Rule16B1
19 when
20 R(sg == 7) and $ds : D16(vi != 100)
21 then
22 modify($ds) {
23 setVi(100)
24 }
25 end
26
27 rule Rule16B2
28 when
29 R(sg == 12) and $ds : D16(vi != 101)
30 then
31 modify($ds) {
32 setVi(101)
33 }
34 end
35
36 rule Rule16B3
37 when
38 R(sg == 13) and $ds : D16(vi != 101)
39 then
40 modify($ds) {
41 setVi(101)
42 }

76

A. Investigated Rules and Related Data

43 end
44
45 rule Rule16B4
46 when
47 R(sg == 23) and $ds : D16(vi != 100)
48 then
49 modify($ds) {
50 setVi(100)
51 }
52 end
53
54 rule Rule16B5
55 when
56 R(sg == 24) and $ds : D16(vi != 100)
57 then
58 modify($ds) {
59 setVi(100)
60 }
61 end
62
63 rule Rule16B6
64 when
65 R(sg == 26) and $ds : D16(vi != 100)
66 then
67 modify($ds) {
68 setVi(100)
69 }
70 end
71
72 rule Rule16B7
73 when
74 R(sg == 27) and $ds : D16(vi != 100)
75 then
76 modify($ds) {
77 setVi(100)
78 }
79 end
80
81 rule Rule16B8
82 when
83 R(sg == 32) and $ds : D16(vi != 100)
84 then
85 modify($ds) {
86 setVi(100)
87 }
88 end
89
90 rule Rule16B9
91 when
92 R(sg == 33) and $ds : D16(vi != 100)
93 then
94 modify($ds) {
95 setVi(100)
96 }
97 end
98
99 rule Rule17B1
100 when
101 R(sg == 7) and $ds : D17(vi != 100)
102 then
103 modify($ds) {
104 setVi(100)

77

A. Investigated Rules and Related Data

105 }
106 end
107
108 rule Rule17B2
109 when
110 R(sg == 11) and $ds : D17(vi != 100)
111 then
112 modify($ds) {
113 setVi(100)
114 }
115 end
116
117 rule Rule17B3
118 when
119 R(sg == 12) and $ds : D17(vi != 101)
120 then
121 modify($ds) {
122 setVi(101)
123 }
124 end
125
126 rule Rule17B4
127 when
128 R(sg == 13) and $ds : D17(vi != 101)
129 then
130 modify($ds) {
131 setVi(101)
132 }
133 end
134
135 rule Rule17B5
136 when
137 R(sg == 21) and $ds : D17(vi != 100)
138 then
139 modify($ds) {
140 setVi(100)
141 }
142 end
143
144 rule Rule17B6
145 when
146 R(sg == 22) and $ds : D17(vi != 100)
147 then
148 modify($ds) {
149 setVi(100)
150 }
151 end
152
153 rule Rule17B7
154 when
155 R(sg == 23) and $ds : D17(vi != 100)
156 then
157 modify($ds) {
158 setVi(100)
159 }
160 end
161
162 rule Rule17B8
163 when
164 R(sg == 24) and $ds : D17(vi != 100)
165 then
166 modify($ds) {

78

A. Investigated Rules and Related Data

167 setVi(100)
168 }
169 end
170
171 rule Rule17B9
172 when
173 R(sg == 27) and $ds : D17(vi != 100)
174 then
175 modify($ds) {
176 setVi(100)
177 }
178 end
179
180 rule Rule17B10
181 when
182 R(sg == 28) and $ds : D17(vi != 100)
183 then
184 modify($ds) {
185 setVi(100)
186 }
187 end
188
189 rule Rule17B11
190 when
191 R(sg == 30) and $ds : D17(vi != 100)
192 then
193 modify($ds) {
194 setVi(100)
195 }
196 end
197
198 rule Rule17B12
199 when
200 R(sg == 31) and $ds : D17(vi != 100)
201 then
202 modify($ds) {
203 setVi(100)
204 }
205 end
206
207 rule Rule17B13
208 when
209 R(sg == 32) and $ds : D17(vi != 100)
210 then
211 modify($ds) {
212 setVi(100)
213 }
214 end
215
216 rule Rule17B14
217 when
218 R(sg == 33) and $ds : D17(vi != 100)
219 then
220 modify($ds) {
221 setVi(100)
222 }
223 end
224
225 rule Rule18B1
226 when
227 R(id != 66, sg == 7) and $ds : D18(vi != 100)
228 then

79

A. Investigated Rules and Related Data

229 modify($ds) {
230 setVi(100)
231 }
232 end
233
234 rule Rule18B2
235 when
236 R(id != 66, sg == 12) and $ds : D18(vi != 100)
237 then
238 modify($ds) {
239 setVi(100)
240 }
241 end
242
243 rule Rule18B3
244 when
245 R(id != 66, sg == 13) and $ds : D18(vi != 100)
246 then
247 modify($ds) {
248 setVi(100)
249 }
250 end
251
252 rule Rule18B4
253 when
254 R(id != 66, sg == 23) and $ds : D18(vi != 100)
255 then
256 modify($ds) {
257 setVi(100)
258 }
259 end
260
261 rule Rule18B5
262 when
263 R(id != 66, sg == 24) and $ds : D18(vi != 100)
264 then
265 modify($ds) {
266 setVi(100)
267 }
268 end
269
270 rule Rule18B6
271 when
272 R(id != 66, sg == 26) and $ds : D18(vi != 100)
273 then
274 modify($ds) {
275 setVi(100)
276 }
277 end
278
279 rule Rule18B7
280 when
281 R(id != 66, sg == 27) and $ds : D18(vi != 100)
282 then
283 modify($ds) {
284 setVi(100)
285 }
286 end
287
288 rule Rule18B8
289 when
290 R(id != 66, sg == 33) and $ds : D18(vi != 100)

80

A. Investigated Rules and Related Data

291 then
292 modify($ds) {
293 setVi(100)
294 }
295 end

Listing A.3: DRLZ representation of Rule 16, 17, and 18 — Preparation steps 1 to 5
1 declare DR16
2 id : Integer
3 sg : Integer
4 vi : Integer
5 end
6
7 declare DR17
8 id : Integer
9 sg : Integer
10 vi : Integer
11 end
12
13 declare DR18
14 id : Integer
15 sg : Integer
16 vi : Integer
17 end
18
19 rule Rule16B1
20 when
21 $dr : DR16(sg == 7, vi != 100)
22 then
23 modify($dr) {
24 setVi(100)
25 }
26 end
27
28 rule Rule16B2
29 when
30 $dr : DR16(sg == 12, vi != 101)
31 then
32 modify($dr) {
33 setVi(101)
34 }
35 end
36
37 rule Rule16B3
38 when
39 $dr : DR16(sg == 13, vi != 101)
40 then
41 modify($dr) {
42 setVi(101)
43 }
44 end
45
46 rule Rule16B4
47 when
48 $dr : DR16(sg == 23, vi != 100)
49 then
50 modify($dr) {
51 setVi(100)
52 }
53 end

81

A. Investigated Rules and Related Data

54
55 rule Rule16B5
56 when
57 $dr : DR16(sg == 24, vi != 100)
58 then
59 modify($dr) {
60 setVi(100)
61 }
62 end
63
64 rule Rule16B6
65 when
66 $dr : DR16(sg == 26, vi != 100)
67 then
68 modify($dr) {
69 setVi(100)
70 }
71 end
72
73 rule Rule16B7
74 when
75 $dr : DR16(sg == 27, vi != 100)
76 then
77 modify($dr) {
78 setVi(100)
79 }
80 end
81
82 rule Rule16B8
83 when
84 $dr : DR16(sg == 32, vi != 100)
85 then
86 modify($dr) {
87 setVi(100)
88 }
89 end
90
91 rule Rule16B9
92 when
93 $dr : DR16(sg == 33, vi != 100)
94 then
95 modify($dr) {
96 setVi(100)
97 }
98 end
99
100 rule Rule17B1
101 when
102 $dr : DR17(sg == 7, vi != 100)
103 then
104 modify($dr) {
105 setVi(100)
106 }
107 end
108
109 rule Rule17B2
110 when
111 $dr : DR17(sg == 11, vi != 100)
112 then
113 modify($dr) {
114 setVi(100)
115 }

82

A. Investigated Rules and Related Data

116 end
117
118 rule Rule17B3
119 when
120 $dr : DR17(sg == 12, vi != 101)
121 then
122 modify($dr) {
123 setVi(101)
124 }
125 end
126
127 rule Rule17B4
128 when
129 $dr : DR17(sg == 13, vi != 101)
130 then
131 modify($dr) {
132 setVi(101)
133 }
134 end
135
136 rule Rule17B5
137 when
138 $dr : DR17(sg == 21, vi != 100)
139 then
140 modify($dr) {
141 setVi(100)
142 }
143 end
144
145 rule Rule17B6
146 when
147 $dr : DR17(sg == 22, vi != 100)
148 then
149 modify($dr) {
150 setVi(100)
151 }
152 end
153
154 rule Rule17B7
155 when
156 $dr : DR17(sg == 23, vi != 100)
157 then
158 modify($dr) {
159 setVi(100)
160 }
161 end
162
163 rule Rule17B8
164 when
165 $dr : DR17(sg == 24, vi != 100)
166 then
167 modify($dr) {
168 setVi(100)
169 }
170 end
171
172 rule Rule17B9
173 when
174 $dr : DR17(sg == 27, vi != 100)
175 then
176 modify($dr) {
177 setVi(100)

83

A. Investigated Rules and Related Data

178 }
179 end
180
181 rule Rule17B10
182 when
183 $dr : DR17(sg == 28, vi != 100)
184 then
185 modify($dr) {
186 setVi(100)
187 }
188 end
189
190 rule Rule17B11
191 when
192 $dr : DR17(sg == 30, vi != 100)
193 then
194 modify($dr) {
195 setVi(100)
196 }
197 end
198
199 rule Rule17B12
200 when
201 $dr : DR17(sg == 31, vi != 100)
202 then
203 modify($dr) {
204 setVi(100)
205 }
206 end
207
208 rule Rule17B13
209 when
210 $dr : DR17(sg == 32, vi != 100)
211 then
212 modify($dr) {
213 setVi(100)
214 }
215 end
216
217 rule Rule17B14
218 when
219 $dr : DR17(sg == 33, vi != 100)
220 then
221 modify($dr) {
222 setVi(100)
223 }
224 end
225
226 rule Rule18B1
227 when
228 $dr : DR18(id != 66, sg == 7, vi != 100)
229 then
230 modify($dr) {
231 setVi(100)
232 }
233 end
234
235 rule Rule18B2
236 when
237 $dr : DR18(id != 66, sg == 12, vi != 100)
238 then
239 modify($dr) {

84

A. Investigated Rules and Related Data

240 setVi(100)
241 }
242 end
243
244 rule Rule18B3
245 when
246 $dr : DR18(id != 66, sg == 13, vi != 100)
247 then
248 modify($dr) {
249 setVi(100)
250 }
251 end
252
253 rule Rule18B4
254 when
255 $dr : DR18(id != 66, sg == 23, vi != 100)
256 then
257 modify($dr) {
258 setVi(100)
259 }
260 end
261
262 rule Rule18B5
263 when
264 $dr : DR18(id != 66, sg == 24, vi != 100)
265 then
266 modify($dr) {
267 setVi(100)
268 }
269 end
270
271 rule Rule18B6
272 when
273 $dr : DR18(id != 66, sg == 26, vi != 100)
274 then
275 modify($dr) {
276 setVi(100)
277 }
278 end
279
280 rule Rule18B7
281 when
282 $dr : DR18(id != 66, sg == 27, vi != 100)
283 then
284 modify($dr) {
285 setVi(100)
286 }
287 end
288
289 rule Rule18B8
290 when
291 $dr : DR18(id != 66, sg == 33, vi != 100)
292 then
293 modify($dr) {
294 setVi(100)
295 }
296 end

85

A. Investigated Rules and Related Data

A.3. Integer Term Rewriting Systems

Listing A.4 contains the ITRS which is the output of our implementation when applied to
Listing A.2. Listing A.5 show the output of our implementation when applied to Listing
A.3.

Listing A.4: ITRS for Listing A.2
1 D16(vi) -> D16(100) [vi > 100]
2 D16(vi) -> D16(100) [vi < 100]
3 D16(vi) -> D16(101) [vi > 101]
4 D16(vi) -> D16(101) [vi < 101]
5 D16(vi) -> D16(101) [vi > 101]
6 D16(vi) -> D16(101) [vi < 101]
7 D16(vi) -> D16(100) [vi > 100]
8 D16(vi) -> D16(100) [vi < 100]
9 D16(vi) -> D16(100) [vi > 100]
10 D16(vi) -> D16(100) [vi < 100]
11 D16(vi) -> D16(100) [vi > 100]
12 D16(vi) -> D16(100) [vi < 100]
13 D16(vi) -> D16(100) [vi > 100]
14 D16(vi) -> D16(100) [vi < 100]
15 D16(vi) -> D16(100) [vi > 100]
16 D16(vi) -> D16(100) [vi < 100]
17 D16(vi) -> D16(100) [vi > 100]
18 D16(vi) -> D16(100) [vi < 100]
19 D17(vi) -> D17(100) [vi > 100]
20 D17(vi) -> D17(100) [vi < 100]
21 D17(vi) -> D17(100) [vi > 100]
22 D17(vi) -> D17(100) [vi < 100]
23 D17(vi) -> D17(101) [vi > 101]
24 D17(vi) -> D17(101) [vi < 101]
25 D17(vi) -> D17(101) [vi > 101]
26 D17(vi) -> D17(101) [vi < 101]
27 D17(vi) -> D17(100) [vi > 100]
28 D17(vi) -> D17(100) [vi < 100]
29 D17(vi) -> D17(100) [vi > 100]
30 D17(vi) -> D17(100) [vi < 100]
31 D17(vi) -> D17(100) [vi > 100]
32 D17(vi) -> D17(100) [vi < 100]
33 D17(vi) -> D17(100) [vi > 100]
34 D17(vi) -> D17(100) [vi < 100]
35 D17(vi) -> D17(100) [vi > 100]
36 D17(vi) -> D17(100) [vi < 100]
37 D17(vi) -> D17(100) [vi > 100]
38 D17(vi) -> D17(100) [vi < 100]
39 D17(vi) -> D17(100) [vi > 100]
40 D17(vi) -> D17(100) [vi < 100]
41 D17(vi) -> D17(100) [vi > 100]
42 D17(vi) -> D17(100) [vi < 100]
43 D17(vi) -> D17(100) [vi > 100]
44 D17(vi) -> D17(100) [vi < 100]
45 D17(vi) -> D17(100) [vi > 100]
46 D17(vi) -> D17(100) [vi < 100]
47 D18(vi) -> D18(100) [vi > 100]
48 D18(vi) -> D18(100) [vi < 100]
49 D18(vi) -> D18(100) [vi > 100]
50 D18(vi) -> D18(100) [vi < 100]
51 D18(vi) -> D18(100) [vi > 100]
52 D18(vi) -> D18(100) [vi < 100]
53 D18(vi) -> D18(100) [vi > 100]

