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Abstract. The thesis gives examples for the possibilities and limitations of exact real arithmetic in form of two case studies.
Theoretical results from real complexity theory are compared with time measurements obtained from empirical evaluation of
algorithms implemented in the iRRAM C++ framework for exact real arithmetic. An overview on some results from computable
analysis and an introduction to the iRRAM framework is included.
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1 Introduction

A large amount of problems that are solved with the help of computers are problems dealing with real numbers. Ex-
amples include computing zeros, maxima or minima of real functions, solving differential equations or determining
eigenvalues.

The most common way to represent real numbers on a computer is the use of floating point arithmetic. The floating
point representation of a real number is a finite word, consisting of a mantissa and an exponent of fixed length. Due to
the finiteness of the representation, it is unavoidable that errors occur. While in many cases the error stays small, there
are also several examples where computations with floating point numbers yield results that are completely wrong and
far off from the correct value.

In any case, the error is not visible from the representation, thus without additional analysis it is impossible to know if
the error is too big for a particular application or not. Floating point arithmetic is therefore not a reliable way to perform
real number computations.

There are many cases where reliable results are necessary. Writing reliable algorithms on numerical problems requires,
however, a sound theoretical foundation.

While every natural number is obviously computable, the same can not hold for real numbers for countability rea-
sons.

Computable real numbers were already introduced by Alan Turing in his famous paper "On computable numbers, with
an application to the Entscheidungsproblem" [Tur36]. However, while for discrete-valued problems there is a widely
accepted theory for computability and complexity, there are several non-equivalent theories for computations on real
numbers and none of them is universally accepted among researchers.

One such theory is the Type-2 Theory of Effectivity (TTE) [Wei00]. In TTE reals are represented as infinite strings over
some finite alphabet Σ. Informally one can say, a real number is computable in TTE if it is possible to approximate it with
any desired precision.

TTE is supposed to be a realistic model in the sense that exactly those real numbers and functions are computable in TTE
that can be computed with a computer.

Similar to the discrete-valued case a vast theory on computability and complexity has been built upon TTE.

Since TTE strives to be a realistic model, an important task is to compare theoretical claims with practical implementa-
tions. Using computers to perform exact computations on real numbers is called exact real arithmetic. There are already
quite a few implementations for exact real arithmetic. One that has been proven to be particularly fast and therefore
well-suited for practical implementations, is Norbert Müller’s C++ framework iRRAM [Mül00].

iRRAM extends C++ by classes and functions for error-free computations with real numbers. The details of the internal
representation are taken care of by the framework. The user can write ordinary C++ extended by a data-type that behaves
like real numbers, without thinking about rounding errors.

This thesis presents two case studies in exact real arithmetic, both using the iRRAM framework to implement the algo-
rithms.

The first case-study shows how exact real arithmetic can be used to get simpler algorithms for classical problems in
numerical analysis. The particular problem considered is the shadowing distance for chaotic dynamic systems, i.e. how
close a numerically computed orbit of a map f : R → R is followed by an exact orbit. This problem was originally
considered by Hammel, Yorke and Grebogi in 1987 [HYG87]. Since they could not compute real numbers exactly, they
used a form of interval arithmetic to bound the exact orbit. However, iRRAM can be used to compute the exact orbit which
thus yields a simplified version of their algorithm.

The second case-study deals with analytic functions. Analytic functions have been thoroughly studied in real complexity
theory as a subset of real functions where many in general computationally hard problems become feasible. To show
how well those complexity claims compare with practical implementations, data-types to represent analytic functions
have been written. The implementation is meant as an extension to the iRRAM framework, that provides user-friendly
classes for computations with analytic functions. Empirical evaluation was done on the running time of those classes and
compared with the expected running times from the theoretical examination.
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2 Theoretical Background

2.1 Real Computability Theory

2.1.1 Classical Computability Theory

Head

STATE: q

. . . . . .

Figure 2.1: A Turing-machine consists of an infinite tape with symbols from Σ. The head is positioned on top of one tape cell.

Since in real computability theory many aspects of classical computability theory are extended, a very brief overview is
given in the following section. A detailed introduction can for example be found in [Sch93].

To define computability, the Turing-Machine model is used. The Turing-Machine was invented by Alan Turing in 1936
[Tur36] and can be seen as a simplified mathematical model for a computer.

The machine consists of an infinite tape that is divided into cells. Each cell contains exactly one symbol from a predefined
finite alphabet Σ. It further consists of a head that is positioned on top of one cell and can (in one step) read and write
the content of the cell and then move one cell left or right on the tape.

The machine is always in one of finitely many predefined states and has a finite instruction table containing instructions
of the form "when in state q and reading symbol s, write s′ and move head to the left (or to the right)".

A formal definition of the Turing-machine can for example be found in [HMU13].

Definition 2.1.1: A possibly partial function f :⊆ Σ∗→ Σ∗ is called computable if there exists a Turing-Machine, such that
for all x ∈ dom( f ) the machine terminates after finitely many steps with f (x) on its tape and the head is positioned on the
first symbol of f (x). For x 6∈ dom( f ) the machine does not terminate.

Even tough the Turing-Machine model is quite simple, it can be used to simulate every computer algorithm. The widely
believed Church-Turing thesis even states that anything that is computable in an informal sense can be computed with
a Turing-machine.

Many other definitions to formalize the computability notion have been thought of that could all be shown to be equiva-
lent to the Turing-machine.

Sometimes it is more convenient to consider a slightly modified model instead of the standard Turing-machine. Some
variations on the model that will be useful later are the following

1. A multi-tape Turing-machine has k independent tapes for some fixed k ∈ N. Each tape has its own head that can
move independently from the others.

2. A non-deterministic Turing-machine can have several possible resulting actions in the same situation. A valid
computation can take any of these actions.

The above modifications do not alter the computability notion, i.e. the functions computable will be exactly the same, no
matter which kind of Turing-machine is used.

The following definitions for sets also play a very important role in computability theory.

Definition 2.1.2: A set A⊆ Σ∗ is called decidable, if its characteristic function is computable.

Definition 2.1.3: A set A⊆ Σ∗ is called recursively enumerable (r.e.) or computably enumerable (c.e.) if it is empty or
if A is the domain of a computable function.

6



2.1.2 Computability of real numbers

The previous section showed how to define computability for functions over finite alphabets Σ∗→ Σ∗. That is enough to
define computability for finite structures like natural numbers or graphs, but does not suffice to make any statements on
real numbers.

The following section extends the classical notion to uncountable objects such as real or complex numbers, functions or
infinite sequences.

There are several non equivalent ways to define computability on such objects. In contrast to the classical case, where
the definition using Turing-machines is widely accepted, there is no generally accepted model for real complexity the-
ory.

The model used for this thesis is the so called Type 2 Theory of Effectivity (TTE). A detailed overview of this model
can for example be found in [Wei00] or [BHW08]. TTE aims to realistically model what is possible to compute with a
computer and gives a tool to analyze computability and complexity of real numbers and functions.

Since real numbers are infinite, it is not possible to read or write them in finite time. A first definition can therefore look
as the following.

Definition 2.1.4: A real number is computable if there is a Turing-Machine, that has no input and writes the binary expan-
sion of x on its tape without ever terminating.

To extend the definition to other uncountable structures, like real or complex functions, a slightly different approach is
more convenient.

TTE extends the Turing-Machine model to so called Type-2 Turing-machines. In contrast to an ordinary Turing-machine
a type-2 machine can work on infinite strings s ∈ Σw.

Definition 2.1.5: A type-2 Turing-machine is a multi-tape Turing-machine with two special tapes, an input tape and an
output tape. There also exists at least one working tape.

The input tape is read-only, i.e. it is not possible to change a cell on the tape. Further, the head on both input and output tape
can not be moved to the left. In particular it is not possible to change a symbol that has been written on the output tape once.

The term Turing-Machine will be used both for classical and type-2 machines, when it is obvious by context which model
is meant.

Definition 2.1.6: A function F :⊆ Σω → Σω is called computable if there is a Turing-Machine that for each infinite string
σ ∈ dom(F) on its input tape, writes the infinite string F(σ) on its output tape.

To talk about computability over some arbitrary set, it has to be encoded to Σω. Such an encoding can be formalized in
the following way:

Definition 2.1.7: A representation of a set X is a partial surjective mapping α : Σω→ X .

σ̄ ∈ α−1(σ) is called an α-name of σ.

x ∈ X is α-computable if it has a decidable α-name.