86

A. Investigated Rules and Related Data

54 D18(vi) -> D18(100) [vi < 100]
55 D18(vi) -> D18(100) [vi > 100]
56 D18(vi) -> D18(100) [vi < 100]
57 D18(vi) -> D18(100) [vi > 100]
58 D18(vi) -> D18(100) [vi < 100]
59 D18(vi) -> D18(100) [vi > 100]
60 D18(vi) -> D18(100) [vi < 100]
61 D18(vi) -> D18(100) [vi > 100]
62 D18(vi) -> D18(100) [vi < 100]

Listing A.5: ITRS for Listing A.3
1 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 7 && sg <= 7 && vi > 100]
2 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 7 && sg <= 7 && vi < 100]
3 DR16(id, sg, vi) -> DR16(id, sg, 101) [sg >= 12 && sg <= 12 && vi > 101]
4 DR16(id, sg, vi) -> DR16(id, sg, 101) [sg >= 12 && sg <= 12 && vi < 101]
5 DR16(id, sg, vi) -> DR16(id, sg, 101) [sg >= 13 && sg <= 13 && vi > 101]
6 DR16(id, sg, vi) -> DR16(id, sg, 101) [sg >= 13 && sg <= 13 && vi < 101]
7 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 23 && sg <= 23 && vi > 100]
8 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 23 && sg <= 23 && vi < 100]
9 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 24 && sg <= 24 && vi > 100]
10 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 24 && sg <= 24 && vi < 100]
11 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 26 && sg <= 26 && vi > 100]
12 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 26 && sg <= 26 && vi < 100]
13 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 27 && sg <= 27 && vi > 100]
14 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 27 && sg <= 27 && vi < 100]
15 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 32 && sg <= 32 && vi > 100]
16 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 32 && sg <= 32 && vi < 100]
17 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 33 && sg <= 33 && vi > 100]
18 DR16(id, sg, vi) -> DR16(id, sg, 100) [sg >= 33 && sg <= 33 && vi < 100]
19 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 7 && sg <= 7 && vi > 100]
20 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 7 && sg <= 7 && vi < 100]
21 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 11 && sg <= 11 && vi > 100]
22 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 11 && sg <= 11 && vi < 100]
23 DR17(id, sg, vi) -> DR17(id, sg, 101) [sg >= 12 && sg <= 12 && vi > 101]
24 DR17(id, sg, vi) -> DR17(id, sg, 101) [sg >= 12 && sg <= 12 && vi < 101]
25 DR17(id, sg, vi) -> DR17(id, sg, 101) [sg >= 13 && sg <= 13 && vi > 101]
26 DR17(id, sg, vi) -> DR17(id, sg, 101) [sg >= 13 && sg <= 13 && vi < 101]
27 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 21 && sg <= 21 && vi > 100]
28 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 21 && sg <= 21 && vi < 100]
29 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 22 && sg <= 22 && vi > 100]
30 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 22 && sg <= 22 && vi < 100]
31 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 23 && sg <= 23 && vi > 100]
32 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 23 && sg <= 23 && vi < 100]
33 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 24 && sg <= 24 && vi > 100]
34 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 24 && sg <= 24 && vi < 100]
35 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 27 && sg <= 27 && vi > 100]
36 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 27 && sg <= 27 && vi < 100]
37 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 28 && sg <= 28 && vi > 100]
38 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 28 && sg <= 28 && vi < 100]
39 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 30 && sg <= 30 && vi > 100]
40 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 30 && sg <= 30 && vi < 100]
41 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 31 && sg <= 31 && vi > 100]
42 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 31 && sg <= 31 && vi < 100]
43 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 32 && sg <= 32 && vi > 100]
44 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 32 && sg <= 32 && vi < 100]
45 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 33 && sg <= 33 && vi > 100]
46 DR17(id, sg, vi) -> DR17(id, sg, 100) [sg >= 33 && sg <= 33 && vi < 100]
47 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 7 && sg <= 7 && vi > 100]
48 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 7 && sg <= 7 && vi < 100]
49 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 7 && sg <= 7 && vi > 100]

87

A. Investigated Rules and Related Data

50 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 7 && sg <= 7 && vi < 100]
51 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 12 && sg <= 12 && vi > 100]
52 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 12 && sg <= 12 && vi < 100]
53 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 12 && sg <= 12 && vi > 100]
54 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 12 && sg <= 12 && vi < 100]
55 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 13 && sg <= 13 && vi > 100]
56 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 13 && sg <= 13 && vi < 100]
57 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 13 && sg <= 13 && vi > 100]
58 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 13 && sg <= 13 && vi < 100]
59 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 23 && sg <= 23 && vi > 100]
60 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 23 && sg <= 23 && vi < 100]
61 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 23 && sg <= 23 && vi > 100]
62 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 23 && sg <= 23 && vi < 100]
63 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 24 && sg <= 24 && vi > 100]
64 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 24 && sg <= 24 && vi < 100]
65 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 24 && sg <= 24 && vi > 100]
66 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 24 && sg <= 24 && vi < 100]
67 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 26 && sg <= 26 && vi > 100]
68 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 26 && sg <= 26 && vi < 100]
69 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 26 && sg <= 26 && vi > 100]
70 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 26 && sg <= 26 && vi < 100]
71 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 27 && sg <= 27 && vi > 100]
72 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 27 && sg <= 27 && vi < 100]
73 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 27 && sg <= 27 && vi > 100]
74 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 27 && sg <= 27 && vi < 100]
75 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 33 && sg <= 33 && vi > 100]
76 DR18(id, sg, vi) -> DR18(id, sg, 100) [id > 66 && sg >= 33 && sg <= 33 && vi < 100]
77 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 33 && sg <= 33 && vi > 100]
78 DR18(id, sg, vi) -> DR18(id, sg, 100) [id < 66 && sg >= 33 && sg <= 33 && vi < 100]

A.4. AProVE Results

Listing A.6 shows the result of AProVE for the ITRS in Listing A.4. Listing A.7 gives
the result of AProVE for the ITRS in Listing A.5. Listing A.8 presents the result of
AProVE for the ITRS which results from Listing A.5 through replacing 11 with 12 in
Line 21 and 22.

Listing A.6: AProVE report for Listing A.4
1 NO
2 proof of crb-1.inttrs
3 # AProVE Commit ID: 2e6638c59cfd6c865410a35d3360fc0074b41f84 ffrohn 20140725
4
5
6 Termination of the given IRSwT could be disproven:
7
8 (0) IRSwT
9 (1) IRSwTTerminationDigraphProof [EQUIVALENT, 136 ms]
10 (2) AND
11 (3) IRSwT
12 (4) FilterProof [EQUIVALENT, 0 ms]
13 (5) IntTRS
14 (6) IntTRSPeriodicNontermProof [COMPLETE, 0 ms]
15 (7) NO
16 (8) IRSwT
17 (9) FilterProof [EQUIVALENT, 0 ms]
18 (10) IntTRS
19 (11) IntTRSNonPeriodicNontermProof [COMPLETE, 4 ms]

88

A. Investigated Rules and Related Data

20 (12) NO
21
22
23 --
24
25 (0)
26 Obligation:
27 Rules:
28 D16(vi) -> D16(100) :|: vi > 100
29 D16(x) -> D16(100) :|: x < 100
30 D16(x1) -> D16(101) :|: x1 > 101
31 D16(x2) -> D16(101) :|: x2 < 101
32 D17(x3) -> D17(100) :|: x3 > 100
33 D17(x4) -> D17(100) :|: x4 < 100
34 D17(x5) -> D17(101) :|: x5 > 101
35 D17(x6) -> D17(101) :|: x6 < 101
36 D18(x7) -> D18(100) :|: x7 > 100
37 D18(x8) -> D18(100) :|: x8 < 100
38
39 --
40
41 (1) IRSwTTerminationDigraphProof (EQUIVALENT)
42 Constructed termination digraph!
43 Nodes:
44 (1) D16(vi) -> D16(100) :|: vi > 100
45 (2) D16(x) -> D16(100) :|: x < 100
46 (3) D16(x1) -> D16(101) :|: x1 > 101
47 (4) D16(x2) -> D16(101) :|: x2 < 101
48 (5) D17(x3) -> D17(100) :|: x3 > 100
49 (6) D17(x4) -> D17(100) :|: x4 < 100
50 (7) D17(x5) -> D17(101) :|: x5 > 101
51 (8) D17(x6) -> D17(101) :|: x6 < 101
52 (9) D18(x7) -> D18(100) :|: x7 > 100
53 (10) D18(x8) -> D18(100) :|: x8 < 100
54
55 Arcs:
56 (1) -> (4)
57 (2) -> (4)
58 (3) -> (1)
59 (4) -> (1)
60 (5) -> (8)
61 (6) -> (8)
62 (7) -> (5)
63 (8) -> (5)
64
65 This digraph is fully evaluated!
66 --
67
68 (2)
69 Complex Obligation (AND)
70
71 --
72
73 (3)
74 Obligation:
75
76 Termination digraph:
77 Nodes:
78 (1) D17(x3) -> D17(100) :|: x3 > 100
79 (2) D17(x6) -> D17(101) :|: x6 < 101
80
81 Arcs:

89

A. Investigated Rules and Related Data

82 (1) -> (2)
83 (2) -> (1)
84
85 This digraph is fully evaluated!
86
87 --
88
89 (4) FilterProof (EQUIVALENT)
90 Used the following sort dictionary for filtering:
91 D17(VARIABLE)
92 Replaced non-predefined constructor symbols by 0.
93 --
94
95 (5)
96 Obligation:
97 Rules:
98 D17(x3) -> D17(100) :|: x3 > 100
99 D17(x6) -> D17(101) :|: x6 < 101
100
101 --
102
103 (6) IntTRSPeriodicNontermProof (COMPLETE)
104 Normalized system to the following form:
105 f(pc, x3) -> f(1, 100) :|: pc = 1 && x3 > 100
106 f(pc, x6) -> f(1, 101) :|: pc = 1 && x6 < 101
107 Witness term starting non-terminating reduction: f(1, 100)
108 --
109
110 (7)
111 NO
112
113 --
114
115 (8)
116 Obligation:
117
118 Termination digraph:
119 Nodes:
120 (1) D16(vi) -> D16(100) :|: vi > 100
121 (2) D16(x2) -> D16(101) :|: x2 < 101
122
123 Arcs:
124 (1) -> (2)
125 (2) -> (1)
126
127 This digraph is fully evaluated!
128
129 --
130
131 (9) FilterProof (EQUIVALENT)
132 Used the following sort dictionary for filtering:
133 D16(VARIABLE)
134 Replaced non-predefined constructor symbols by 0.
135 --
136
137 (10)
138 Obligation:
139 Rules:
140 D16(vi) -> D16(100) :|: vi > 100
141 D16(x2) -> D16(101) :|: x2 < 101
142
143 --

90

A. Investigated Rules and Related Data

144
145 (11) IntTRSNonPeriodicNontermProof (COMPLETE)
146 Normalized system to the following form:
147 f(pc, vi) -> f(1, 100) :|: pc = 1 && vi > 100
148 f(pc, x2) -> f(1, 101) :|: pc = 1 && x2 < 101
149 Proved unsatisfiability of the following formula, indicating that the system is

never left after entering:
150 ((((run2_0 = ((1 * 1)) and run2_1 = ((1 * 100))) and (((run1_0 * 1)) = ((1 * 1)) and

((run1_1 * 1)) > ((1 * 100)))) or ((run2_0 = ((1 * 1)) and run2_1 = ((1 *
101))) and (((run1_0 * 1)) = ((1 * 1)) and ((run1_1 * 1)) < ((1 * 101))))) and
(!(((run2_0 * 1)) = ((1 * 1)) and ((run2_1 * 1)) > ((1 * 100))) and !(((run2_0

* 1)) = ((1 * 1)) and ((run2_1 * 1)) < ((1 * 101)))))
151 Proved satisfiability of the following formula, indicating that the system is

entered at least once:
152 (((run2_0 = ((1 * 1)) and run2_1 = ((1 * 100))) and (((run1_0 * 1)) = ((1 * 1)) and

((run1_1 * 1)) > ((1 * 100)))) or ((run2_0 = ((1 * 1)) and run2_1 = ((1 *
101))) and (((run1_0 * 1)) = ((1 * 1)) and ((run1_1 * 1)) < ((1 * 101)))))