In contrast to the countable case, where a canonical encoding is obvious in most cases, finding a good representation is
more challenging in the uncountable case.

Different representations can lead to a different computability notion. Thus, it is important to find a representation that
leads to a useful and realistic notion of computability.

Some possible representations for real numbers are as follows

1. A ρ10-name of x is the usual decimal expansion of x .

2. A ρ-name of x ∈ R is a sequence an ∈ Z s.t. |x − an| ≤ 2−n

3. A ρC -name of x ∈ R consists of two sequences rational (qn)n∈N and (εn)n∈N, so that |xn−qn|< εn and limn→∞ εn = 0

4. A ρ<-name enumerates all q ∈Q with q < x , similar a ρ>-name can be defined

7



Machine M

0n

Oracle Φ

0m q ∈ D s.t.
|x − q| ≤ 2−m

d ∈ D s.t.
| f (x)− d| ≤ 2−n

Figure 2.2: Computing a real function with an oracle Turing-machine. With input n ∈ N coded in unary, the machine has to return
an approximation to f (x) with error bounded by 2−n. For that it can ask the oracle for approximations of x with error
bounded by 2−m.

Some of the above notions lead to an equivalent definition of a computable real numbers, but others do not.

In particular the following are equivalent

1. x ∈ R is computable in the sense of Definition 2.1.4

2. x ∈ R is ρ10 computable

3. x ∈ R is ρ-computable

A real number will be called computable if it is computable in the sense of one of those definitions.

It can easily be seen that there must be non-computable reals, since the number of reals is uncountable, while the number
of Type-2 Turing-machines is countable.

The following gives an explicit construction for a non-computable real number

Example 2.1.8: Let A⊆ N be any recursively enumerable, but not decidable subset of the natural numbers.

Define the real number x by

x :=
∑

n∈A

2−n.

Note, that this is well defined since the series of partial sums is strictly increasing and bounded by 2.

However, x can not be computable since otherwise it would yield a decision procedure for A.

A sequence as the one from the partial sums used to define x , i.e. a sequence that is computable, monotonic, bounded
and consists only of rational numbers, but has a non-computable supremum is called Specker-sequence.

For practical applications more interesting than just computing single real numbers is computing real functions or even
functionals.

For a real valued function f in general input x as well as output f (x) are infinite. Thus, it is not possible to read the
entire input or write the entire output in finite time.

Instead, for a function f : R→ R to be called computable, it is demanded that the machine can approximate the output
arbitrary well. To do that, it can ask for arbitrary well approximations of the input x . An easy way to formalize this
concept is the use of oracle Turing-Machines.

Definition 2.1.9: An oracle Turing-machine is a Turing-Machine M with one extra special tape, the query tape. Further,
the machine is connected to an oracle function Φ. If M is connected to the function Φ it is written as MΦ.

The machine behaves like a usual (type-1) Turing-machine, but has two special states, the query state and the response
state. When the machine enters the query state, the following happens in one time step:

8



Σω
F //

α

��

B

β

��
X

f
// Y

Figure 2.3: Computability with representations

• The string x on the query tape is replaced by the string Φ(x)

• The machine goes into the answer state

• The head of the query tape is moved on top of the first symbol of the oracle’s answer

A real function f : R→ R is called computable if there is an oracle Turing-machine M , such that MΦ computes with input
n ∈ N a dyadic rational number d ∈ D such that | f (x)− d| ≤ 2−n for each oracle function Φ : N→ D such that for all m ∈ N
|Φ(m)− x | ≤ 2−m.

A more general definition can be achieved by using representations and type-2 Turing Machines.

Definition 2.1.10: A function f :⊆ X → Y is called (α,β)-computable, if there exists a computable function F :⊆ Σω→ Σω
such that β(F(σ)) ∈ f (α(σ)) for all σ ∈ dom( f ◦α).

The choice of representation is crucial when defining computability, as the following theorem shows.

Theorem 2.1.11: Multiplication is not (ρ10,ρ10)-computable.

Thus, the decimal expansion does not seem to be useful to define computable real functions. The same holds for any
other base b.

With respect to the Cauchy representation, however, all of the following become computable

1. Arithmetical operations +,−, x ,/ :⊆ R2→ R

2. The absolute value function

3. The minimum and maximum functions

4. constant functions with computable constant

5. Projections Rk → R

6. polynomials with computable coefficients

7. The functions exp, sin, cos

8. The square-root function and the logarithm function

Thus, the Cauchy representation is used as the standard representation to define computability, and the term computable
function will be used for functions computable with respect to the Cauchy representation.

Some properties of computable functions are

1. Computable functions map computable reals to computable reals

2. They map computable sequences of real numbers to computable sequences of real numbers

3. They are closed under composition

The following theorem shows, however, that many important functions are not computable. A proof can for example be
found in [Wei00].

9



Theorem 2.1.12: Every computable function f : R→ R is continuous.

In particular, tests of the form R→ {0,1} are non-computable if their value is not constant.

A relaxation can be achieved by allowing functions to be multi-valued.

Definition 2.1.13: A multi-valued function f :⊆ X ⇒ Y is another name for a relation f ⊆ X × Y .

A multi-valued function is (ρX ,ρY ) computable, if there is a computable (single valued) function F :⊆ Σω → Σω such that
for all σ ∈ dom( f ◦ρX ), ρY (F(σ)) ∈ f (ρX (σ)).

In other words, a multi-valued function can have several values for the same point and only one of these values has to be
computed. This definition allows the computation to be non-deterministic in some sense.

In practical applications, a multi-valued functions often has the form of a non-computable single-valued function that is
allowed to give slightly wrong results close to the points of non-computability. That is, the result may also depend on the
given representation, and not on the underlying function alone.

Example 2.1.14: The floor function x 7→ bxc is not computable due to continuity reasons.

However, the multi-valued function that computes bxc if the distance of x to an integer is bigger than 2−k and computes
bxc or bx − 1c otherwise is computable.

2.1.3 Computability of real operators and functionals

A common task in numerical analysis is providing answers to questions of the following form: given a real function, what
is its maximum on [0,1]. The input to such a question is a real function.

A real operator maps functions R→ R to functions R→ R and a functional maps functions R→ R to real numbers R. To
talk about computability of operators and functionals, one first has to fix the space that should be represented.

Continuous functions on a compact subset X ⊆ Rd can be uniformly approximated by polynomials arbitrarily close. A
possible representation for real valued functions is thus given by the following definition

Definition 2.1.15: A [ρd → ρ]-name of a function f ∈ C([0, 1]d ,R) is given by a sequence Pn ∈ D[x1, . . . , xd] of polyno-
mials (i.e. degree and list of coefficients), such that | f − Pn|∞ < 2−n

Computability of Operators and functionals operating on functions in C([0,1])d can be defined with respect to this
representation analogously to the definitions in the last section.

With this notion the following holds

Theorem 2.1.16: The integration operator

I : C[0, 1]→ C[0,1], f →
�

x →
∫ x

0

f (t)d t

�

is computable.

Unfortunately, the same does not hold for the derivative

Theorem 2.1.17 (Myhill 1971): There is a computable function f : [0, 1] → R with continuous but uncomputable
derivative.

However, if the function is two times continuously differentiable, the following holds

Theorem 2.1.18: Every computable function f ∈ C2([0,1]) has a computable derivative.

This does not imply that the operator is computable, but only that a computable derivative exists. In fact, the deriva-
tive operator is still uncomputable when restricting the input to functions in C2([0,1]) unless some additional discrete
information is supplied.

This difference will be further explained in the next section.
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2.1.4 Uniformity and Non-Uniformity

In computability theory, one has to distinguish two modes of computability, uniform and non-uniform.

For non-uniform computability it suffices that for every input, there is an algorithm that computes the output. The
algorithm may however depend on the input in a non-computable way.

In contrast, a problem is uniformly computable only if there is one algorithm, that computes the output for every valid
input.

An example is the effective version of the Intermediate Value Theorem, i.e. the task to find a zero of a computable
function f : [0,1]→ R with f (0) · f (1)< 0.

If the set of zeros does not contain an interval it is possible to compute a zero. On the other hand, an interval always
contains a computable number, thus in this case there also is a computable zero. However, it can be shown that there is
no Turing-machine that can decide which case holds and compute a zero from a given function alone.

In practical applications it is usually desired to have uniform algorithms. However, in many cases there does not exist a
uniform algorithm in the standard representation of the input.

One way to deal with this problem is the use of multi-valued functions.

Another way is to give the algorithm some additional information on the input. In many cases it is possible to turn
non-uniform algorithms into uniform ones by extending the input by some additional discrete information that can not
be computed from the input only.

For example, the floor function can be computed uniformly when given one additional bit containing the information if
the input is an integer or not.

2.2 Real Complexity Theory

2.2.1 Classical Complexity Theory

In contrast to computability theory, complexity theory deals with the question how many resources (in form of e.g. time
or space) are needed to compute a computable function. A detailed introduction to discrete complexity theory can for
example be found in [AB09].

Again, the Turing-Machine model is used to describe the computations

Definition 2.2.1: For a given Turing Machine M and w ∈ Σ∗, t imeM (w) denotes the number of head movements the Turing
Machine on input w executes before it terminates.

For n ∈ N define t imeM (n) =max{t imeM (w) |w ∈ Σn and M terminates on input w}.

Space constraints can be defined similarly.

In most cases it is not important to compute the exact running time, but one rather wants to approximate how the
algorithm will behave when the input is getting larger.

The standard way to compare the asymptotic running time of algorithms is the use of the O-notation.

Definition 2.2.2: For functions f , g : N → N one writes f ∈ O(g(n)), if there are constants M ∈ R, n0 ∈ N, such that
f (n)≤ M · g(n) for all n> n0.

Thus, for a given algorithm a way to measure its complexity is giving an upper bound on its worst case running time for
inputs of length n in terms of the O-notation.

However, complexity theory is not only about the complexity of specific algorithms, but also deals with the complexity of
problems. That is, trying to classify the complexity of any algorithm to decide some subset of Σ∗.

The following gives a classifications of problems depending on the running time for algorithms solving those problems.

11



Definition 2.2.3: For a function t : N→ N let

DTIME(t) = {A⊆ Σ∗ |There is a Turing-machine M deciding A with timeM (n) ∈ O(t(n))}

NTIME(t) describes the same for the case of M being a non-deterministic Turing-machine.

Similarly, DSPACE can be defined for the space.

The above definitions suffice to define the most important complexity classes

Definition 2.2.4: The complexity classes P, N P, PSPAC E and EX PT I M E are defined as follows:

P :=
⋃

k∈N

DT I M E(nk)

N P :=
⋃

k∈N

N T I M E(nk)

PSPAC E :=
⋃

n∈N

DSPAC E(nk)

EX PT I M E :=
⋃

k∈N

DT I M E(2nk
)

It holds P ⊆ N P ⊆ PSPAC E ⊆ EX PT I M E. It is P 6= EX PT I M E while for all other inclusions it is not known if equality
holds. Most researchers in complexity theory, however, believe that equality does not hold for any of the inclusions.

Another way to characterize the important class N P is the following

Theorem 2.2.5: A⊆ Σ∗ is in N P if and only if there are polynomials p and q and a deterministic Turing-Machine M such
that for all x ∈ Σ∗ with length n, there is an y ∈ Σ∗ with length bounded by q(n) such that x ∈ A iff M(〈x , y〉 = 1 and
x 6∈ A iff M(〈x , y〉= 0. Further M ’s running time is bounded by p(n) for all such inputs 〈x , y〉.

Whether P = N P is one of the Millennium problems and one of the biggest unsolved problems in Computer Sci-
ence.

One can also consider function problems instead of decision problems leading to a dual hierarchy of complexity classes.

Definition 2.2.6: A function F : Σ∗⇒ Σ∗ is computed by a Turing-Machine if the machine writes on every x ∈ Σ∗ an output
z ∈ F(x) or decides that no such output exists.

The definitions of time- and space complexity can easily be adopted to functional problems.

The classes F P and F PSPAC E are defined as the class of polynomial time resp. space computable functions.

The class #P is defined as the class of functions that give the number of solutions to a problem in N P.

It holds F P ⊆ #P ⊆ F PSPAC E and if F P = #P would hold, it would follow that P = N P.

Problems that are known to be in P are often considered as the feasible ones, for which it is possible to find an efficient
algorithm.

Since most of the complexity classes are not known to be distinct, they do not suffice to classify problems by their
difficulty.

To compare the difficulty of problems, reductions can be used.

Definition 2.2.7: A ⊂ Σ∗ is polynomial time reducible to B ⊆ Σ∗ (A ≤P B), if there is a polynomial time computable
function f : Σ∗→ Σ∗, such that

w ∈ A⇔ f (w) ∈ B.

Many other types of reductions exist, e.g. to compare complexity classes lower then P, but they are not needed in this
thesis and therefore omitted.

The "hardest" problems in a complexity class are called complete for this class

12



Definition 2.2.8: A set A⊆ Σ∗ is called C -hard (w.r.t. ≤P) for a complexity class C , if for all B ∈ C B ≤P A.

A is called C -complete (w.r.t. ≤P), if A is C − hard and A∈ C .

If one would show for a single C -complete problem that it is in P, it would follow that all problems in C are in P.
Consequently a way to show that there is most likely no efficient algorithm to a problem, is to show that the problem is
N P-hard.

For many problems it could be shown that they are N P-complete. Some of the most important ones can for example be
found in [GJ79].

2.2.2 Complexity Theory on real numbers

In classical complexity theory the time complexity is usually measured in terms of the input size. However, when con-
sidering continuous problems, the input is an infinite string and thus can not be used to measure the running time of an
algorithm.

In numerical computations an important parameter is the desired output precision. Thus, it seems reasonable to analyze
the running time as a function depending on the desired output precision.

This leads to the following definition for the complexity of a real number

Definition 2.2.9: A real number x ∈ R is computable in time t if there is a Turing Machine M that with input n ∈ N in
binary, outputs the binary expansion of a dyadic rational number d with |x − d| ≤ 2−n.

Again this notion can be generalized by using representations and Type-2 Turing machines, i.e. by considering the time
that is needed to write the first n symbols of the name of the output.

One has to be careful, however, since representations that are computationally equivalent, do not necessary lead to the
same complexity bounds. For example, one can construct arbitrarily long Cauchy names for any rational number. Thus,
it is not even possible to define the complexity of a real number with respect to its Cauchy name.

An often used representation for complexity considerations is the signed digit representation.

Definition 2.2.10: The signed digit representation ρsd is defined as follows:

A ρsd -name of a real number x is a sequence

anan−1 . . . a0.a−1a−2 . . . with ai ∈ {−1,0, 1}, n≥ −1, an 6= 0, an + an−1 6= 0

and

x =
−∞
∑

i=n

ai · 2i

As with the binary expansion, the number digits after the binary point correspond to the precision.

It can be shown that the signed digit representation is computably equivalent to the Cauchy representation.

When extending the complexity notion to functions, apart from the output precision, an additional parameter might be
interesting: the precision of the input needed to compute the output up to the demanded precision.

This leads to the following definition

Definition 2.2.11: A function f :⊆ R→ R is computed on a compact set K ⊆ dom( f ) in time t with lookahead l if for all
ρsd -names of elements x ∈ K by a Turing Machine M if M computes a ρsd -name of f (x) and after t steps and with reading
at most l symbols of the input string outputs the n-th symbol of the output.

The above complexity notion really only makes sense on a compact set, since otherwise the machine could already spend
arbitrarily much time on just reading the input left from the binary point.

An alternative approach to define complexity of functions is using Oracle Turing Machines which have polynomial time
bounded running time.

With the above notion computable real numbers and functions can be classified into complexity classes analogously to
the discrete case.
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An important class for practical purposes is the class of polynomial time computable numbers and functions, since in
many cases they correspond to the ones that can be computed efficiently with a computer.

An important property of polynomial time computable reals is given in the following theorem.

Theorem 2.2.12 (Ko and Friedman): The set of polynomial time computable real numbers forms a real algebraically
closed field.

Example 2.2.13: The following real valued functions are polynomial time computable on a compact set K of real num-
bers.

1. Addition, Subtraction and Multiplication as functions K × K → R.

2. The function x 7→ 1
x if 0 6∈ K .

3. The functions exp, sin, cos as functions K → R.

2.2.3 Complexity of Operators

Since most interesting function spaces such as C[0,1] are not locally compact, there is no straight forward way to
generalize the above definitions to get a uniform notion of complexity for operators.

In fact, the following holds

Theorem 2.2.14: Even restricted to continuous functions f : [0,1] → [0,1], the evaluation operator x → f (x) is not
computable within time uniformly bounded in terms of the output error only.