153
154 --
155
156 (12)
157 NO

Listing A.7: AProVE report for Listing A.5
1 YES
2 proof of crb-2.inttrs
3 # AProVE Commit ID: 2e6638c59cfd6c865410a35d3360fc0074b41f84 ffrohn 20140725
4
5
6 Termination of the given IRSwT could be proven:
7
8 (0) IRSwT
9 (1) IRSwTTerminationDigraphProof [EQUIVALENT, 56.9 s]
10 (2) TRUE
11
12
13 --
14
15 (0)
16 Obligation:
17 Rules:
18 DR16(id, sg, vi) -> DR16(id, sg, 100) :|: sg >= 7 && sg <= 7 && vi > 100
19 DR16(x, x1, x2) -> DR16(x, x1, 100) :|: x1 >= 7 && x1 <= 7 && x2 < 100
20 DR16(x3, x4, x5) -> DR16(x3, x4, 101) :|: x4 >= 12 && x4 <= 12 && x5 > 101
21 DR16(x6, x7, x8) -> DR16(x6, x7, 101) :|: x7 >= 12 && x7 <= 12 && x8 < 101
22 DR16(x9, x10, x11) -> DR16(x9, x10, 101) :|: x10 >= 13 && x10 <= 13 && x11 > 101
23 DR16(x12, x13, x14) -> DR16(x12, x13, 101) :|: x13 >= 13 && x13 <= 13 && x14 < 101
24 DR16(x15, x16, x17) -> DR16(x15, x16, 100) :|: x16 >= 23 && x16 <= 23 && x17 > 100
25 DR16(x18, x19, x20) -> DR16(x18, x19, 100) :|: x19 >= 23 && x19 <= 23 && x20 < 100
26 DR16(x21, x22, x23) -> DR16(x21, x22, 100) :|: x22 >= 24 && x22 <= 24 && x23 > 100
27 DR16(x24, x25, x26) -> DR16(x24, x25, 100) :|: x25 >= 24 && x25 <= 24 && x26 < 100
28 DR16(x27, x28, x29) -> DR16(x27, x28, 100) :|: x28 >= 26 && x28 <= 26 && x29 > 100
29 DR16(x30, x31, x32) -> DR16(x30, x31, 100) :|: x31 >= 26 && x31 <= 26 && x32 < 100
30 DR16(x33, x34, x35) -> DR16(x33, x34, 100) :|: x34 >= 27 && x34 <= 27 && x35 > 100
31 DR16(x36, x37, x38) -> DR16(x36, x37, 100) :|: x37 >= 27 && x37 <= 27 && x38 < 100
32 DR16(x39, x40, x41) -> DR16(x39, x40, 100) :|: x40 >= 32 && x40 <= 32 && x41 > 100
33 DR16(x42, x43, x44) -> DR16(x42, x43, 100) :|: x43 >= 32 && x43 <= 32 && x44 < 100
34 DR16(x45, x46, x47) -> DR16(x45, x46, 100) :|: x46 >= 33 && x46 <= 33 && x47 > 100
35 DR16(x48, x49, x50) -> DR16(x48, x49, 100) :|: x49 >= 33 && x49 <= 33 && x50 < 100
36 DR17(x51, x52, x53) -> DR17(x51, x52, 100) :|: x52 >= 7 && x52 <= 7 && x53 > 100

91

A. Investigated Rules and Related Data

37 DR17(x54, x55, x56) -> DR17(x54, x55, 100) :|: x55 >= 7 && x55 <= 7 && x56 < 100
38 DR17(x57, x58, x59) -> DR17(x57, x58, 100) :|: x58 >= 11 && x58 <= 11 && x59 > 100
39 DR17(x60, x61, x62) -> DR17(x60, x61, 100) :|: x61 >= 11 && x61 <= 11 && x62 < 100
40 DR17(x63, x64, x65) -> DR17(x63, x64, 101) :|: x64 >= 12 && x64 <= 12 && x65 > 101
41 DR17(x66, x67, x68) -> DR17(x66, x67, 101) :|: x67 >= 12 && x67 <= 12 && x68 < 101
42 DR17(x69, x70, x71) -> DR17(x69, x70, 101) :|: x70 >= 13 && x70 <= 13 && x71 > 101
43 DR17(x72, x73, x74) -> DR17(x72, x73, 101) :|: x73 >= 13 && x73 <= 13 && x74 < 101
44 DR17(x75, x76, x77) -> DR17(x75, x76, 100) :|: x76 >= 21 && x76 <= 21 && x77 > 100
45 DR17(x78, x79, x80) -> DR17(x78, x79, 100) :|: x79 >= 21 && x79 <= 21 && x80 < 100
46 DR17(x81, x82, x83) -> DR17(x81, x82, 100) :|: x82 >= 22 && x82 <= 22 && x83 > 100
47 DR17(x84, x85, x86) -> DR17(x84, x85, 100) :|: x85 >= 22 && x85 <= 22 && x86 < 100
48 DR17(x87, x88, x89) -> DR17(x87, x88, 100) :|: x88 >= 23 && x88 <= 23 && x89 > 100
49 DR17(x90, x91, x92) -> DR17(x90, x91, 100) :|: x91 >= 23 && x91 <= 23 && x92 < 100
50 DR17(x93, x94, x95) -> DR17(x93, x94, 100) :|: x94 >= 24 && x94 <= 24 && x95 > 100
51 DR17(x96, x97, x98) -> DR17(x96, x97, 100) :|: x97 >= 24 && x97 <= 24 && x98 < 100
52 DR17(x99, x100, x101) -> DR17(x99, x100, 100) :|: x100 >= 27 && x100 <= 27 && x101 >

100
53 DR17(x102, x103, x104) -> DR17(x102, x103, 100) :|: x103 >= 27 && x103 <= 27 && x104

< 100
54 DR17(x105, x106, x107) -> DR17(x105, x106, 100) :|: x106 >= 28 && x106 <= 28 && x107

> 100
55 DR17(x108, x109, x110) -> DR17(x108, x109, 100) :|: x109 >= 28 && x109 <= 28 && x110

< 100
56 DR17(x111, x112, x113) -> DR17(x111, x112, 100) :|: x112 >= 30 && x112 <= 30 && x113

> 100
57 DR17(x114, x115, x116) -> DR17(x114, x115, 100) :|: x115 >= 30 && x115 <= 30 && x116

< 100
58 DR17(x117, x118, x119) -> DR17(x117, x118, 100) :|: x118 >= 31 && x118 <= 31 && x119

> 100
59 DR17(x120, x121, x122) -> DR17(x120, x121, 100) :|: x121 >= 31 && x121 <= 31 && x122

< 100
60 DR17(x123, x124, x125) -> DR17(x123, x124, 100) :|: x124 >= 32 && x124 <= 32 && x125

> 100
61 DR17(x126, x127, x128) -> DR17(x126, x127, 100) :|: x127 >= 32 && x127 <= 32 && x128

< 100
62 DR17(x129, x130, x131) -> DR17(x129, x130, 100) :|: x130 >= 33 && x130 <= 33 && x131

> 100
63 DR17(x132, x133, x134) -> DR17(x132, x133, 100) :|: x133 >= 33 && x133 <= 33 && x134

< 100
64 DR18(x135, x136, x137) -> DR18(x135, x136, 100) :|: x135 > 66 && x136 >= 7 && x136

<= 7 && x137 > 100
65 DR18(x138, x139, x140) -> DR18(x138, x139, 100) :|: x138 > 66 && x139 >= 7 && x139

<= 7 && x140 < 100
66 DR18(x141, x142, x143) -> DR18(x141, x142, 100) :|: x141 < 66 && x142 >= 7 && x142

<= 7 && x143 > 100
67 DR18(x144, x145, x146) -> DR18(x144, x145, 100) :|: x144 < 66 && x145 >= 7 && x145

<= 7 && x146 < 100
68 DR18(x147, x148, x149) -> DR18(x147, x148, 100) :|: x147 > 66 && x148 >= 12 && x148

<= 12 && x149 > 100
69 DR18(x150, x151, x152) -> DR18(x150, x151, 100) :|: x150 > 66 && x151 >= 12 && x151

<= 12 && x152 < 100
70 DR18(x153, x154, x155) -> DR18(x153, x154, 100) :|: x153 < 66 && x154 >= 12 && x154

<= 12 && x155 > 100
71 DR18(x156, x157, x158) -> DR18(x156, x157, 100) :|: x156 < 66 && x157 >= 12 && x157

<= 12 && x158 < 100
72 DR18(x159, x160, x161) -> DR18(x159, x160, 100) :|: x159 > 66 && x160 >= 13 && x160

<= 13 && x161 > 100
73 DR18(x162, x163, x164) -> DR18(x162, x163, 100) :|: x162 > 66 && x163 >= 13 && x163

<= 13 && x164 < 100
74 DR18(x165, x166, x167) -> DR18(x165, x166, 100) :|: x165 < 66 && x166 >= 13 && x166

<= 13 && x167 > 100

92

A. Investigated Rules and Related Data

75 DR18(x168, x169, x170) -> DR18(x168, x169, 100) :|: x168 < 66 && x169 >= 13 && x169
<= 13 && x170 < 100

76 DR18(x171, x172, x173) -> DR18(x171, x172, 100) :|: x171 > 66 && x172 >= 23 && x172
<= 23 && x173 > 100

77 DR18(x174, x175, x176) -> DR18(x174, x175, 100) :|: x174 > 66 && x175 >= 23 && x175
<= 23 && x176 < 100

78 DR18(x177, x178, x179) -> DR18(x177, x178, 100) :|: x177 < 66 && x178 >= 23 && x178
<= 23 && x179 > 100

79 DR18(x180, x181, x182) -> DR18(x180, x181, 100) :|: x180 < 66 && x181 >= 23 && x181
<= 23 && x182 < 100

80 DR18(x183, x184, x185) -> DR18(x183, x184, 100) :|: x183 > 66 && x184 >= 24 && x184
<= 24 && x185 > 100

81 DR18(x186, x187, x188) -> DR18(x186, x187, 100) :|: x186 > 66 && x187 >= 24 && x187
<= 24 && x188 < 100

82 DR18(x189, x190, x191) -> DR18(x189, x190, 100) :|: x189 < 66 && x190 >= 24 && x190
<= 24 && x191 > 100

83 DR18(x192, x193, x194) -> DR18(x192, x193, 100) :|: x192 < 66 && x193 >= 24 && x193
<= 24 && x194 < 100

84 DR18(x195, x196, x197) -> DR18(x195, x196, 100) :|: x195 > 66 && x196 >= 26 && x196
<= 26 && x197 > 100

85 DR18(x198, x199, x200) -> DR18(x198, x199, 100) :|: x198 > 66 && x199 >= 26 && x199
<= 26 && x200 < 100

86 DR18(x201, x202, x203) -> DR18(x201, x202, 100) :|: x201 < 66 && x202 >= 26 && x202
<= 26 && x203 > 100

87 DR18(x204, x205, x206) -> DR18(x204, x205, 100) :|: x204 < 66 && x205 >= 26 && x205
<= 26 && x206 < 100

88 DR18(x207, x208, x209) -> DR18(x207, x208, 100) :|: x207 > 66 && x208 >= 27 && x208
<= 27 && x209 > 100

89 DR18(x210, x211, x212) -> DR18(x210, x211, 100) :|: x210 > 66 && x211 >= 27 && x211
<= 27 && x212 < 100

90 DR18(x213, x214, x215) -> DR18(x213, x214, 100) :|: x213 < 66 && x214 >= 27 && x214
<= 27 && x215 > 100

91 DR18(x216, x217, x218) -> DR18(x216, x217, 100) :|: x216 < 66 && x217 >= 27 && x217
<= 27 && x218 < 100

92 DR18(x219, x220, x221) -> DR18(x219, x220, 100) :|: x219 > 66 && x220 >= 33 && x220
<= 33 && x221 > 100

93 DR18(x222, x223, x224) -> DR18(x222, x223, 100) :|: x222 > 66 && x223 >= 33 && x223
<= 33 && x224 < 100

94 DR18(x225, x226, x227) -> DR18(x225, x226, 100) :|: x225 < 66 && x226 >= 33 && x226
<= 33 && x227 > 100

95 DR18(x228, x229, x230) -> DR18(x228, x229, 100) :|: x228 < 66 && x229 >= 33 && x229
<= 33 && x230 < 100

96
97 --
98
99 (1) IRSwTTerminationDigraphProof (EQUIVALENT)
100 Constructed termination digraph!
101 Nodes:
102 (1) DR16(id, sg, vi) -> DR16(id, sg, 100) :|: sg >= 7 && sg <= 7 && vi > 100
103 (2) DR16(x, x1, x2) -> DR16(x, x1, 100) :|: x1 >= 7 && x1 <= 7 && x2 < 100
104 (3) DR16(x3, x4, x5) -> DR16(x3, x4, 101) :|: x4 >= 12 && x4 <= 12 && x5 > 101
105 (4) DR16(x6, x7, x8) -> DR16(x6, x7, 101) :|: x7 >= 12 && x7 <= 12 && x8 < 101
106 (5) DR16(x9, x10, x11) -> DR16(x9, x10, 101) :|: x10 >= 13 && x10 <= 13 && x11 > 101
107 (6) DR16(x12, x13, x14) -> DR16(x12, x13, 101) :|: x13 >= 13 && x13 <= 13 && x14 <

101
108 (7) DR16(x15, x16, x17) -> DR16(x15, x16, 100) :|: x16 >= 23 && x16 <= 23 && x17 >

100
109 (8) DR16(x18, x19, x20) -> DR16(x18, x19, 100) :|: x19 >= 23 && x19 <= 23 && x20 <

100
110 (9) DR16(x21, x22, x23) -> DR16(x21, x22, 100) :|: x22 >= 24 && x22 <= 24 && x23 >

100

93

A. Investigated Rules and Related Data

111 (10) DR16(x24, x25, x26) -> DR16(x24, x25, 100) :|: x25 >= 24 && x25 <= 24 && x26 <
100

112 (11) DR16(x27, x28, x29) -> DR16(x27, x28, 100) :|: x28 >= 26 && x28 <= 26 && x29 >
100

113 (12) DR16(x30, x31, x32) -> DR16(x30, x31, 100) :|: x31 >= 26 && x31 <= 26 && x32 <
100

114 (13) DR16(x33, x34, x35) -> DR16(x33, x34, 100) :|: x34 >= 27 && x34 <= 27 && x35 >
100

115 (14) DR16(x36, x37, x38) -> DR16(x36, x37, 100) :|: x37 >= 27 && x37 <= 27 && x38 <
100

116 (15) DR16(x39, x40, x41) -> DR16(x39, x40, 100) :|: x40 >= 32 && x40 <= 32 && x41 >
100

117 (16) DR16(x42, x43, x44) -> DR16(x42, x43, 100) :|: x43 >= 32 && x43 <= 32 && x44 <
100

118 (17) DR16(x45, x46, x47) -> DR16(x45, x46, 100) :|: x46 >= 33 && x46 <= 33 && x47 >
100

119 (18) DR16(x48, x49, x50) -> DR16(x48, x49, 100) :|: x49 >= 33 && x49 <= 33 && x50 <
100

120 (19) DR17(x51, x52, x53) -> DR17(x51, x52, 100) :|: x52 >= 7 && x52 <= 7 && x53 > 100
121 (20) DR17(x54, x55, x56) -> DR17(x54, x55, 100) :|: x55 >= 7 && x55 <= 7 && x56 < 100
122 (21) DR17(x57, x58, x59) -> DR17(x57, x58, 100) :|: x58 >= 11 && x58 <= 11 && x59 >

100
123 (22) DR17(x60, x61, x62) -> DR17(x60, x61, 100) :|: x61 >= 11 && x61 <= 11 && x62 <

100
124 (23) DR17(x63, x64, x65) -> DR17(x63, x64, 101) :|: x64 >= 12 && x64 <= 12 && x65 >

101
125 (24) DR17(x66, x67, x68) -> DR17(x66, x67, 101) :|: x67 >= 12 && x67 <= 12 && x68 <

101
126 (25) DR17(x69, x70, x71) -> DR17(x69, x70, 101) :|: x70 >= 13 && x70 <= 13 && x71 >