A different approach to study the complexity of operators and functionals is followed by Ko and Friedman [Ko91]. Instead
of trying to define a complexity notion for a functional F , they study the time complexity of the real valued function F( f )
where f is a polynomial time computable function.

This method leads to many connections between discrete complexity classes and numerical problems.

One example of such a connection is given in the following theorem which is due to Friedman. A proof can be found in
[Ko91].

Theorem 2.2.15: The following are equivalent

1. F P = #P

2. For every polynomial time computable function f : [0,1] → R, the function g : [0,1] → R, defined by g(x) =
∫ x

0 f (t)d t is polynomial time computable.

Thus, one can say that integration of polynomial time computable functions is at least as hard as solving a problem in
#P. In that sense, Integration can be called #P-hard.
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3 Computing with Reals

3.1 Floating Point Arithmetic

The traditional way to perform computations with real numbers on a computer is the use of floating point arith-
metic.

The floating point representation of a real number is a bit-string with a fixed length.

Numbers are represented the following way:

Definition 3.1.1: A floating point representation with base b and precision p is a string ±d0.d1 . . . dp−1×be with 0≤ di < b.
It represents the number

±be ·
p−1
∑

i=0

diβ
−i

±d0.d1 . . . dp−1 is called the Mantissa and e the exponent.

The smallest and largest exponent allowed are emin and emax . A floating point number can be encoded in

dlog2(emax − emin + 1)e+ dp · log2(b)e+ 1

bits.

Information on floating point arithmetic can for example be found in [Gol91].

If a real number does not fit into the above representation, it has to be rounded appropriately.

Rounding also happens when an operation (e.g. multiplication) is applied and the result does not fit into the finite
representation anymore.

With the above definition the floating point representation of a number is not unique. To guarantee uniqueness it is
usually required that the representation is normalized, i.e. that d0 6= 0.

Of course, 0 can not be represented in this form, so often a special representation is chosen for 0.

Doing real number computations using floating point numbers will in most cases lead to rounding errors.

One can distinguish two cases of errors, the absolute error, the distance between the real result and the computed one,
and the relative error, the absolute error divided by the real result.

Floating point arithmetic is not necessarily associative, e.g. in many programming languages for x := 1e30, y := −1e30
and z := 1 the expression (x + y) + z evaluates to 1 while x + (y + z) evaluates to 0.

Floating point types are often built into hardware, and thus computations can be performed extremely quickly.

3.1.1 The IEEE Standard

Floating point representations for binary base are standardized by IEEE 754 [iee08]. This standard is followed by almost
all modern computers.

The standard defines four different precisions: single, single-extended, double and double-extended. The details can be
seen in Table 3.1.

Type p emax emin exponent width (bits) format width (bits)

Single 24 +127 -126 8 32
Single-Extended 32 +1023 ≤ −1022 ≤ 11 43

Double 53 +1023 -1022 11 64
Double-Extended 64 > 16383 ≤ −16382 15 79

Table 3.1: Parameters for the different types in the IEEE 754 standard
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Apart from the numbers definable in the way of Definition 3.1.1, the standard also introduces special quantities
−0,+0, inf,+ inf and NAN (not a number).

It is required that the result of addition, subtraction, multiplication and division is exactly rounded, i.e. the operation has
to be performed exactly and then rounded afterwards.

The rules for rounding are also defined in the standard. It is required to offer at least the following four rounding
modes.

1. Round to nearest All results are rounded to the nearest representable value. If a result is in the middle of two
representable values, the one where the lowest bit is zero is chosen.

2. Round toward∞ All results are rounded to the smallest representable value larger than the result.

3. Round toward −∞ All results are rounded to the largest representable value smaller than the result.

4. Round toward 0 If the result is negative, it is rounded up, otherwise rounded down.

The user should be able to select which of the rounding modes should be applied.

3.2 Arbitrary-Precision Arithmetic

The accuracy that can be obtained by using hardware floating point types sometimes does not suffice.

When precise results are more important than speed of computation, Arbitrary-precision arithmetic can be used.

Arbitrary precision means that the user is able to choose the precision with which computations are performed (usually
only limited by the available main memory).

Usually an arbitrary-precision number is implemented as a list or array of built-in data-structures together with algorithms
that perform arithmetic operations on this representation.

Many libraries for arbitrary-precision arithmetic exist for nearly all modern programming languages.

Examples are the GNU MPFR Library for C/C++ [FHL+07], The Boost Multiprecision Library for C++ [MK12] or mpmath
for Python [J+10].

The floating point types defined by such libraries can have a user-defined length. Thus, the precision can be arbitrarily
good, but will still be fixed during the program flow. Rounding errors still occur and in most implementations it is not
possible to get bounds on the error from the computation result.

The user usually has to perform additional analysis on the problem, to choose a computation precision that yields exact
enough results.

3.3 Interval Arithmetic

When using floating point arithmetics several real numbers are mapped to the same floating point representation. This
leads to numbers not being represented exactly in almost all cases.

Further, a single floating point number does not contain any information about its accuracy, and so there is no way to
find out if the result of a computation can be trusted or not.

Even if exact computation is not necessary, often one wants to have at least a bound on the error of the result to decide
whether it is useful or not.

A rather easy way to get error bounds is using interval arithmetic [Kea96]. Interval arithmetic means that instead of
making computations on isolated single real numbers whole intervals are used.

A real number r ∈ R is represented by an interval x := [x l , x r], so that r ∈ x . When performing operations (addition,
multiplication, etc.) a new interval, containing each possible result that can be obtained from performing the operation
on the original intervals, has to be computed. The advantage to floating point arithmetics is that the length of the interval
gives a bound on the rounding error, thus making it possible to guarantee the accuracy of computed results.

The fundamental property of interval arithmetic is the inclusion property:

Every f : R→ R can be extended to a function f̄ on intervals, such that for all x ∈ [a, b], f (x) ∈ f̄ [a, b].
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The interval extension of a function is not unique, but usually one tries to find a mapping that is as tight as possible, i.e.
the length of the resulting interval should be as small as possible.

Basic arithmetic operations can be easily defined on intervals:

Theorem 3.3.1: Let x = [x l , x r] and y = [yl , yr] then it holds

x + y = [x l + yl , x r + yr] (3.1)

x − y = [x l − yr , x r + yl] (3.2)

x × y = [min(x l yl , x l yr , x r yl , x r yr),max(x l yl , x l yr , x r yl , x r yr)] (3.3)
1
x
=

�

1
x r

,
1
x l

�

if x l > 0 or x r < 0 (3.4)

x
y
= x ×

1
y

(3.5)

It is easy to see, that addition and multiplication are associative and commutative. However, the following example
shows that the distributive law does not necessarily hold

Example 3.3.2:

[−1,1]× ([−1, 0] + [3, 4]) = [−1,1]× [2, 4] = [−4,4]

[−1, 1]× [−1,0] + [−1, 1]× [3,4] = [−1,1] + [−4,4] = [−5, 5]

Thus, the length of the resulting interval is not independent of the way the computation is done.

The next theorem provides a simple way to find interval extensions of many functions.

Theorem 3.3.3: For every monotonic function f : R→ R it holds

f (x) = [min( f (x l), f (x r)),max( f (x l), f (x r))]

In particular this can be used to find interval extensions of piecewise monotonic functions, such as

xn =







[xn
l , xn

r ] if n is even or x l ≥ 0

[xn
r , xn

l ] if n is odd and x r ≤ 0

[0, max(xn
r , xn

l )] otherwise.

(3.6)

In a similar way, interval version for exp, log, sin, cos and other elementary functions can be found that can then be used
to find the interval versions of more complicated functions.

The strength of interval arithmetic is that it can easily be implemented even when the above operations on the interval
endpoints are not computed exactly but finite approximations are used.

This does, however, only work if outward rounding is used, i.e. after every operation the left point of the interval has to
be rounded down and the right point rounded up.

Since IEEE 754 requires that the user is able to specify the rounding mode, interval arithmetic can be implemented using
standard floating point numbers.

Note that the length of the interval can increase quickly.

There are many implementations of interval arithmetic in different programming languages, e.g. for C++ the boost
interval arithmetic library can be used.

When using floating point arithmetic, the minimal interval length is bounded by the machine epsilon. Interval arithmetic
can, however, also be combined with arbitrary-precision arithmetic to get arbitrarily small intervals, leading to arbitrarily
exact computations with the possibility to bound the rounding error after the computation.
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3.4 Symbolic Computation

Symbolic computation means that mathematical expressions (i.e. formulas consisting of numbers, functions, variables
and mathematical constants) are manipulated algebraically.

Software that performs symbolic computations is called a Computer Algebra System (CAS).

Some example of Computer Algebra Systems include Maple, Mathematica or Sage.

In a CAS, at each step of the computation the numbers are represented exactly. However, symbolic computation is very
limited, because many problems are either very difficult to be solved symbolically or do not even have a symbolic solution
at all.

Also, even if the problem can be solved, an exact symbolic solution might be very long and complex, thus making it less
useful on its own.

Therefore, symbolic methods are often combined with numerical methods to get an approximate result in the end.

3.5 Exact Real Arithmetic

Using interval arithmetic or arbitrary precision arithmetic, the precision is set in the beginning and rounding and trun-
cation errors still accumulate. Without previous careful analysis, there is no guarantee that the result’s precision will
suffice.

In contrast, the goal of exact real arithmetic is to perform computations on real numbers without accumulating er-
rors.

In practice, that means that on demand a number can be printed up to any desired precision. More precisely, the user
does not specify the precision the numbers are represented with in the beginning, but gives a desired precision for the
answer of the computation.

The implementation has to take care of the steps necessary to achieve the precision. For the user, it should seem like
real numbers are manipulated exactly, while of course internally the implementation still works on finite approxima-
tions.

There are several approaches to exact real arithmetic. For example

1. Signed-digit Streams: A real number is represented as an infinite string stream. This is very close to the definition
with type-2 machines.

2. Continued Fractions: A real number is represented by its continued fraction representation. Rational numbers
have a finite representation, while irrational numbers have an infinite representation.

3. Directed Acyclic Graphs (DAGs): A real number is given by an algorithm that computes an approximation to the
number with a desired error bound. Arithmetic expressions are expressed as graphs with real number leaves.

Since the approach followed in this thesis is the DAG approach, it is the only one that will be described in more de-
tail.

3.5.1 DAGs

An arithmetic expression over real numbers can be expressed by a directed acyclic graph (DAG) where the leaf nodes are
real numbers and the inner nodes are operations on real numbers.

The inner nodes contain the information how precise the inputs to the operation have to be to guarantee a given output
precision. Thus, the needed precision can be propagated down to the leaf nodes, and the algorithms to approximate the
real numbers can be invoked.

The term evaluating is used to describe the process of getting an approximation to the real number represented by a
DAG with a desired output precision.

There are essentially two ways to evaluate a DAG:

1. Top-down evaluation: The desired precision is computed from the top node down to the leaves. That is, a node
contains the information how precisely it needs the input given by its children to compute the output with the
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Figure 3.1: The DAG representation for the expression
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necessary precision. The top node is given the desired output precision, and it then asks its children to provide
this input.

2. Bottom-up evaluation: the computation is started with a fixed precision in the leaf nodes. It is kept track of the
errors when going upward in the DAG (this can be done e.g. by using interval arithmetic). At the top the error
bound is compared to the desired output precision. If the error is too large, the computation is restarted with
higher precision.

+

x0 x1

+

xn−1

+

xn

Figure 3.2: The DAG created when the expression
∑n

i=0 x i is computed iteratively

While the top-down approach seems to evade unnecessary recomputations, the precision needed is usually largely over-
estimated.

For example, to compute additions of two numbers up to precision 2−n, it suffices to have the inputs with precision
2−(n+1). Now, if the sum x :=

∑1000
i=0 x i is computed iteratively (e.g. in a for-loop), a DAG as in Figure 3.2 will be created.

Thus, x0 has to be computed with precision 2−(n+1000) while actually computing all input values with error less than
2−(n+10) would suffice to guarantee error of the sum of less than 2−n. This makes the bottom-up approach more feasible
in many cases.

In general, the DAG approach has the problem that saving the DAG needs a huge amount of memory. Arithmetic
operations in loops, that are executed many times, quickly grow the created DAG and thus may exceed the computer’s
main memory.

The pure DAG approach is therefore not applicable for many numerical algorithms.
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3.6 iRRAM

iRRAM is a C++ framework for exact real arithmetic developed by Norbert Müller.

The case studies in the next chapters were all implemented using the iRRAM framework. This chapter gives therefore a
short introduction to this framework.

iRRAM extends C++ by a data-type REAL for error free computations with real numbers. For the user, an object of type
REAL behaves like a real number that can be manipulated without any rounding errors. The framework takes care of
all details necessary to finitely represent real numbers internally, and in most cases this internal representation will be
invisible for the user.

3.6.1 Real Number representation

iRRAM’s approach is similar to the bottom-up DAG approach described in Section 3.5.

There is one important difference tough: The DAGs are stored only implicitly. Instead, there is only enough information
saved, so that the whole computation can be repeated from the beginning. If the precision at some point of the program
does not suffice, the whole program is restarted with higher precision. This drastically reduces the memory needed for
the computation.

For making error analysis, iRRAM uses a simplified form of interval arithmetic.

At every time during the program execution, the internal representation of a real number is always a single interval.
More precisely, a real number x ∈ R is represented by a pair (d, e) such that x ∈ [d − e, d + e].

d is saved as a multiple precision number and e consists of two longs p, z such that e = p · 2p.

The internal representation of a REAL can change during the run of the program.

Whenever the precision of some REAL is not sufficient at some point, the whole computation is restarted. This is, when
the representations of the reals change to admit higher precision.

This process of restarting the whole computation with higher precision is called iteration in iRRAM’s terminology. Since a
reiteration is only done when higher precision is needed, there are only few operations, such as comparisons or output,
that can trigger such a reiteration.

An iRRAM program will usually do several iterations of the computation, until the desired output precision is
reached.

3.6.2 Overview

The following gives an overview over the most important classes and functions provided by the iRRAM framework. For a
more detailed overview see [Mül00].

iRRAM provides some classes for discrete valued structures, in particular the class INTEGER for infinite sized integers, the
class RATIONAL for rational numbers and the class DYADIC for dyadic rational numbers.

The most important class is REAL, the class for error-free computations with real numbers.

An object of type REAL can be constructed from int, char*, double, DYADIC or another REAL.

Arithmetic operations can be applied on REALs by using the overloaded operators +, -, *, /.

Many functions on REALs are already included in the iRRAM package, e.g. abs(x), power(x, n), exp(x), log(x), trigono-
metric functions and their inverse and many more.

The operators <, <=, ==, >=, > are also overloaded. Note, however, that comparison operators have to be used carefully,
as will be explained in the next section.

iRRAM further provides classes for complex numbers and real matrices.

An iRRAM program is written in usual C++ extended by the data-types provided by a framework. However, a few things
have to be kept in mind when writing a program
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a||b 0 1 ⊥
0 0 1 ⊥
1 1 1 1
⊥ ⊥ 1 ⊥

a&&b 0 1 ⊥
0 0 0 0
1 0 1 ⊥
⊥ 0 ⊥ ⊥

!a

0 1
1 0
⊥ ⊥

Table 3.2: The semantics of the LAZY_BOOLEAN data-type

1. compute function The iRRAM framework overwrites the C++ main function, so it can not be written by the user.
Instead it is replaced by a function void iRRAM :: compute() . The main part of the program should be written
inside this function.

2. Input and Output The input and output streams cin and cout are overloaded with iRRAM’s own versions, that
can read and write real numbers. The precision of the output can be adjusted with the parameterized manipulator
setrwidth that sets the number of digits that are written. Alternatively the function rwrite(REAL& r, int prec)
can be used to write a real number with a given number of decimals.

3. Global variables Since iRRAM only reiterates the code executed inside the compute function, global variables will
not be part of the reiteration. Therefore, REAL variables should never be defined globally.

3.6.3 Multivalued Functions

TTE can be used as a theoretical model to reason about iRRAM programs.

Thus, the limitations seen in Chapter 2.1 also hold for iRRAM programs. In particular, every function computable with
iRRAM necessarily has to be continuous.

That also implies, that comparisons and tests for equality of REALs are not computable.

Indeed, for the simplified representation a comparison of two numbers can be decided if and only if the intervals of the
two representations do not overlap.

As long as the two intervals overlap, iRRAM has to assume that the intervals are to large to make a decision yet, and has to
reiterate to get smaller intervals. But if the numbers are equal, the intervals will always overlap, no matter how small they
are, leading to an infinite loop of iterations. The reiteration is realized by the LAZY_BOOLEAN data-type. LAZY_BOOLEAN
extends the boolean type to ternary logic with values T, F,⊥. The semantics of LAZY_BOOLEAN can be found in Table
3.2.

The informal meaning of ⊥ is, that the precision is not yet sufficient to make a decision. When casting to bool ⊥ leads to
a reiteration.

Not being able to make comparisons might first seem like a huge disadvantage, but note that in numerical practice it is
also strongly advised to never test floating point numbers on equality. The gnu gcc compiler even has a warning option
on that [Fre05]:

-Wfloat-equal

Warn if floating-point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer) to consider

floating-point values as approximations to infinitely precise real numbers. [...]

Instead of testing for equality, you should check to see whether the two values

have ranges that overlap; and this is done with the relational operators, so equality

comparisons are probably mistaken.

In contrast to that iRRAM has a semantically correct way to handle comparisons and other cases of non-continuity:
multi-valued functions.

In iRRAM a multi-valued function can have multiple valid outputs for the same input and return one of the valid outputs.
For the user the choice of output can seem indeterministic. Of course, the output will be deterministic in the underlying
finite representation of the number, but the representation might differ even when the real number represented is the
same.
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iRRAM already has some multi-valued functions included, e.g. the function

bound(x , k) =







true if |x | ≤ 2k−2

true or false if 2k ≥ |x |> 2k−2

false if |x |> 2k.

can be used for multi-valued comparisons.

Another example is the function approx(const REAL& x, const long p) that returns a DYADIC approximation with
error less than 2−k to x .

One way to construct multi-valued functions without accessing the internal representation of the REALs is to use
LAZY_BOOLEAN together with the choose-function. choose is a multi-valued function that takes up to 6 lazy booleans
and returns the index of one that is evaluated to T or 0 if all evaluate to F (leading to reiteration as long as neither of
the two cases hold).

The powerful feature to have multi-valued functions introduces, however, a new problem.

A multi-valued function can have different results for different representations of the same real number. Since the
internal representation of a real number changes when the computation is reiterated, a reiteration could lead to a
completely different result of the multi-valued function. Thus, the program flow could change from one iteration to
another, leading to unexpected results.

To prevent that from happening, the result of a multi-valued function is always saved in the so called multi-value
cache and read from there when reiterating. It is therefore guaranteed that the program flow stays the same in all
iterations.

Saving everything in the cache will, however, increase the needed memory. Multi-valued functions should only be used
rarely and one has to be especially careful when they are used inside of loops.

3.6.4 Limits

iRRAM also has the feature to generate new user-defined REALs by using a special limit operator. There are three types
of limits

1. Simple limits:
This limit has the form

REAL limit(REAL a(long, const REAL&), const REAL& x).

The limit operator takes a sequence of real functions converging to a single-valued function f : R→ R rapidly, i.e.
such that

|ap(x)− f (x)| ≤ 2p for all x ∈ dom( f )

and returns the value of f (x) as a REAL.

There exist similar functions to compute limits of sequences of functions with 0 or 2 input variables.

2. Lipschitz limits
The limit computation can be improved if a Lipschitz bound on the limit function f is known, i.e. one has an l
such that

| f (x)− f (y)| ≤ 2l |x − y| for x , yindom( f ).

Then for x ∈ [d − e, d + e]

|ap(d)− f (x)| ≤ |ap(d)− f (d)|+ | f (d)− f (x)| ≤ 2p + 2l · e

Thus for large enough p (i.e. such that 2p > 2l · e)

|ap(d)− f (x)| ≤ 2p+1

To use this in iRRAM there is a function

REAL limit_lip(REAL a(long, const REAL&), long lip, const REAL& x).
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3. Multi-valued limits The multi-valued limit-operator has the form

REAL limit(REAL f(int prec, int* choice, const REAL&), const REAL&)

The parameter choice selects a subset of values that are possible for the limit of f . 0 means that all values are
allowed, and changing the value of choice corresponds to a reduction of the possible values. The choice parameter
will be saved in the multi-value cache.

3.6.5 Access to the underlying representation

Usually the user is expected to see the data-type REAL as a kind of black-box that makes error-free computations with real
numbers possible. The framework should take care of all the underlying representations and the finite representation
should be invisible to the user.

In rare cases it may however be helpful, to access and change the underlying representation of REALs. This is also possible
in iRRAM.

The error of a REAL has the following type

struct sizetype { SIZETYPEMANTISSA mantissa; SIZETYPEEXPONENT exponent; }

where SIZETYPEMANTISSA is unsigned int and SIZETYPEEXPONENT is int.

An object of type REAL has the two member functions

void seterror (sizetype error);

void geterror (sizetype& error) const;

They can be used to get and set the error.

The information about the current iteration can also be accessed. The most notable variable is ACTUAL_STACK.ACTUAL_PREC
that contains the precision bound for the current iteration.
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4 Case Study: Dynamic Systems and the Shadowing Lemma

a behavior

[0, 1] Stabilizes at 0
(1, 3] Stabilizes at a−1

r
(3,≈ 3.544] oscillates between 2, 4, 8, . . . values.

(≈ 3.544,4]
For almost all initial points no oscillation with finite period.
Small changes in the initial point yield large differences over the iterations.

(4,∞) The values eventually leave the interval [0,1] and diverge for almost all initial points

Table 4.1: behavior of iterating the logistic map for different values of the parameter a

4.1 Introduction

A dynamical system describes how the state of a system evolves with time. Formally

Definition 4.1.1: A discrete dynamical system is a triple (N, X ,Φ) with a non empty set X (the state space) and an
operation Φ : N× X → X , so that Φ(0, x) = x and Φ(n,Φ(m, x)) = Φ(n+m, x).

Thus, a discrete dynamical system is the model of a system that evolves over discrete time steps.

The simplest case of a discrete dynamical system is when the state space is 1-dimensional (say X ⊆ R) and the transition
function only depends on the previous value, formally Φ(1, x) = f (x) for some f : R→ R. In this case it can be written by
the recurrence relation xn+1 = f (xn) with initial condition x0 ∈ R. The set of the xn is called orbit of the map f .

In this thesis only very simple examples of dynamical systems are used. A broader introduction can for example be found
in [KH97].

A chaotic system is a dynamical system that is highly sensitive to initial conditions. As a consequence even relatively
small numerical errors made during the computation grow exponentially fast.

A prototypical example of a chaotic system is the logistic map.

Definition 4.1.2: The logistic map is given by the recurrence relation xn+1 = axn(1− xn) with a, x0 ∈ R.

The behavior of the logistic map depends on the parameter a.
Table 4.1 shows the behavior for different values for this parameter.

The interesting case for this thesis is for a ∈ (3.544, 4), since this is where the iteration of the map leads to chaotic
behavior.

The iRRAM framework can be used to compute iterations of the logistic map exactly. It is therefore very well suited to
investigate this chaotic behavior.

Figure 4.1 shows how sensitive the map is to small errors that occur because of finite precision computations. When
using 10 significant digits for the computation, it can be seen that after around 50 iterations, the finite precision version
diverges from the iRRAM version and after that behaves completely differently.

iRRAM can also be used to approximate the complexity in terms of needed computation precision. iRRAM automatically
increases the internal precision until it suffices to output the result with the demanded number of digits. Thus, the
internal precision at the end of the computation gives a measure of this complexity.

As can be seen in Figure 4.2, the needed internal precision grows extremely quickly with the number of iterations. To
compute 10 significant digits of the 20000-th iterate, iRRAM internally computes already with precision nearly 2−50000,
which is of course far from what is possible with any standard floating point data type.

4.1.1 The Shadowing Lemma

The next section deals with the relation between exactly computed and approximately computed orbits and how much
numerical orbits have to do with real orbits.
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Figure 4.1: 100 Iterations of the logistic map with a = 3.8 and x0 = 0.4 computed with 10 decimals precision and exactly.

Figure 4.2: Maximal precision iRRAM uses to compute iterations of the logistic map and output the points with 10 decimal digits.

Definition 4.1.3: A sequence (x i)i∈N is called an α-pseudo-orbit for a map f if for all i ∈ N

‖x i+1 − f (x i)‖< α

One can think of a pseudo orbit as a numerically computed orbit, where small rounding errors can occur in every
evaluation of f .

Definition 4.1.4: A real orbit (yi)i∈N β-shadows the pseudo-orbit (x i)i∈N if for all i ∈ N

‖x i − yi‖< β .