101
127 (26) DR17(x72, x73, x74) -> DR17(x72, x73, 101) :|: x73 >= 13 && x73 <= 13 && x74 <

101
128 (27) DR17(x75, x76, x77) -> DR17(x75, x76, 100) :|: x76 >= 21 && x76 <= 21 && x77 >

100
129 (28) DR17(x78, x79, x80) -> DR17(x78, x79, 100) :|: x79 >= 21 && x79 <= 21 && x80 <

100
130 (29) DR17(x81, x82, x83) -> DR17(x81, x82, 100) :|: x82 >= 22 && x82 <= 22 && x83 >

100
131 (30) DR17(x84, x85, x86) -> DR17(x84, x85, 100) :|: x85 >= 22 && x85 <= 22 && x86 <

100
132 (31) DR17(x87, x88, x89) -> DR17(x87, x88, 100) :|: x88 >= 23 && x88 <= 23 && x89 >

100
133 (32) DR17(x90, x91, x92) -> DR17(x90, x91, 100) :|: x91 >= 23 && x91 <= 23 && x92 <

100
134 (33) DR17(x93, x94, x95) -> DR17(x93, x94, 100) :|: x94 >= 24 && x94 <= 24 && x95 >

100
135 (34) DR17(x96, x97, x98) -> DR17(x96, x97, 100) :|: x97 >= 24 && x97 <= 24 && x98 <

100
136 (35) DR17(x99, x100, x101) -> DR17(x99, x100, 100) :|: x100 >= 27 && x100 <= 27 &&

x101 > 100
137 (36) DR17(x102, x103, x104) -> DR17(x102, x103, 100) :|: x103 >= 27 && x103 <= 27 &&

x104 < 100
138 (37) DR17(x105, x106, x107) -> DR17(x105, x106, 100) :|: x106 >= 28 && x106 <= 28 &&

x107 > 100
139 (38) DR17(x108, x109, x110) -> DR17(x108, x109, 100) :|: x109 >= 28 && x109 <= 28 &&

x110 < 100
140 (39) DR17(x111, x112, x113) -> DR17(x111, x112, 100) :|: x112 >= 30 && x112 <= 30 &&

x113 > 100
141 (40) DR17(x114, x115, x116) -> DR17(x114, x115, 100) :|: x115 >= 30 && x115 <= 30 &&

x116 < 100
142 (41) DR17(x117, x118, x119) -> DR17(x117, x118, 100) :|: x118 >= 31 && x118 <= 31 &&

x119 > 100

94

A. Investigated Rules and Related Data

143 (42) DR17(x120, x121, x122) -> DR17(x120, x121, 100) :|: x121 >= 31 && x121 <= 31 &&
x122 < 100

144 (43) DR17(x123, x124, x125) -> DR17(x123, x124, 100) :|: x124 >= 32 && x124 <= 32 &&
x125 > 100

145 (44) DR17(x126, x127, x128) -> DR17(x126, x127, 100) :|: x127 >= 32 && x127 <= 32 &&
x128 < 100

146 (45) DR17(x129, x130, x131) -> DR17(x129, x130, 100) :|: x130 >= 33 && x130 <= 33 &&
x131 > 100

147 (46) DR17(x132, x133, x134) -> DR17(x132, x133, 100) :|: x133 >= 33 && x133 <= 33 &&
x134 < 100

148 (47) DR18(x135, x136, x137) -> DR18(x135, x136, 100) :|: x135 > 66 && x136 >= 7 &&
x136 <= 7 && x137 > 100

149 (48) DR18(x138, x139, x140) -> DR18(x138, x139, 100) :|: x138 > 66 && x139 >= 7 &&
x139 <= 7 && x140 < 100

150 (49) DR18(x141, x142, x143) -> DR18(x141, x142, 100) :|: x141 < 66 && x142 >= 7 &&
x142 <= 7 && x143 > 100

151 (50) DR18(x144, x145, x146) -> DR18(x144, x145, 100) :|: x144 < 66 && x145 >= 7 &&
x145 <= 7 && x146 < 100

152 (51) DR18(x147, x148, x149) -> DR18(x147, x148, 100) :|: x147 > 66 && x148 >= 12 &&
x148 <= 12 && x149 > 100

153 (52) DR18(x150, x151, x152) -> DR18(x150, x151, 100) :|: x150 > 66 && x151 >= 12 &&
x151 <= 12 && x152 < 100

154 (53) DR18(x153, x154, x155) -> DR18(x153, x154, 100) :|: x153 < 66 && x154 >= 12 &&
x154 <= 12 && x155 > 100

155 (54) DR18(x156, x157, x158) -> DR18(x156, x157, 100) :|: x156 < 66 && x157 >= 12 &&
x157 <= 12 && x158 < 100

156 (55) DR18(x159, x160, x161) -> DR18(x159, x160, 100) :|: x159 > 66 && x160 >= 13 &&
x160 <= 13 && x161 > 100

157 (56) DR18(x162, x163, x164) -> DR18(x162, x163, 100) :|: x162 > 66 && x163 >= 13 &&
x163 <= 13 && x164 < 100

158 (57) DR18(x165, x166, x167) -> DR18(x165, x166, 100) :|: x165 < 66 && x166 >= 13 &&
x166 <= 13 && x167 > 100

159 (58) DR18(x168, x169, x170) -> DR18(x168, x169, 100) :|: x168 < 66 && x169 >= 13 &&
x169 <= 13 && x170 < 100

160 (59) DR18(x171, x172, x173) -> DR18(x171, x172, 100) :|: x171 > 66 && x172 >= 23 &&
x172 <= 23 && x173 > 100

161 (60) DR18(x174, x175, x176) -> DR18(x174, x175, 100) :|: x174 > 66 && x175 >= 23 &&
x175 <= 23 && x176 < 100

162 (61) DR18(x177, x178, x179) -> DR18(x177, x178, 100) :|: x177 < 66 && x178 >= 23 &&
x178 <= 23 && x179 > 100

163 (62) DR18(x180, x181, x182) -> DR18(x180, x181, 100) :|: x180 < 66 && x181 >= 23 &&
x181 <= 23 && x182 < 100

164 (63) DR18(x183, x184, x185) -> DR18(x183, x184, 100) :|: x183 > 66 && x184 >= 24 &&
x184 <= 24 && x185 > 100

165 (64) DR18(x186, x187, x188) -> DR18(x186, x187, 100) :|: x186 > 66 && x187 >= 24 &&
x187 <= 24 && x188 < 100

166 (65) DR18(x189, x190, x191) -> DR18(x189, x190, 100) :|: x189 < 66 && x190 >= 24 &&
x190 <= 24 && x191 > 100

167 (66) DR18(x192, x193, x194) -> DR18(x192, x193, 100) :|: x192 < 66 && x193 >= 24 &&
x193 <= 24 && x194 < 100

168 (67) DR18(x195, x196, x197) -> DR18(x195, x196, 100) :|: x195 > 66 && x196 >= 26 &&
x196 <= 26 && x197 > 100

169 (68) DR18(x198, x199, x200) -> DR18(x198, x199, 100) :|: x198 > 66 && x199 >= 26 &&
x199 <= 26 && x200 < 100

170 (69) DR18(x201, x202, x203) -> DR18(x201, x202, 100) :|: x201 < 66 && x202 >= 26 &&
x202 <= 26 && x203 > 100

171 (70) DR18(x204, x205, x206) -> DR18(x204, x205, 100) :|: x204 < 66 && x205 >= 26 &&
x205 <= 26 && x206 < 100

172 (71) DR18(x207, x208, x209) -> DR18(x207, x208, 100) :|: x207 > 66 && x208 >= 27 &&
x208 <= 27 && x209 > 100

173 (72) DR18(x210, x211, x212) -> DR18(x210, x211, 100) :|: x210 > 66 && x211 >= 27 &&
x211 <= 27 && x212 < 100

95

A. Investigated Rules and Related Data

174 (73) DR18(x213, x214, x215) -> DR18(x213, x214, 100) :|: x213 < 66 && x214 >= 27 &&
x214 <= 27 && x215 > 100

175 (74) DR18(x216, x217, x218) -> DR18(x216, x217, 100) :|: x216 < 66 && x217 >= 27 &&
x217 <= 27 && x218 < 100

176 (75) DR18(x219, x220, x221) -> DR18(x219, x220, 100) :|: x219 > 66 && x220 >= 33 &&
x220 <= 33 && x221 > 100

177 (76) DR18(x222, x223, x224) -> DR18(x222, x223, 100) :|: x222 > 66 && x223 >= 33 &&
x223 <= 33 && x224 < 100

178 (77) DR18(x225, x226, x227) -> DR18(x225, x226, 100) :|: x225 < 66 && x226 >= 33 &&
x226 <= 33 && x227 > 100

179 (78) DR18(x228, x229, x230) -> DR18(x228, x229, 100) :|: x228 < 66 && x229 >= 33 &&
x229 <= 33 && x230 < 100

180
181 No arcs!
182
183 This digraph is fully evaluated!
184 --
185
186 (2)
187 TRUE

Listing A.8: AProVE report for a defective version of Listing A.5
1 NO
2 proof of crb-3.inttrs
3 # AProVE Commit ID: 2e6638c59cfd6c865410a35d3360fc0074b41f84 ffrohn 20140725
4
5
6 Termination of the given IRSwT could be disproven:
7
8 (0) IRSwT
9 (1) IRSwTTerminationDigraphProof [EQUIVALENT, 56.6 s]
10 (2) IRSwT
11 (3) IntTRSUnneededArgumentFilterProof [EQUIVALENT, 0 ms]
12 (4) IntTRS
13 (5) FilterProof [EQUIVALENT, 0 ms]
14 (6) IntTRS
15 (7) IntTRSPeriodicNontermProof [COMPLETE, 11 ms]
16 (8) NO
17
18
19 --
20
21 (0)
22 Obligation:
23 Rules:
24 DR16(id, sg, vi) -> DR16(id, sg, 100) :|: sg >= 7 && sg <= 7 && vi > 100
25 DR16(x, x1, x2) -> DR16(x, x1, 100) :|: x1 >= 7 && x1 <= 7 && x2 < 100
26 DR16(x3, x4, x5) -> DR16(x3, x4, 101) :|: x4 >= 12 && x4 <= 12 && x5 > 101
27 DR16(x6, x7, x8) -> DR16(x6, x7, 101) :|: x7 >= 12 && x7 <= 12 && x8 < 101
28 DR16(x9, x10, x11) -> DR16(x9, x10, 101) :|: x10 >= 13 && x10 <= 13 && x11 > 101
29 DR16(x12, x13, x14) -> DR16(x12, x13, 101) :|: x13 >= 13 && x13 <= 13 && x14 < 101
30 DR16(x15, x16, x17) -> DR16(x15, x16, 100) :|: x16 >= 23 && x16 <= 23 && x17 > 100
31 DR16(x18, x19, x20) -> DR16(x18, x19, 100) :|: x19 >= 23 && x19 <= 23 && x20 < 100
32 DR16(x21, x22, x23) -> DR16(x21, x22, 100) :|: x22 >= 24 && x22 <= 24 && x23 > 100
33 DR16(x24, x25, x26) -> DR16(x24, x25, 100) :|: x25 >= 24 && x25 <= 24 && x26 < 100
34 DR16(x27, x28, x29) -> DR16(x27, x28, 100) :|: x28 >= 26 && x28 <= 26 && x29 > 100
35 DR16(x30, x31, x32) -> DR16(x30, x31, 100) :|: x31 >= 26 && x31 <= 26 && x32 < 100
36 DR16(x33, x34, x35) -> DR16(x33, x34, 100) :|: x34 >= 27 && x34 <= 27 && x35 > 100
37 DR16(x36, x37, x38) -> DR16(x36, x37, 100) :|: x37 >= 27 && x37 <= 27 && x38 < 100
38 DR16(x39, x40, x41) -> DR16(x39, x40, 100) :|: x40 >= 32 && x40 <= 32 && x41 > 100

96

A. Investigated Rules and Related Data

39 DR16(x42, x43, x44) -> DR16(x42, x43, 100) :|: x43 >= 32 && x43 <= 32 && x44 < 100
40 DR16(x45, x46, x47) -> DR16(x45, x46, 100) :|: x46 >= 33 && x46 <= 33 && x47 > 100
41 DR16(x48, x49, x50) -> DR16(x48, x49, 100) :|: x49 >= 33 && x49 <= 33 && x50 < 100
42 DR17(x51, x52, x53) -> DR17(x51, x52, 100) :|: x52 >= 7 && x52 <= 7 && x53 > 100
43 DR17(x54, x55, x56) -> DR17(x54, x55, 100) :|: x55 >= 7 && x55 <= 7 && x56 < 100
44 DR17(x57, x58, x59) -> DR17(x57, x58, 100) :|: x58 >= 12 && x58 <= 12 && x59 > 100
45 DR17(x60, x61, x62) -> DR17(x60, x61, 100) :|: x61 >= 12 && x61 <= 12 && x62 < 100
46 DR17(x63, x64, x65) -> DR17(x63, x64, 101) :|: x64 >= 12 && x64 <= 12 && x65 > 101
47 DR17(x66, x67, x68) -> DR17(x66, x67, 101) :|: x67 >= 12 && x67 <= 12 && x68 < 101
48 DR17(x69, x70, x71) -> DR17(x69, x70, 101) :|: x70 >= 13 && x70 <= 13 && x71 > 101
49 DR17(x72, x73, x74) -> DR17(x72, x73, 101) :|: x73 >= 13 && x73 <= 13 && x74 < 101
50 DR17(x75, x76, x77) -> DR17(x75, x76, 100) :|: x76 >= 21 && x76 <= 21 && x77 > 100
51 DR17(x78, x79, x80) -> DR17(x78, x79, 100) :|: x79 >= 21 && x79 <= 21 && x80 < 100
52 DR17(x81, x82, x83) -> DR17(x81, x82, 100) :|: x82 >= 22 && x82 <= 22 && x83 > 100
53 DR17(x84, x85, x86) -> DR17(x84, x85, 100) :|: x85 >= 22 && x85 <= 22 && x86 < 100
54 DR17(x87, x88, x89) -> DR17(x87, x88, 100) :|: x88 >= 23 && x88 <= 23 && x89 > 100
55 DR17(x90, x91, x92) -> DR17(x90, x91, 100) :|: x91 >= 23 && x91 <= 23 && x92 < 100
56 DR17(x93, x94, x95) -> DR17(x93, x94, 100) :|: x94 >= 24 && x94 <= 24 && x95 > 100
57 DR17(x96, x97, x98) -> DR17(x96, x97, 100) :|: x97 >= 24 && x97 <= 24 && x98 < 100
58 DR17(x99, x100, x101) -> DR17(x99, x100, 100) :|: x100 >= 27 && x100 <= 27 && x101 >

100
59 DR17(x102, x103, x104) -> DR17(x102, x103, 100) :|: x103 >= 27 && x103 <= 27 && x104

< 100
60 DR17(x105, x106, x107) -> DR17(x105, x106, 100) :|: x106 >= 28 && x106 <= 28 && x107

> 100
61 DR17(x108, x109, x110) -> DR17(x108, x109, 100) :|: x109 >= 28 && x109 <= 28 && x110

< 100
62 DR17(x111, x112, x113) -> DR17(x111, x112, 100) :|: x112 >= 30 && x112 <= 30 && x113

> 100
63 DR17(x114, x115, x116) -> DR17(x114, x115, 100) :|: x115 >= 30 && x115 <= 30 && x116

< 100
64 DR17(x117, x118, x119) -> DR17(x117, x118, 100) :|: x118 >= 31 && x118 <= 31 && x119

> 100
65 DR17(x120, x121, x122) -> DR17(x120, x121, 100) :|: x121 >= 31 && x121 <= 31 && x122

< 100
66 DR17(x123, x124, x125) -> DR17(x123, x124, 100) :|: x124 >= 32 && x124 <= 32 && x125

> 100
67 DR17(x126, x127, x128) -> DR17(x126, x127, 100) :|: x127 >= 32 && x127 <= 32 && x128

< 100
68 DR17(x129, x130, x131) -> DR17(x129, x130, 100) :|: x130 >= 33 && x130 <= 33 && x131

> 100
69 DR17(x132, x133, x134) -> DR17(x132, x133, 100) :|: x133 >= 33 && x133 <= 33 && x134

< 100
70 DR18(x135, x136, x137) -> DR18(x135, x136, 100) :|: x135 > 66 && x136 >= 7 && x136

<= 7 && x137 > 100
71 DR18(x138, x139, x140) -> DR18(x138, x139, 100) :|: x138 > 66 && x139 >= 7 && x139

<= 7 && x140 < 100
72 DR18(x141, x142, x143) -> DR18(x141, x142, 100) :|: x141 < 66 && x142 >= 7 && x142

<= 7 && x143 > 100
73 DR18(x144, x145, x146) -> DR18(x144, x145, 100) :|: x144 < 66 && x145 >= 7 && x145

<= 7 && x146 < 100
74 DR18(x147, x148, x149) -> DR18(x147, x148, 100) :|: x147 > 66 && x148 >= 12 && x148

<= 12 && x149 > 100
75 DR18(x150, x151, x152) -> DR18(x150, x151, 100) :|: x150 > 66 && x151 >= 12 && x151

<= 12 && x152 < 100
76 DR18(x153, x154, x155) -> DR18(x153, x154, 100) :|: x153 < 66 && x154 >= 12 && x154

<= 12 && x155 > 100
77 DR18(x156, x157, x158) -> DR18(x156, x157, 100) :|: x156 < 66 && x157 >= 12 && x157

<= 12 && x158 < 100
78 DR18(x159, x160, x161) -> DR18(x159, x160, 100) :|: x159 > 66 && x160 >= 13 && x160

<= 13 && x161 > 100

97

A. Investigated Rules and Related Data

79 DR18(x162, x163, x164) -> DR18(x162, x163, 100) :|: x162 > 66 && x163 >= 13 && x163
<= 13 && x164 < 100

80 DR18(x165, x166, x167) -> DR18(x165, x166, 100) :|: x165 < 66 && x166 >= 13 && x166
<= 13 && x167 > 100

81 DR18(x168, x169, x170) -> DR18(x168, x169, 100) :|: x168 < 66 && x169 >= 13 && x169
<= 13 && x170 < 100

82 DR18(x171, x172, x173) -> DR18(x171, x172, 100) :|: x171 > 66 && x172 >= 23 && x172
<= 23 && x173 > 100

83 DR18(x174, x175, x176) -> DR18(x174, x175, 100) :|: x174 > 66 && x175 >= 23 && x175
<= 23 && x176 < 100

84 DR18(x177, x178, x179) -> DR18(x177, x178, 100) :|: x177 < 66 && x178 >= 23 && x178
<= 23 && x179 > 100

85 DR18(x180, x181, x182) -> DR18(x180, x181, 100) :|: x180 < 66 && x181 >= 23 && x181
<= 23 && x182 < 100

86 DR18(x183, x184, x185) -> DR18(x183, x184, 100) :|: x183 > 66 && x184 >= 24 && x184
<= 24 && x185 > 100

87 DR18(x186, x187, x188) -> DR18(x186, x187, 100) :|: x186 > 66 && x187 >= 24 && x187
<= 24 && x188 < 100

88 DR18(x189, x190, x191) -> DR18(x189, x190, 100) :|: x189 < 66 && x190 >= 24 && x190
<= 24 && x191 > 100

89 DR18(x192, x193, x194) -> DR18(x192, x193, 100) :|: x192 < 66 && x193 >= 24 && x193
<= 24 && x194 < 100

90 DR18(x195, x196, x197) -> DR18(x195, x196, 100) :|: x195 > 66 && x196 >= 26 && x196
<= 26 && x197 > 100

91 DR18(x198, x199, x200) -> DR18(x198, x199, 100) :|: x198 > 66 && x199 >= 26 && x199
<= 26 && x200 < 100

92 DR18(x201, x202, x203) -> DR18(x201, x202, 100) :|: x201 < 66 && x202 >= 26 && x202
<= 26 && x203 > 100

93 DR18(x204, x205, x206) -> DR18(x204, x205, 100) :|: x204 < 66 && x205 >= 26 && x205
<= 26 && x206 < 100

94 DR18(x207, x208, x209) -> DR18(x207, x208, 100) :|: x207 > 66 && x208 >= 27 && x208
<= 27 && x209 > 100

95 DR18(x210, x211, x212) -> DR18(x210, x211, 100) :|: x210 > 66 && x211 >= 27 && x211
<= 27 && x212 < 100

96 DR18(x213, x214, x215) -> DR18(x213, x214, 100) :|: x213 < 66 && x214 >= 27 && x214
<= 27 && x215 > 100

97 DR18(x216, x217, x218) -> DR18(x216, x217, 100) :|: x216 < 66 && x217 >= 27 && x217
<= 27 && x218 < 100

98 DR18(x219, x220, x221) -> DR18(x219, x220, 100) :|: x219 > 66 && x220 >= 33 && x220
<= 33 && x221 > 100

99 DR18(x222, x223, x224) -> DR18(x222, x223, 100) :|: x222 > 66 && x223 >= 33 && x223
<= 33 && x224 < 100

100 DR18(x225, x226, x227) -> DR18(x225, x226, 100) :|: x225 < 66 && x226 >= 33 && x226
<= 33 && x227 > 100

101 DR18(x228, x229, x230) -> DR18(x228, x229, 100) :|: x228 < 66 && x229 >= 33 && x229
<= 33 && x230 < 100

102
103 --
104
105 (1) IRSwTTerminationDigraphProof (EQUIVALENT)
106 Constructed termination digraph!
107 Nodes:
108 (1) DR16(id, sg, vi) -> DR16(id, sg, 100) :|: sg >= 7 && sg <= 7 && vi > 100
109 (2) DR16(x, x1, x2) -> DR16(x, x1, 100) :|: x1 >= 7 && x1 <= 7 && x2 < 100
110 (3) DR16(x3, x4, x5) -> DR16(x3, x4, 101) :|: x4 >= 12 && x4 <= 12 && x5 > 101
111 (4) DR16(x6, x7, x8) -> DR16(x6, x7, 101) :|: x7 >= 12 && x7 <= 12 && x8 < 101
112 (5) DR16(x9, x10, x11) -> DR16(x9, x10, 101) :|: x10 >= 13 && x10 <= 13 && x11 > 101
113 (6) DR16(x12, x13, x14) -> DR16(x12, x13, 101) :|: x13 >= 13 && x13 <= 13 && x14 <

101
114 (7) DR16(x15, x16, x17) -> DR16(x15, x16, 100) :|: x16 >= 23 && x16 <= 23 && x17 >

100

98

A. Investigated Rules and Related Data

115 (8) DR16(x18, x19, x20) -> DR16(x18, x19, 100) :|: x19 >= 23 && x19 <= 23 && x20 <
100

116 (9) DR16(x21, x22, x23) -> DR16(x21, x22, 100) :|: x22 >= 24 && x22 <= 24 && x23 >
100

117 (10) DR16(x24, x25, x26) -> DR16(x24, x25, 100) :|: x25 >= 24 && x25 <= 24 && x26 <
100

118 (11) DR16(x27, x28, x29) -> DR16(x27, x28, 100) :|: x28 >= 26 && x28 <= 26 && x29 >
100

119 (12) DR16(x30, x31, x32) -> DR16(x30, x31, 100) :|: x31 >= 26 && x31 <= 26 && x32 <
100

120 (13) DR16(x33, x34, x35) -> DR16(x33, x34, 100) :|: x34 >= 27 && x34 <= 27 && x35 >
100

121 (14) DR16(x36, x37, x38) -> DR16(x36, x37, 100) :|: x37 >= 27 && x37 <= 27 && x38 <
100

122 (15) DR16(x39, x40, x41) -> DR16(x39, x40, 100) :|: x40 >= 32 && x40 <= 32 && x41 >
100

123 (16) DR16(x42, x43, x44) -> DR16(x42, x43, 100) :|: x43 >= 32 && x43 <= 32 && x44 <
100

124 (17) DR16(x45, x46, x47) -> DR16(x45, x46, 100) :|: x46 >= 33 && x46 <= 33 && x47 >
100

125 (18) DR16(x48, x49, x50) -> DR16(x48, x49, 100) :|: x49 >= 33 && x49 <= 33 && x50 <
100

126 (19) DR17(x51, x52, x53) -> DR17(x51, x52, 100) :|: x52 >= 7 && x52 <= 7 && x53 > 100
127 (20) DR17(x54, x55, x56) -> DR17(x54, x55, 100) :|: x55 >= 7 && x55 <= 7 && x56 < 100
128 (21) DR17(x57, x58, x59) -> DR17(x57, x58, 100) :|: x58 >= 12 && x58 <= 12 && x59 >

100
129 (22) DR17(x60, x61, x62) -> DR17(x60, x61, 100) :|: x61 >= 12 && x61 <= 12 && x62 <

100
130 (23) DR17(x63, x64, x65) -> DR17(x63, x64, 101) :|: x64 >= 12 && x64 <= 12 && x65 >

101
131 (24) DR17(x66, x67, x68) -> DR17(x66, x67, 101) :|: x67 >= 12 && x67 <= 12 && x68 <

101
132 (25) DR17(x69, x70, x71) -> DR17(x69, x70, 101) :|: x70 >= 13 && x70 <= 13 && x71 >

101
133 (26) DR17(x72, x73, x74) -> DR17(x72, x73, 101) :|: x73 >= 13 && x73 <= 13 && x74 <

101
134 (27) DR17(x75, x76, x77) -> DR17(x75, x76, 100) :|: x76 >= 21 && x76 <= 21 && x77 >

100
135 (28) DR17(x78, x79, x80) -> DR17(x78, x79, 100) :|: x79 >= 21 && x79 <= 21 && x80 <

100
136 (29) DR17(x81, x82, x83) -> DR17(x81, x82, 100) :|: x82 >= 22 && x82 <= 22 && x83 >

100
137 (30) DR17(x84, x85, x86) -> DR17(x84, x85, 100) :|: x85 >= 22 && x85 <= 22 && x86 <

100
138 (31) DR17(x87, x88, x89) -> DR17(x87, x88, 100) :|: x88 >= 23 && x88 <= 23 && x89 >

100
139 (32) DR17(x90, x91, x92) -> DR17(x90, x91, 100) :|: x91 >= 23 && x91 <= 23 && x92 <

100
140 (33) DR17(x93, x94, x95) -> DR17(x93, x94, 100) :|: x94 >= 24 && x94 <= 24 && x95 >

100
141 (34) DR17(x96, x97, x98) -> DR17(x96, x97, 100) :|: x97 >= 24 && x97 <= 24 && x98 <

100
142 (35) DR17(x99, x100, x101) -> DR17(x99, x100, 100) :|: x100 >= 27 && x100 <= 27 &&

x101 > 100
143 (36) DR17(x102, x103, x104) -> DR17(x102, x103, 100) :|: x103 >= 27 && x103 <= 27 &&

x104 < 100
144 (37) DR17(x105, x106, x107) -> DR17(x105, x106, 100) :|: x106 >= 28 && x106 <= 28 &&

x107 > 100
145 (38) DR17(x108, x109, x110) -> DR17(x108, x109, 100) :|: x109 >= 28 && x109 <= 28 &&

x110 < 100
146 (39) DR17(x111, x112, x113) -> DR17(x111, x112, 100) :|: x112 >= 30 && x112 <= 30 &&

x113 > 100

99

A. Investigated Rules and Related Data

147 (40) DR17(x114, x115, x116) -> DR17(x114, x115, 100) :|: x115 >= 30 && x115 <= 30 &&
x116 < 100

148 (41) DR17(x117, x118, x119) -> DR17(x117, x118, 100) :|: x118 >= 31 && x118 <= 31 &&
x119 > 100

149 (42) DR17(x120, x121, x122) -> DR17(x120, x121, 100) :|: x121 >= 31 && x121 <= 31 &&
x122 < 100

150 (43) DR17(x123, x124, x125) -> DR17(x123, x124, 100) :|: x124 >= 32 && x124 <= 32 &&
x125 > 100

151 (44) DR17(x126, x127, x128) -> DR17(x126, x127, 100) :|: x127 >= 32 && x127 <= 32 &&
x128 < 100

152 (45) DR17(x129, x130, x131) -> DR17(x129, x130, 100) :|: x130 >= 33 && x130 <= 33 &&
x131 > 100

153 (46) DR17(x132, x133, x134) -> DR17(x132, x133, 100) :|: x133 >= 33 && x133 <= 33 &&
x134 < 100

154 (47) DR18(x135, x136, x137) -> DR18(x135, x136, 100) :|: x135 > 66 && x136 >= 7 &&
x136 <= 7 && x137 > 100

155 (48) DR18(x138, x139, x140) -> DR18(x138, x139, 100) :|: x138 > 66 && x139 >= 7 &&
x139 <= 7 && x140 < 100