For systems that have a certain property, namely being uniformly hyperbolic, Anosov and Bowen could show the following
result [Ano67] [Bow75] [HP08]:

Theorem 4.1.5 (Shadowing Lemma): Let f : R→ R be a uniformly hyperbolic map. Then it holds that for all β > 0
there exists an α > 0 such that for every α-pseudo-orbit (x i)i∈N there is a point p0 so that the real orbit (yi)i∈N defined
by y0 := p0 and yi+1 := f (yi) β-shadows (x i)i∈N.

In other words, in the uniformly hyperbolic case, every numerically computed orbit is close to a true orbit with a slightly
changed initial point.

Unfortunately, many maps (including the logistic map) are not uniformly hyperbolic.
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For non-hyperbolic f , it can not be expected that there is a real orbit that stays close to the pseudo orbit forever. Instead,
there will be an orbit staying close to (x i) for some time (say up to some point n0) and then starting to diverge.

The goal of this case study is to investigate such orbits, and in particular to find out how long there is an orbit staying
close to the pseudo orbit. The basis for the case study is a paper by Hammel, Yorke and Grebogi from 1987 [HYG87].
The paper deals with the question, how long numerical orbits of the logistic map can be shadowed by true orbits.

The authors show that for a = 3.8 and x0 = 0.4, there is a true orbit (yi)i∈N of the logistic map, so that ‖xn− yn‖< 10−7

for n≤ 107.

Their proof method is to compute bounds on the points of the true orbit with a computer by using a form of interval
arithmetics. All their computations were done on a Cray X-MP supercomputer.

For the case study, their algorithm was first reimplemented on a modern computer in the C++ programming language,
both using fixed precision floating point numbers and iRRAM.

As a second step, iRRAM was used to compute the shadowing orbit exactly.

4.1.2 The Algorithm

In their paper Hammel, Yorke and Grebogi give an algorithm to compute a shadowing orbit (yi)i∈N of size N for a given
pseudo orbit (xn)n∈N of the logistic map f .

Instead of computing the shadowing orbit from the first point, the algorithm computes the inverse orbit by starting with
the last point and then iteratively computing the predecessor. Since the logistic map is not injective, there is not a unique
choice for this predecessor.

For some point f (x) there are normally two possible values for the inverse given by

f −1
1,2 (x) = 0.5±

s

0.25+
x
a

An orbit can be computed by setting yN = xN and then iteratively applying one of the inverse maps yn−1 =
f −1(yn).

To stay close to the pseudo orbit, in every step the point on the same side of 0.5 as xn is chosen. In the following, this
function will just be denoted by f −1 when the choice of index is obvious.

The backward procedure will give an orbit close to the pseudo-orbit since the inverse function on (0,1) is a contraction,
i.e. ‖ f −1(x)− f −1(y)‖ ≤ |x − y|.

Let δ be the rounding error made when numerically computing f (xn). Then it holds ‖ f −1(xn)‖= ‖ f −1( f (xn−1) +δ)‖ ≤
‖ f (xn)‖+ ε for some small ε. This leads to

‖xn−1 − yn−1‖= ‖xn−1 − f −1(yn)‖ ≤ ‖ f −1(xn)− f −1(yn)‖+ ‖ f −1(xn)− xn−1‖ ≤ ‖xn − yn‖+ ε

Of course, using only floating point arithmetics, the inverse can not be computed exactly and thus the shadowing orbit
itself can not be computed.

Instead of computing the orbit, an error bound can be computed with the help of interval arithmetics. That is, a sequence
of intervals (In)0≤n≤N giving upper and lower bounds for yn is computed, i.e Intervals In such that

yn ∈ In for 0≤ n≤ N .

The procedure is started with IN := [xn, xn] and then In−1 is selected so that In ⊆ f (In−1) holds.
In each step, In is chosen as small as possible.

If at some point xn <
a
4 the inverse is not defined and the procedure fails.

In the other case, an upper bound on the maximal distance between all points in In := [ln, rn] and xn is computed.

That is

δ = max
0≤n≤N

min(|xn − li |, |xn − ri |)

gives a shadowing bound.
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4.2 Implementation

Several versions of the above algorithm were implemented.

The first one is a reimplementation of the original interval arithmetic version on a modern computer.

The Cray-MP’s floating point data types had different sizes than the standard types in modern programming languages.
To get similar results as in the original work, the cray double precision data type therefore had to be simulated using
software implementations.

For the C++ implementation, the boost multiprecision library [MK12] was used. The library provides data types that
replace the native C++ floating point types, but with a user defined precision.

The cray double data type used for the computations in the paper has machine epsilon εµ = 2−95.

To compute the intervals In from In+1, the inverse of the interval is computed as described above. As long as the condition

In+1 ⊆ f (In) (4.1)

is not fulfilled, In is enlarged on both sides by the minimal possible quantity εµ.

However, since both the computation of f (In) and f −1(In) are done using floating point arithmetics, this is not enough
to guarantee the condition 4.1.

Further enlarging the interval on both sides by the constant 10−25 takes care of this problem.

For the interval arithmetic a simple interval class template fixed_precision_interval<prec> was written to represent
intervals of the form [a, b] with a and b multiprecision floating point numbers with prec bits precision.

All needed operations on intervals were implemented for this class, making the implementation of the algorithm straight
forward.

Instead of only implementing the algorithm in the original form, generic types where used such that experiments with
different floating point precisions could be done.

The second implementation made is very similar to the first one but instead of using intervals with fixed precision floating
point end points, iRRAM’s INTERVAL type was used.

The data type provides interval arithmetic for intervals with real numbered end points. The above algorithm can therefore
be implemented by first computing a pseudo orbit using floating point arithmetics and then computing the inverse of a
small interval around the last point exactly.

The last implementation uses iRRAM to compute a shadowing orbit exactly.

Again, a pseudo orbit is computed by using floating point arithmetic in the iterations of the logistic map.

Then, starting with the last point of the pseudo orbit the inverses can be computed exactly until the initial point is
reached. In the end, the distance of this real orbit and the pseudo orbit can be computed and the maximum of all those
distances taken to find the shadowing distance.

One advantage of the last approach is that the iRRAM code to compute the exact orbit is extremely simple. Since all
operations can be performed exactly, there is no need for intervals or other complicated structures. The data type REAL
takes care of everything.

Again, the implementation uses generic types, to make it possible to compute the shadowing distance for various different
floating point precisions.

4.3 Evaluation

4.3.1 Breakdown points

As mentioned above, the algorithm only works if at each step x i ≤
a
4 . If the algorithm fails, the first N for that there is

some i such that x i > ai is called the breakdown point.

The breakdown point depends on the precision that is used to compute the pseudo orbit.
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Figure 4.3: Breakdown points depending on N for different parameters a and p0

Since the computation precision on the Clay X-MP was determined by the available floating point data types, it was not
possible to just adjust it.

Instead, the noise was artificially increased by setting xn+1 = axn(a− xn) +δp cos(Θ) with Θ = n(mod997) and then the
shadowing distance in relation to δp measured.

However, using the boost multiprecision library’s cpp_bin_float data type, it is easy to change the number of binary
digits of the used floating point data type instead of artificially increasing the noise.

In the original work the relation N ≈ 1p
δp

between the noise amplitude and the breakdown points was found.

Interestingly no such relation could be found for the modified version that uses cpp_bin_float instead of a noise ampli-
tude. As can be seen in 4.3, in this version breakdowns very rarely occur at all during the first 107 iterations. There are,
however, still some parameters for that a breakdown occurs. In most of this cases it occurs rather quickly, during the first
1000 iterates.

The reason for that is probably that the correct rounding compensates much of the errors, which is not the case when the
noise is artificially generated by the noise amplitude.

4.3.2 Shadowing bound and computation precision

The original paper also deals with the question, how close a pseudo-orbit is shadowed depending on the computation
precision. The same was also done for the different implementations in this thesis.

Again, instead of artificially generating noise, the precision of the floating point type was changed.
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(a) 103 iterations (b) 107 iterations

Figure 4.4: Shadowing distance for different parameters a and p0 of the logistic map. The distance is bound by 1p
δ

where δ = 2−n

is the precision.

The shadowing distance was computed for several different parameters a and starting points p0. The number of iterations
N were also varied.

The result can be seen in Figure 4.4.

The tests were made with all versions of the algorithm described above. The results obtained from the different versions
were nearly identical, thus only the iRRAM version is depicted. Also, the running time of both program versions did not
differ much for the performed evaluations.

In the original paper it is conjectured that for 2M -digit accuracy the orbit stays close to 10−M for around 10M iter-
ates.