156 (49) DR18(x141, x142, x143) -> DR18(x141, x142, 100) :|: x141 < 66 && x142 >= 7 &&
x142 <= 7 && x143 > 100

157 (50) DR18(x144, x145, x146) -> DR18(x144, x145, 100) :|: x144 < 66 && x145 >= 7 &&
x145 <= 7 && x146 < 100

158 (51) DR18(x147, x148, x149) -> DR18(x147, x148, 100) :|: x147 > 66 && x148 >= 12 &&
x148 <= 12 && x149 > 100

159 (52) DR18(x150, x151, x152) -> DR18(x150, x151, 100) :|: x150 > 66 && x151 >= 12 &&
x151 <= 12 && x152 < 100

160 (53) DR18(x153, x154, x155) -> DR18(x153, x154, 100) :|: x153 < 66 && x154 >= 12 &&
x154 <= 12 && x155 > 100

161 (54) DR18(x156, x157, x158) -> DR18(x156, x157, 100) :|: x156 < 66 && x157 >= 12 &&
x157 <= 12 && x158 < 100

162 (55) DR18(x159, x160, x161) -> DR18(x159, x160, 100) :|: x159 > 66 && x160 >= 13 &&
x160 <= 13 && x161 > 100

163 (56) DR18(x162, x163, x164) -> DR18(x162, x163, 100) :|: x162 > 66 && x163 >= 13 &&
x163 <= 13 && x164 < 100

164 (57) DR18(x165, x166, x167) -> DR18(x165, x166, 100) :|: x165 < 66 && x166 >= 13 &&
x166 <= 13 && x167 > 100

165 (58) DR18(x168, x169, x170) -> DR18(x168, x169, 100) :|: x168 < 66 && x169 >= 13 &&
x169 <= 13 && x170 < 100

166 (59) DR18(x171, x172, x173) -> DR18(x171, x172, 100) :|: x171 > 66 && x172 >= 23 &&
x172 <= 23 && x173 > 100

167 (60) DR18(x174, x175, x176) -> DR18(x174, x175, 100) :|: x174 > 66 && x175 >= 23 &&
x175 <= 23 && x176 < 100

168 (61) DR18(x177, x178, x179) -> DR18(x177, x178, 100) :|: x177 < 66 && x178 >= 23 &&
x178 <= 23 && x179 > 100

169 (62) DR18(x180, x181, x182) -> DR18(x180, x181, 100) :|: x180 < 66 && x181 >= 23 &&
x181 <= 23 && x182 < 100

170 (63) DR18(x183, x184, x185) -> DR18(x183, x184, 100) :|: x183 > 66 && x184 >= 24 &&
x184 <= 24 && x185 > 100

171 (64) DR18(x186, x187, x188) -> DR18(x186, x187, 100) :|: x186 > 66 && x187 >= 24 &&
x187 <= 24 && x188 < 100

172 (65) DR18(x189, x190, x191) -> DR18(x189, x190, 100) :|: x189 < 66 && x190 >= 24 &&
x190 <= 24 && x191 > 100

173 (66) DR18(x192, x193, x194) -> DR18(x192, x193, 100) :|: x192 < 66 && x193 >= 24 &&
x193 <= 24 && x194 < 100

174 (67) DR18(x195, x196, x197) -> DR18(x195, x196, 100) :|: x195 > 66 && x196 >= 26 &&
x196 <= 26 && x197 > 100

175 (68) DR18(x198, x199, x200) -> DR18(x198, x199, 100) :|: x198 > 66 && x199 >= 26 &&
x199 <= 26 && x200 < 100

176 (69) DR18(x201, x202, x203) -> DR18(x201, x202, 100) :|: x201 < 66 && x202 >= 26 &&
x202 <= 26 && x203 > 100

177 (70) DR18(x204, x205, x206) -> DR18(x204, x205, 100) :|: x204 < 66 && x205 >= 26 &&
x205 <= 26 && x206 < 100

100

A. Investigated Rules and Related Data

178 (71) DR18(x207, x208, x209) -> DR18(x207, x208, 100) :|: x207 > 66 && x208 >= 27 &&
x208 <= 27 && x209 > 100

179 (72) DR18(x210, x211, x212) -> DR18(x210, x211, 100) :|: x210 > 66 && x211 >= 27 &&
x211 <= 27 && x212 < 100

180 (73) DR18(x213, x214, x215) -> DR18(x213, x214, 100) :|: x213 < 66 && x214 >= 27 &&
x214 <= 27 && x215 > 100

181 (74) DR18(x216, x217, x218) -> DR18(x216, x217, 100) :|: x216 < 66 && x217 >= 27 &&
x217 <= 27 && x218 < 100

182 (75) DR18(x219, x220, x221) -> DR18(x219, x220, 100) :|: x219 > 66 && x220 >= 33 &&
x220 <= 33 && x221 > 100

183 (76) DR18(x222, x223, x224) -> DR18(x222, x223, 100) :|: x222 > 66 && x223 >= 33 &&
x223 <= 33 && x224 < 100

184 (77) DR18(x225, x226, x227) -> DR18(x225, x226, 100) :|: x225 < 66 && x226 >= 33 &&
x226 <= 33 && x227 > 100

185 (78) DR18(x228, x229, x230) -> DR18(x228, x229, 100) :|: x228 < 66 && x229 >= 33 &&
x229 <= 33 && x230 < 100

186
187 Arcs:
188 (21) -> (24)
189 (22) -> (24)
190 (23) -> (21)
191 (24) -> (21)
192
193 This digraph is fully evaluated!
194 --
195
196 (2)
197 Obligation:
198
199 Termination digraph:
200 Nodes:
201 (1) DR17(x57, x58, x59) -> DR17(x57, x58, 100) :|: x58 >= 12 && x58 <= 12 && x59 >

100
202 (2) DR17(x66, x67, x68) -> DR17(x66, x67, 101) :|: x67 >= 12 && x67 <= 12 && x68 <

101
203
204 Arcs:
205 (1) -> (2)
206 (2) -> (1)
207
208 This digraph is fully evaluated!
209
210 --
211
212 (3) IntTRSUnneededArgumentFilterProof (EQUIVALENT)
213 Some arguments are removed because they cannot influence termination. We removed

arguments according to the following replacements:
214
215 DR17(x1, x2, x3) -> DR17(x2, x3)
216
217 --
218
219 (4)
220 Obligation:
221 Rules:
222 DR17(x58, x59) -> DR17(x58, 100) :|: x58 >= 12 && x58 <= 12 && x59 > 100
223 DR17(x67, x68) -> DR17(x67, 101) :|: x67 >= 12 && x67 <= 12 && x68 < 101
224
225 --
226
227 (5) FilterProof (EQUIVALENT)
228 Used the following sort dictionary for filtering:

101

A. Investigated Rules and Related Data

229 DR17(INTEGER, VARIABLE)
230 Replaced non-predefined constructor symbols by 0.
231 --
232
233 (6)
234 Obligation:
235 Rules:
236 DR17(x58, x59) -> DR17(x58, 100) :|: x58 >= 12 && x58 <= 12 && x59 > 100
237 DR17(x67, x68) -> DR17(x67, 101) :|: x67 >= 12 && x67 <= 12 && x68 < 101
238
239 --
240
241 (7) IntTRSPeriodicNontermProof (COMPLETE)
242 Normalized system to the following form:
243 f(pc, x58, x59) -> f(1, x58, 100) :|: pc = 1 && (x58 >= 12 && x58 <= 12 && x59 > 100)
244 f(pc, x67, x68) -> f(1, x67, 101) :|: pc = 1 && (x67 >= 12 && x67 <= 12 && x68 < 101)
245 Witness term starting non-terminating reduction: f(1, 12, 101)
246 --
247
248 (8)
249 NO

102

B. Javadoc

This appendix contains the Javadoc for the source code of our implementation. This
source code is available online at https://github.com/jss-de/drools-checker.

B.1. Package de.jss.drools

Package Contents Page

Classes
CLI . 103

The command line interface for the application.

Class CLI

The command line interface for the application.

Declaration

public class CLI
extends java.lang.Object

Constructor summary

CLI()

Method summary

main(String[]) The main entry point for the application.

Constructors

• CLI
public CLI()

Methods

• main
public static void main(java.lang.String[] args)

103

B. Javadoc

– Description

The main entry point for the application.

– Parameters

∗ args – The arguments for the command line interface.

B.2. Package de.jss.drools.analysis

Package Contents Page

Classes
INTTRSReporter . 104

Analyzes the provided Package and generates an INTTRS.
PackageReporter . 105

PackageReporter is the abstract base class for all package reporters.

Class INTTRSReporter

Analyzes the provided Package and generates an INTTRS.

Declaration

public class INTTRSReporter
extends de.jss.drools.analysis.PackageReporter (in B.2, page 105)

Constructor summary

INTTRSReporter()

Method summary

report(OutputStream, Package) Generates the INTTRS for the specified
Package and writes it to the specified OutputStream.

Constructors

• INTTRSReporter
public INTTRSReporter()

Methods

• report
public void report(java.io.OutputStream outputStream,
de.jss.drools.lang.Package pkg)

104

B. Javadoc

– Description

Generates the INTTRS for the specified Package and writes it to the specified
OutputStream.

– Parameters

∗ outputStream – The OutputStream to write the INTTRS to.

∗ pkg – The Package to generate the INTTRS for.

Members inherited from class PackageReporter

de.jss.drools.analysis.PackageReporter (in B.2, page 105)

• public abstract void report(java.io.OutputStream outputStream,
de.jss.drools.lang.Package pkg)

Class PackageReporter

PackageReporter is the abstract base class for all package reporters.

Declaration

public abstract class PackageReporter
extends java.lang.Object

All known subclasses

INTTRSReporter (in B.2, page 104)

Constructor summary

PackageReporter()

Method summary

report(OutputStream, Package) Analyzes the specified Package and
writes a report to the specified OutputStream.

Constructors

• PackageReporter
public PackageReporter()

105

B. Javadoc

Methods

• report
public abstract void report(java.io.OutputStream outputStream,
de.jss.drools.lang.Package pkg)

– Description

Analyzes the specified Package and writes a report to the specified OutputStream.

– Parameters

∗ outputStream – The OutputStream to write the report to.

∗ pkg – The Package to analyze.

B.3. Package de.jss.drools.compiler

Package Contents Page

Classes
CodeGenerator . 106

CodeGenerator is the abstract base class for all code generators.
CodeParser . 107

CodeParser is the abstract base class for all code parsers.
DRLParser .108

Parses DRL into Package representation.
XMLGenerator . 110

Generates XML for Package representations.

Class CodeGenerator

CodeGenerator is the abstract base class for all code generators.

Declaration

public abstract class CodeGenerator
extends java.lang.Object

All known subclasses

XMLGenerator (in B.3, page 110)

Constructor summary

CodeGenerator()

106

B. Javadoc

Method summary

generate(OutputStream, Package)Generates code for the specified Package
and writes it to the specified OutputStream.

Constructors

• CodeGenerator
public CodeGenerator()

Methods

• generate
public abstract void generate(java.io.OutputStream
outputStream, de.jss.drools.lang.Package pkg) throws
de.jss.drools.compiler.CodeGeneratorException

– Description

Generates code for the specified Package and writes it to the specified
OutputStream.

– Parameters

∗ outputStream – The OutputStream to write code to.

∗ pkg – The Package to generate code for.

– Throws
∗ de.jss.drools.compiler.CodeGeneratorException – Indicates

that an error occurred while generating code.

Class CodeParser

CodeParser is the abstract base class for all code parsers.

Declaration

public abstract class CodeParser
extends java.lang.Object

All known subclasses

DRLParser (in B.3, page 108)

Constructor summary

CodeParser()

107

B. Javadoc

Method summary

parse(InputStream) Parses the code from the specified InputStream into
a Package.

Constructors

• CodeParser
public CodeParser()

Methods

• parse
public abstract de.jss.drools.lang.Package parse(
java.io.InputStream inputStream) throws
de.jss.drools.compiler.CodeParserException

– Description

Parses the code from the specified InputStream into a Package.

– Parameters

∗ inputStream – The InputStream to read code from.

– Returns – The Package parsed from the code.

– Throws
∗ de.jss.drools.compiler.CodeParserException – Indicates that

an error occurred while parsing code.

Class DRLParser

Parses DRL into Package representation.

Declaration

public class DRLParser
extends de.jss.drools.compiler.CodeParser (in B.3, page 107)

Constructor summary

DRLParser() Initializes a new instance of the DRLParser class.
DRLParser(ClassLoader[]) Initializes a new instance of the DRLParser

class using the specified class loaders.
DRLParser(KnowledgeBuilderConfigurationImpl) Initializes a new in-

stance of the DRLParser class using the specified configuration.

108

B. Javadoc

Method summary

parse(InputStream) Parses the DRL from the specified InputStream into
a Package.

parse(PackageDescr) Parses the DRL from the specified PackageDescr

into a Package.
parse(Reader) Parses the DRL from the specified Reader into a Package.

Constructors

• DRLParser
public DRLParser()

– Description

Initializes a new instance of the DRLParser class.

• DRLParser
public DRLParser(java.lang.ClassLoader[] classLoaders)

– Description

Initializes a new instance of the DRLParser class using the specified class
loaders.

– Parameters

∗ classLoaders – The class loaders to use.

• DRLParser
public DRLParser(
org.drools.compiler.builder.impl.KnowledgeBuilderConfigurationImpl
configuration)

– Description

Initializes a new instance of the DRLParser class using the specified configu-
ration.

– Parameters

∗ configuration – The configuration to use.

Methods

• parse
public de.jss.drools.lang.Package parse(java.io.InputStream
inputStream) throws de.jss.drools.compiler.CodeParserException

– Description

Parses the DRL from the specified InputStream into a Package.

– Parameters

109

B. Javadoc

∗ inputStream – The InputStream to read DRL from.

– Returns – The Package parsed from the DRL.

– Throws
∗ de.jss.drools.compiler.CodeParserException – Indicates that

an error occurred while parsing DRL.

• parse
public de.jss.drools.lang.Package parse(
org.drools.compiler.lang.descr.PackageDescr descr) throws
de.jss.drools.compiler.CodeParserException

– Description

Parses the DRL from the specified PackageDescr into a Package.

– Parameters

∗ descr – The PackageDescr to read DRL from.

– Returns – The Package parsed from the DRL.

– Throws
∗ de.jss.drools.compiler.CodeParserException – Indicates that

an error occurred while parsing DRL.

• parse
public de.jss.drools.lang.Package parse(java.io.Reader reader)
throws de.jss.drools.compiler.CodeParserException

– Description

Parses the DRL from the specified Reader into a Package.

– Parameters

∗ reader – The Reader to read DRL from.

– Returns – The Package parsed from the DRL.

– Throws
∗ de.jss.drools.compiler.CodeParserException – Indicates that

an error occurred while parsing DRL.

Members inherited from class CodeParser

de.jss.drools.compiler.CodeParser (in B.3, page 107)

• public abstract Package parse(java.io.InputStream inputStream)
throws CodeParserException

Class XMLGenerator

Generates XML for Package representations.

110

B. Javadoc

Declaration

public class XMLGenerator
extends de.jss.drools.compiler.CodeGenerator (in B.3, page 106)

Constructor summary

XMLGenerator()

Method summary

generate(OutputStream, Package)Generates XML for the specified Package
and writes it to the specified OutputStream.

Constructors

• XMLGenerator
public XMLGenerator()

Methods

• generate
public void generate(java.io.OutputStream outputStream,
de.jss.drools.lang.Package pkg) throws
de.jss.drools.compiler.CodeGeneratorException

– Description

Generates XML for the specified Package and writes it to the specified
OutputStream.

– Parameters

∗ outputStream – The OutputStream to write XML to.

∗ pkg – The Package to generate XML for.

– Throws
∗ de.jss.drools.compiler.CodeGeneratorException – Indicates

that an error occurred while generating XML.

Members inherited from class CodeGenerator

de.jss.drools.compiler.CodeGenerator (in B.3, page 106)

• public abstract void generate(java.io.OutputStream outputStream,
de.jss.drools.lang.Package pkg) throws CodeGeneratorException

Exception CodeGeneratorException

Thrown to indicate that an error occurred while generating code.

111

B. Javadoc

Declaration

public class CodeGeneratorException
extends java.lang.Exception

Constructor summary

CodeGeneratorException() Please refer to .
CodeGeneratorException(String) Please refer to .
CodeGeneratorException(String, Throwable) Please refer to .
CodeGeneratorException(Throwable) Please refer to .

Constructors

• CodeGeneratorException
public CodeGeneratorException()

– Description

Please refer to .

– See also

∗ java.lang.Exception()

• CodeGeneratorException
public CodeGeneratorException(java.lang.String message)

– Description

Please refer to .

– See also

∗ java.lang.Exception(String)

• CodeGeneratorException
public CodeGeneratorException(java.lang.String message,
java.lang.Throwable cause)

– Description

Please refer to .

– See also

∗ java.lang.Exception(String,Throwable)

• CodeGeneratorException
public CodeGeneratorException(java.lang.Throwable cause)

– Description

Please refer to .

112

B. Javadoc

– See also

∗ java.lang.Exception(Throwable)

Members inherited from class Throwable

java.lang.Throwable

• public final synchronized void addSuppressed(Throwable arg0)
• public synchronized Throwable fillInStackTrace()
• public synchronized Throwable getCause()
• public String getLocalizedMessage()
• public String getMessage()
• public StackTraceElement getStackTrace()
• public final synchronized Throwable getSuppressed()
• public synchronized Throwable initCause(Throwable arg0)
• public void printStackTrace()
• public void printStackTrace(java.io.PrintStream arg0)
• public void printStackTrace(java.io.PrintWriter arg0)
• public void setStackTrace(StackTraceElement[] arg0)
• public String toString()

Exception CodeParserException

Thrown to indicate that an error occurred while parsing code.

Declaration

public class CodeParserException
extends java.lang.Exception

Constructor summary

CodeParserException() Please refer to .
CodeParserException(String) Please refer to .
CodeParserException(String, Throwable) Please refer to .
CodeParserException(Throwable) Please refer to .

Constructors

• CodeParserException
public CodeParserException()

– Description

Please refer to .

– See also

∗ java.lang.Exception()

113

B. Javadoc

• CodeParserException
public CodeParserException(java.lang.String message)

– Description

Please refer to .

– See also

∗ java.lang.Exception(String)

• CodeParserException
public CodeParserException(java.lang.String message,
java.lang.Throwable cause)

– Description

Please refer to .

– See also

∗ java.lang.Exception(String,Throwable)

• CodeParserException
public CodeParserException(java.lang.Throwable cause)

– Description

Please refer to .

– See also

∗ java.lang.Exception(Throwable)

Members inherited from class Throwable

java.lang.Throwable

• public final synchronized void addSuppressed(Throwable arg0)
• public synchronized Throwable fillInStackTrace()
• public synchronized Throwable getCause()
• public String getLocalizedMessage()
• public String getMessage()
• public StackTraceElement getStackTrace()
• public final synchronized Throwable getSuppressed()
• public synchronized Throwable initCause(Throwable arg0)
• public void printStackTrace()
• public void printStackTrace(java.io.PrintStream arg0)
• public void printStackTrace(java.io.PrintWriter arg0)
• public void setStackTrace(StackTraceElement[] arg0)
• public String toString()

114

B. Javadoc

B.4. Package de.jss.drools.lang

Package Contents Page

Interfaces
Condition . 116

Provides a marker interface for conditions.
Consequence . 116

Provides a marker interface for consequences.
Constraint . 117

Provides a marker interface for constraints.

Classes
Action . 118

Represents an action which changes the working memory.
ActionType . 119

Specifies the type of action in the associated (in B.4, page 118) instance.
Assignment . 120

Represents an assignment which changes the value of an attribute of a fact.
Attribute .122

Represents the definition of an attribute of a type.
AttributeConstraint . 123

Represents a relation.
Binding . 125

Represents the definition of a binding.
ConditionConnective . 126

Represents a connective of conditions of a rule.
ConditionConnectiveType .127

Specifies the type of connective in the associated (in B.4, page 126) instance.
ConstraintConnective .128

Represents a connective of constraints of a pattern.
ConstraintConnectiveType . 129

Specifies the type of connective in the associated (in B.4, page 128) instance.
Global . 131

Represents the definition of a global.
Message . 132

Represents a message which does not change the working memory.
Package . 133

Represents a package.
Pattern .136

Represents a pattern.
Rule . 138

Represents a rule.
Type .139

115

B. Javadoc

Represents the definition of a fact type.
UnknownConstraint . 141

Represents an unknown constraint.

Interface Condition

Provides a marker interface for conditions.

Declaration

public interface Condition

All known subinterfaces

ConditionConnective (in B.4, page 126), Pattern (in B.4, page 136)

All classes known to implement interface

ConditionConnective (in B.4, page 126), Pattern (in B.4, page 136)

Method summary

clone() Creates and returns a deep copy of the condition.

Methods

• clone
Condition clone()

– Description

Creates and returns a deep copy of the condition.

– Returns – A deep copy of the condition.

Interface Consequence

Provides a marker interface for consequences.

Declaration

public interface Consequence
extends java.lang.Cloneable

All known subinterfaces

Action (in B.4, page 118), Message (in B.4, page 132)

116

B. Javadoc

All classes known to implement interface

Action (in B.4, page 118), Message (in B.4, page 132)

Method summary

clone() Creates and returns a deep copy of the consequence.

Methods

• clone
Consequence clone()

– Description

Creates and returns a deep copy of the consequence.

– Returns – A deep copy of the consequence.

Interface Constraint

Provides a marker interface for constraints.

Declaration

public interface Constraint
extends java.lang.Cloneable

All known subinterfaces

ConstraintConnective (in B.4, page 128), UnknownConstraint (in B.4, page 141), Attribute-
Constraint (in B.4, page 123)

All classes known to implement interface

ConstraintConnective (in B.4, page 128), UnknownConstraint (in B.4, page 141), Attribute-
Constraint (in B.4, page 123)

Method summary

clone() Creates and returns a deep copy of the constraint.

Methods

• clone
Constraint clone()

– Description

Creates and returns a deep copy of the constraint.

117

B. Javadoc

– Returns – A deep copy of the constraint.

Class Action

Represents an action which changes the working memory.

Declaration

public class Action
extends java.lang.Object
implements java.lang.Cloneable, Consequence

Constructor summary

Action(String, String, ActionType) Initializes a new instance of the
Action class using the specified data.

Method summary

clone() Creates and returns a deep copy of the action.
getAssignments() Gets the assignments of the action.
getFactTypeName() Gets the name of the fact type to which the action

refers to.
getPatternName() Gets the name of the pattern to which the action refers

to.
getType() Gets the type of the action.

Constructors

• Action
public Action(java.lang.String factTypeName,
java.lang.String patternName, ActionType type)

– Description

Initializes a new instance of the Action class using the specified data.

– Parameters

∗ factTypeName – The name of the fact type to which the new action
refers to.

∗ patternName – The name of the pattern to which the new action refers
to.

∗ type – The type of the new action.

118

B. Javadoc

Methods

• clone
public Action clone()

– Description

Creates and returns a deep copy of the action.

– Returns – A deep copy of the action.

• getAssignments
public java.util.List getAssignments()

– Description

Gets the assignments of the action.

– Returns – The assignments of the action.

• getFactTypeName
public java.lang.String getFactTypeName()

– Description

Gets the name of the fact type to which the action refers to.

– Returns – The name of the fact type to which the action refers to.

• getPatternName
public java.lang.String getPatternName()

– Description

Gets the name of the pattern to which the action refers to.

– Returns – The name of the pattern to which the action refers to.

• getType
public ActionType getType()

– Description

Gets the type of the action.

– Returns – The type of the action.

Class ActionType

Specifies the type of action in the associated (in B.4, page 118) instance.

Declaration

public final class ActionType
extends java.lang.Enum

119

B. Javadoc

Field summary

Insertion Inserts a new fact into the working memory.
Modification Modifies a fact in the working memory.
Retraction Retracts a fact from the working memory.

Method summary

valueOf(String)
values()

Fields

• public static final ActionType Insertion
– Inserts a new fact into the working memory.

• public static final ActionType Modification
– Modifies a fact in the working memory.

• public static final ActionType Retraction
– Retracts a fact from the working memory.

Methods

• valueOf
public static ActionType valueOf(java.lang.String name)

• values
public static ActionType[] values()

Members inherited from class Enum

java.lang.Enum

• protected final Object clone() throws CloneNotSupportedException
• public final int compareTo(Enum arg0)
• public final boolean equals(Object arg0)
• protected final void finalize()
• public final Class getDeclaringClass()
• public final int hashCode()
• public final String name()
• public final int ordinal()
• public String toString()
• public static Enum valueOf(Class arg0, String arg1)

Class Assignment

Represents an assignment which changes the value of an attribute of a fact.

120

B. Javadoc

Declaration

public class Assignment
extends java.lang.Object
implements java.lang.Cloneable

Constructor summary

Assignment(String, String) Initializes a new instance of the Assignment
class using the specified data.

Method summary

clone() Creates and returns a deep copy of the assignment.
getAttributeName() Gets the name of the attribute to which the assign-

ment refers to.
getExpression() Gets the expression of the assignment.

Constructors

• Assignment
public Assignment(java.lang.String attributeName,
java.lang.String expression)

– Description

Initializes a new instance of the Assignment class using the specified data.

– Parameters

∗ attributeName – The name of the attribute to which the new assign-
ment refers to.

∗ expression – The expression of the new assignment.

Methods

• clone
public Assignment clone()

– Description

Creates and returns a deep copy of the assignment.

– Returns – A deep copy of the assignment.

• getAttributeName
public java.lang.String getAttributeName()

– Description

Gets the name of the attribute to which the assignment refers to.

121

B. Javadoc

– Returns – The name of the attribute to which the assignment refers to.

• getExpression
public java.lang.String getExpression()

– Description

Gets the expression of the assignment.

– Returns – The expression of the assignment.

Class Attribute

Represents the definition of an attribute of a type.

Declaration

public class Attribute
extends java.lang.Object
implements java.lang.Cloneable

Constructor summary

Attribute(String, String) Initializes a new instance of the Attribute class
using the specified data.

Method summary

clone() Creates and returns a deep copy of the attribute.
getName() Gets the name of the attribute.
getType() Gets the type of the attribute.

Constructors

• Attribute
public Attribute(java.lang.String name,
java.lang.String type)

– Description

Initializes a new instance of the Attribute class using the specified data.

– Parameters

∗ name – The name of the new attribute.

∗ type – The type of the new attribute.

122

B. Javadoc

Methods

• clone
public Attribute clone()

– Description

Creates and returns a deep copy of the attribute.

– Returns – A deep copy of the attribute.

• getName
public java.lang.String getName()

– Description

Gets the name of the attribute.

– Returns – The name of the attribute.

• getType
public java.lang.String getType()

– Description

Gets the type of the attribute.

– Returns – The type of the attribute.

Class AttributeConstraint

Represents a relation.

Declaration

public class AttributeConstraint
extends java.lang.Object
implements java.lang.Cloneable, Constraint

Constructor summary

AttributeConstraint(String, String, String) Initializes a new instance
of the Relation class using the specified data.

Method summary

clone() Creates and returns a deep copy of the relation.
getAttributeName() Gets the attributeName of the AttributeConstraint.
getExpression() Gets the expression of the AttributeConstraint.
getRelation() Gets the type of the relation.

123

B. Javadoc

Constructors

• AttributeConstraint
public AttributeConstraint(java.lang.String attributeName,
java.lang.String relation, java.lang.String expression)

– Description

Initializes a new instance of the Relation class using the specified data.

– Parameters

∗ type – The type of the new relation.

∗ value1 – The left value of the new relation.

∗ value2 – The right value of the new relation.

Methods

• clone
public AttributeConstraint clone()

– Description

Creates and returns a deep copy of the relation.

– Returns – A deep copy of the relation.

• getAttributeName
public java.lang.String getAttributeName()

– Description

Gets the attributeName of the AttributeConstraint.

– Returns – The attributeName of the AttributeConstraint.

• getExpression
public java.lang.String getExpression()

– Description

Gets the expression of the AttributeConstraint.

– Returns – The expression of the AttributeConstraint.

• getRelation
public java.lang.String getRelation()

– Description

Gets the type of the relation.

– Returns – The type of the relation.

124

B. Javadoc

Class Binding

Represents the definition of a binding.

Declaration

public class Binding
extends java.lang.Object
implements java.lang.Cloneable

Constructor summary

Binding(String, String) Initializes a new instance of the Binding class
using the specified data.

Method summary

clone() Creates and returns a deep copy of the binding.
getName() Gets the name of the binding.
getValue() Gets the value of the binding.

Constructors

• Binding
public Binding(java.lang.String name,
java.lang.String value)

– Description

Initializes a new instance of the Binding class using the specified data.