As can be seen in the graph, for up to 107 iterates the conjecture holds.
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5 Case Study: A Datatype for Analytic Functions

The following case study describes an implementation for a data-type for analytic functions in iRRAM. The implementation
and theoretical analysis is joint work with Akitoshi Kawamura and Florian Steinberg [KST15].

The theoretical foundation for the case study can be found in [KMRZ12].

5.1 Introduction

In Chapter 2.2 it was shown many important operators on real functions are known to be computationally hard.

On the other hand, for many of those functions, fast numerical algorithms working with floating point arithmetic exist
and are often very precise and reliable.

Thus, there is a kind of mismatch between the worst case results in Computable Analysis and the practice of Numerical
Analysis.

The following questions arise

1. What kind of functions are important and naturally arise in numerical analysis?

2. What kind of implicit assumptions are made about the functions and in what way do they allow faster computa-
tions?

Consequently, it might be useful to consider subsets of real functions and investigate which of the operations become
feasible.

A subset of real functions that has been thoroughly studied in computable analysis are the analytic functions. It could
be shown that many operators that are hard in the general case become polynomial time computable when restricting to
analytic functions.

Note, however, that being analytic is a quite strong restriction on a function and that many problems in numerical analysis
deal with non-analytic functions.

An analytic function is locally defined by its Taylor series, that is

Definition 5.1.1: For z ∈ C and r ∈ R, r > 0, let B(z, r) := {x ∈ C |x − z|< r}.
A function f : D → C with D ⊆ C is called analytic, if for every x0 ∈ D the function given by the Taylor-series around x0
converges to f (x) for every x in a neighborhood of x0.

That is, for every x0 ∈ D there is an ε > 0, there is a series

T (x) :=
∞
∑

n=0

an(x − x0)
n

such that T (x)→ f (x) for all x ∈ B(x0,ε).

The above definition can also be generalized to higher dimension.

If f is analytic, all its derivatives f (n)(x) exist and it holds

an =
f (n)(x0)

n!
.

The set of functions analytic on D will be denoted by C∞(D).
For the sake of simplicity, it will w.l.o.g. be assumed that 0 ∈ D and x0 = 0 if not stated otherwise.

Below are some properties of analytic functions.
More detailed information on analytic function can for example be found in [KP02].

1. For f , g ∈ C∞(D) the sum f + g and the product f g are analytic functions.

2. If f , g are analytic and im( f ) ⊆ dom(g) then their composition f ◦ g is analytic.
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3. The roots of an analytic function that is not identical to 0 are isolated points.

4. The derivative and anti-derivative of an analytic function are analytic.

5. If the domain is connected, an analytic function is uniquely defined by a single Taylor-series around one point in
its domain.

The next theorem shows that the property of being analytic is very useful when it comes to computability and complexity
considerations.

Theorem 5.1.2 (Pour-El, Richards, Ko, Friedman [PER89]): Let f ∈ C∞(B(x0,ε)) and (an)n∈N the Taylor series valid
on B(x0,ε). Then the following are equivalent

1. f is computable

2. The series (an)n∈N is computable.

Theorem 5.1.3 (Müller [Mül87]): The equivalence in Theorem 5.1.2 also holds when the word computable is replaced
by polynomial time computable.

Many operations on functions, like addition, multiplication, differentiation or anti-differentiation, can be reduced to
simple manipulations on the Taylor-series for analytic function.

Thus, a direct consequence of Theorem 5.1.3 is the following

Corollary 5.1.4: If f ∈ Cω(D) is polynomial time computable the following functions are also polynomial time com-
putable:

1. The functions obtained by the sum, product or difference of the two functions

2. i : D→ R, i(x) =
∫ x

0 f (t)d t

3. d : D→ R, d(x) = f ′(x)

Thus, restriction to analytic functions reduces the computational complexity of many important operations on real func-
tions.

However, those theorems are non-uniform in the following sense:

The theorems only say that f being polynomial time computable implies the existence of a polynomial time computable
sequence and the existence of such a sequence implies that there exists some algorithm computing f in polynomial time.
In no way, however, do they say, how to compute the sequence from a given representation of the function and vice
versa.

In fact the following shows that this is not a problem of those theorems, but it’s inherently impossible to do so.

Theorem 5.1.5 (Müller [Mül87]): Let f given as in Definition 2.1.7 then the operator f → (an)n∈N, computing the
Taylor series around 0 (or any other point) is not computable.

Theorem 5.1.6 (Müller [Mül87]): Let (an)n∈N be the series expansion around 0 for some f ∈ Cω(D).

The evaluation operator ((an)n∈N, x)→ f (x) that, given a series and a point, computes the value of the corresponding
function at that point, is not computable.

The reason for the non-uniformity is that any algorithm can only read a finite number of coefficients from the series.
But from the power series alone, it is impossible to know how many coefficients are needed to make a good enough
approximation. This information can not be (computably) extracted from the Taylor-series, thus the algorithms have to
be given some additional information.

The goal of this case study was to write a general data type for analytic functions. Due to the above, any such data type
will need more information than only the series of Taylor coefficients.

The next section will deal with the question, what additional information is needed to get uniform versions of the above
theorems.
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5.2 Representation of Analytic Functions

As seen in the previous section, the information given by the series expansion is not enough to make reasonable compu-
tations with analytic functions. However, by enriching the information by some finite discrete parameters, the translation
between Taylor-series and function representation can be made uniform and even (parameterized) polynomial time
computable.

Two possible representations for analytic functions on the closed unit disc are as follows

Definition 5.2.1: A series-name ρs of f ∈ Cω(B1(0)) is a triple ((an)n∈N, k, A) where

1. (an)n∈N is the series expansion of f around 0

2. kp2≤ r

3. |a j |r j ≤ A for all j ∈ N

and r = (limsup |a j |
1
j )−1 denotes the radius of convergence of the series.

The two additional parameters are useful, because they can be used to make a tail estimate
�

�

�

�

�

∑

n≥N

an xn

�

�

�

�

�

≤ A
(|z|/r)N

1− |z|/r
(5.1)

A name as in Definition 5.2.1 can be found by choosing any appropriate k (note that the radius of convergence is always
bigger than 1) and choosing A as an upper bound of f extended to B kp2

(0).

Definition 5.2.2: A function-name ρ f of f ∈ Cω(B1(0)) is a triple ( f , l, B) such that B is an upper bound of f on B lp2
(0).

Theorem 5.2.3: [KMRZ12] The mapping between ρs-name and ρ f -names is computable in time polynomial in n+ k+
log(A) and the inverse mapping is computable in time polynomial in n+ l + log(B)

Note that the above translation becomes fully polynomial time when in the representations k resp. l are required to be
encoded in unary, while A resp. B are given in binary. Thus, from now on the term polynomial time computable will be
used when referring to running time bounds as in Theorem 5.2.3.

A full proof of Theorem 5.2.3 can be found in [KMRZ12].

Some details that are important for the implementation are given below as separate theorems.

Theorem 5.2.4: A series name can be used to evaluate the corresponding function in polynomial time.

Proof:

According to Equation 5.1, if the first N := nk+ log A terms are summed up then for the error
�

�

�

�

�

∑

j>N

a j r
j

�

�

�

�

�

≤ 2−n

holds. �

Theorem 5.2.5: Given a function name it is possible to compute any Taylor coefficient ak around 0 of the function in
polynomial time.

Proof:

To compute a series name from a function name, one has to compute the coefficients of the series expansion from a
function name, i.e. from the function and the parameters l and B.

In [Mül93] Müller describes an algorithm for this task.

Let M (n) denote the time needed to multiply two n-bit numbers (e.g. M (n) = O(n log n log log n) when using the
Schoenhage-Strassen Algorithm [SS71]).
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To approximate the coefficient ak with precision at least 2−n f is approximated by the Lagrangian interpolation polyno-
mial

Pm(x) :=
2m
∑

i=0

f (x i) · Lm,i(x) (5.2)

where

x i = (i −m) · h, h ∈ R, h> 0

Lm,i(x) =
∏

i 6= j

x − x j

x i − x j

Differentiating Equation 5.2 k times yields

Pk
m(0) :=

2m
∑

i=0

f (x i) · L
(k)
m,i(0) (5.3)

Let σ = dlog2 Be+ 1

It can then be shown that if f is evaluated on 2k + 1 points from the real interval {x ∈ R | |x | ≤ 1
2} with precision

2n+ 15k+σ+ 6 then ak can be approximated by the above procedure with error less than 2−n in O((k+