– Parameters

∗ name – The name of the new binding.

∗ value – The value of the new binding.

Methods

• clone
public Binding clone()

– Description

Creates and returns a deep copy of the binding.

– Returns – A deep copy of the binding.

• getName
public java.lang.String getName()

125

B. Javadoc

– Description

Gets the name of the binding.

– Returns – The name of the binding.

• getValue
public java.lang.String getValue()

– Description

Gets the value of the binding.

– Returns – The value of the binding.

Class ConditionConnective

Represents a connective of conditions of a rule.

Declaration

public class ConditionConnective
extends java.lang.Object
implements java.lang.Cloneable, Condition

Constructor summary

ConditionConnective(ConditionConnectiveType) Initializes a new in-
stance of the ConditionConnective class with the specified type.

Method summary

clone() Creates and returns a deep copy of the connective.
getConditions() Gets the connected conditions.
getType() Gets the type of the connective.

Constructors

• ConditionConnective
public ConditionConnective(ConditionConnectiveType type)

– Description

Initializes a new instance of the ConditionConnective class with the speci-
fied type.

– Parameters

∗ type – The type of the new connective.

126

B. Javadoc

Methods

• clone
public ConditionConnective clone()

– Description

Creates and returns a deep copy of the connective.

– Returns – A deep copy of the connective.

• getConditions
public java.util.List getConditions()

– Description

Gets the connected conditions.

– Returns – The connected conditions.

• getType
public ConditionConnectiveType getType()

– Description

Gets the type of the connective.

– Returns – The type of the connective.

Class ConditionConnectiveType

Specifies the type of connective in the associated (in B.4, page 126) instance.

Declaration

public final class ConditionConnectiveType
extends java.lang.Enum

Field summary

Conjunction Connects conditions by the means of ’\bigwedge’.
Disjunction Connects conditions by the means of ’\bigvee’.
Negation Connects conditions by the means of ’\neg \exists’.

Method summary

valueOf(String)
values()

127

B. Javadoc

Fields

• public static final ConditionConnectiveType Conjunction
– Connects conditions by the means of ’\bigwedge’.

• public static final ConditionConnectiveType Disjunction
– Connects conditions by the means of ’\bigvee’.

• public static final ConditionConnectiveType Negation
– Connects conditions by the means of ’\neg \exists’.

Methods

• valueOf
public static ConditionConnectiveType valueOf(
java.lang.String name)

• values
public static ConditionConnectiveType[] values()

Members inherited from class Enum

java.lang.Enum
• protected final Object clone() throws CloneNotSupportedException
• public final int compareTo(Enum arg0)
• public final boolean equals(Object arg0)
• protected final void finalize()
• public final Class getDeclaringClass()
• public final int hashCode()
• public final String name()
• public final int ordinal()
• public String toString()
• public static Enum valueOf(Class arg0, String arg1)

Class ConstraintConnective

Represents a connective of constraints of a pattern.

Declaration

public class ConstraintConnective
extends java.lang.Object
implements java.lang.Cloneable, Constraint

Constructor summary

ConstraintConnective(ConstraintConnectiveType) Initializes a new in-
stance of the ConstraintConnective class with the specified type.

128

B. Javadoc

Method summary

clone() Creates and returns a deep copy of the connective.
getConstraints() Gets the connected constraints.
getType() Gets the type of the connective.

Constructors

• ConstraintConnective
public ConstraintConnective(ConstraintConnectiveType type)

– Description

Initializes a new instance of the ConstraintConnective class with the spec-
ified type.

– Parameters

∗ type – The type of the new connective.

Methods

• clone
public ConstraintConnective clone()

– Description

Creates and returns a deep copy of the connective.

– Returns – A deep copy of the connective.

• getConstraints
public java.util.List getConstraints()

– Description

Gets the connected constraints.

– Returns – The connected constraints.

• getType
public ConstraintConnectiveType getType()

– Description

Gets the type of the connective.

– Returns – The type of the connective.

Class ConstraintConnectiveType

Specifies the type of connective in the associated (in B.4, page 128) instance.

129

B. Javadoc

Declaration

public final class ConstraintConnectiveType
extends java.lang.Enum

Field summary

Conjunction Connects constraints by the means of ’\bigwedge’.
Disjunction Connects constraints by the means of ’\bigvee’.
Negation Connects constraints by the means of ’\neg \exists’.

Method summary

valueOf(String)
values()

Fields

• public static final ConstraintConnectiveType Conjunction
– Connects constraints by the means of ’\bigwedge’.

• public static final ConstraintConnectiveType Disjunction
– Connects constraints by the means of ’\bigvee’.

• public static final ConstraintConnectiveType Negation
– Connects constraints by the means of ’\neg \exists’.

Methods

• valueOf
public static ConstraintConnectiveType valueOf(
java.lang.String name)

• values
public static ConstraintConnectiveType[] values()

Members inherited from class Enum

java.lang.Enum
• protected final Object clone() throws CloneNotSupportedException
• public final int compareTo(Enum arg0)
• public final boolean equals(Object arg0)
• protected final void finalize()
• public final Class getDeclaringClass()
• public final int hashCode()
• public final String name()
• public final int ordinal()
• public String toString()
• public static Enum valueOf(Class arg0, String arg1)

130

B. Javadoc

Class Global

Represents the definition of a global.

Declaration

public class Global
extends java.lang.Object
implements java.lang.Cloneable

Constructor summary

Global(String, String) Initializes a new instance of the Global class using
the specified data.

Method summary

clone() Creates and returns a deep copy of the global.
getName() Gets the name of the global.
getType() Gets the type of the global.

Constructors

• Global
public Global(java.lang.String name, java.lang.String type)

– Description

Initializes a new instance of the Global class using the specified data.

– Parameters

∗ name – The name of the new global.

∗ type – The type of the new global.

Methods

• clone
public Global clone()

– Description

Creates and returns a deep copy of the global.

– Returns – A deep copy of the global.

• getName
public java.lang.String getName()

131

B. Javadoc

– Description

Gets the name of the global.

– Returns – The name of the global.

• getType
public java.lang.String getType()

– Description

Gets the type of the global.

– Returns – The type of the global.

Class Message

Represents a message which does not change the working memory.

Declaration

public class Message
extends java.lang.Object
implements java.lang.Cloneable, Consequence

Constructor summary

Message(String) Initializes a new instance of the Message class with the
specified value.

Method summary

clone() Creates and returns a deep copy of the message.
getValue() Gets the value of the message.

Constructors

• Message
public Message(java.lang.String value)

– Description

Initializes a new instance of the Message class with the specified value.

– Parameters

∗ value – The value of the new message.

132

B. Javadoc

Methods

• clone
public Message clone()

– Description

Creates and returns a deep copy of the message.

– Returns – A deep copy of the message.

• getValue
public java.lang.String getValue()

– Description

Gets the value of the message.

– Returns – The value of the message.

Class Package

Represents a package.

Declaration

public class Package
extends java.lang.Object
implements java.lang.Cloneable

Constructor summary

Package(String) Initializes a new instance of the Package class with the
specified name.

Method summary

clone() Creates and returns a deep copy of the package.
getFactType(String) Gets the fact type with the specified name.
getFactTypes() Gets the fact types of the package.
getGlobal(String) Gets the global with the specified name.
getGlobals() Gets the globals of the package.
getName() Gets the name of the package.
getRule(String) Gets the rule with the specified name.
getRules() Gets the rules of the package.
hasFactType(String) Checks whether the package contains a fact type with

the specified name.
hasGlobal(String) Checks whether the package contains a global with the

specified name.

133

B. Javadoc

hasRule(String) Checks whether the package contains a rule with the spec-
ified name.

Constructors

• Package
public Package(java.lang.String name)

– Description

Initializes a new instance of the Package class with the specified name.

– Parameters

∗ name – The name of the new package.

Methods

• clone
public Package clone()

– Description

Creates and returns a deep copy of the package.

– Returns – A deep copy of the package.

• getFactType
public Type getFactType(java.lang.String name)

– Description

Gets the fact type with the specified name.

– Parameters

∗ name – The name to search for.

– Returns – The fact type with the specified name.

• getFactTypes
public java.util.List getFactTypes()

– Description

Gets the fact types of the package.

– Returns – The fact types of the package.

• getGlobal
public Global getGlobal(java.lang.String name)

– Description

Gets the global with the specified name.

– Parameters

134

B. Javadoc

∗ name – The name to search for.

– Returns – The global with the specified name.

• getGlobals
public java.util.List getGlobals()

– Description

Gets the globals of the package.

– Returns – The globals of the package.

• getName
public java.lang.String getName()

– Description

Gets the name of the package.

– Returns – The name of the package.

• getRule
public Rule getRule(java.lang.String name)

– Description

Gets the rule with the specified name.

– Parameters

∗ name – The name to search for.

– Returns – The rule with the specified name.

• getRules
public java.util.List getRules()

– Description

Gets the rules of the package.

– Returns – The rules of the package.

• hasFactType
public boolean hasFactType(java.lang.String name)

– Description

Checks whether the package contains a fact type with the specified name.

– Parameters

∗ name – The name to search for.

– Returns – true if a fact type with the specified name was found; otherwise
false.

135

B. Javadoc

• hasGlobal
public boolean hasGlobal(java.lang.String name)

– Description

Checks whether the package contains a global with the specified name.

– Parameters

∗ name – The name to search for.

– Returns – true if a global with the specified name was found; otherwise false.

• hasRule
public boolean hasRule(java.lang.String name)

– Description

Checks whether the package contains a rule with the specified name.

– Parameters

∗ name – The name to search for.

– Returns – true if a rule with the specified name was found; otherwise false.

Class Pattern

Represents a pattern.

Declaration

public class Pattern
extends java.lang.Object
implements java.lang.Cloneable, Condition

Constructor summary

Pattern(String) Initializes a new instance of the Pattern class using the
specified data.

Method summary

clone() Creates and returns a deep copy of the pattern.
getBindings() Gets the bindings of the pattern.
getConstraints() Gets the constraints of the pattern.
getOuterBinding() Gets the outerBinding of the Pattern.
getTypeName() Gets the name of the fact type to which the pattern refers

to.
setOuterBinding(String) Sets the outerBinding of the Pattern.

136

B. Javadoc

Constructors

• Pattern
public Pattern(java.lang.String typeName)

– Description

Initializes a new instance of the Pattern class using the specified data.

– Parameters

∗ typeName – The name of the type to which the new pattern refers to.

Methods

• clone
public Pattern clone()

– Description

Creates and returns a deep copy of the pattern.

– Returns – A deep copy of the pattern.

• getBindings
public java.util.List getBindings()

– Description

Gets the bindings of the pattern.

– Returns – The bindings of the pattern.

• getConstraints
public java.util.List getConstraints()

– Description

Gets the constraints of the pattern.

– Returns – The constraints of the pattern.

• getOuterBinding
public java.lang.String getOuterBinding()

– Description

Gets the outerBinding of the Pattern.

– Returns – The outerBinding of the Pattern.

• getTypeName
public java.lang.String getTypeName()

– Description

Gets the name of the fact type to which the pattern refers to.

137

B. Javadoc

– Returns – The name of the fact type to which the pattern refers to.

• setOuterBinding
public void setOuterBinding(java.lang.String outerBinding)

– Description

Sets the outerBinding of the Pattern.

– Parameters

∗ outerBinding – The new outerBinding of the Pattern.

Class Rule

Represents a rule.

Declaration

public class Rule
extends java.lang.Object
implements java.lang.Cloneable

Constructor summary

Rule(String) Initializes a new instance of the Rule class with the specified
name.

Method summary

clone() Creates and returns a deep copy of the rule.
getConditions() Gets the conditions of the rule.
getConsequences() Gets the consequences of the rule.
getName() Gets the name of the rule.

Constructors

• Rule
public Rule(java.lang.String name)

– Description

Initializes a new instance of the Rule class with the specified name.

– Parameters

∗ name – The name of the new rule.

138

B. Javadoc

Methods

• clone
public Rule clone()

– Description

Creates and returns a deep copy of the rule.

– Returns – A deep copy of the rule.

• getConditions
public java.util.List getConditions()

– Description

Gets the conditions of the rule.

– Returns – The conditions of the rule.

• getConsequences
public java.util.List getConsequences()

– Description

Gets the consequences of the rule.

– Returns – The consequences of the rule.

• getName
public java.lang.String getName()

– Description

Gets the name of the rule.

– Returns – The name of the rule.

Class Type

Represents the definition of a fact type.

Declaration

public class Type
extends java.lang.Object
implements java.lang.Cloneable

Constructor summary

Type(String) Initializes a new instance of the FactType class with the
specified name.

139

B. Javadoc

Method summary

clone() Creates and returns a deep copy of the fact type.
getAttribute(String) Gets the attribute with the specified name.
getAttributes() Gets the attributes of the fact type.
getName() Gets the name of the fact type.
hasAttribute(String) Checks whether the fact type contains an attribute

with the specified name.

Constructors

• Type
public Type(java.lang.String name)

– Description

Initializes a new instance of the FactType class with the specified name.

– Parameters

∗ name – The name of the new fact type.

Methods

• clone
public Type clone()

– Description

Creates and returns a deep copy of the fact type.

– Returns – A deep copy of the fact type.

• getAttribute
public Attribute getAttribute(java.lang.String name)

– Description

Gets the attribute with the specified name.

– Parameters

∗ name – The name to search for.

– Returns – The attribute with the specified name.

• getAttributes
public java.util.List getAttributes()

– Description

Gets the attributes of the fact type.

– Returns – The attributes of the fact type.

140

B. Javadoc

• getName
public java.lang.String getName()

– Description

Gets the name of the fact type.

– Returns – The name of the fact type.

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Description

Checks whether the fact type contains an attribute with the specified name.

– Parameters

∗ name – The name to search for.

– Returns – true if an attribute with the specified name was found; otherwise
false.

Class UnknownConstraint

Represents an unknown constraint.

Declaration

public class UnknownConstraint
extends java.lang.Object
implements Constraint

Constructor summary

UnknownConstraint()

Method summary

clone() Creates and returns a deep copy of the constraint.

Constructors

• UnknownConstraint
public UnknownConstraint()

141

B. Javadoc

Methods

• clone
public Constraint clone()

– Description

Creates and returns a deep copy of the constraint.

– Returns – A deep copy of the constraint.

142

Errata

The printed version of this thesis contains the following errors:

(1) On Page 30 in Rule (BindP) read (o, {v 7→ o}) instead of (o, {v 7→ o}.

143

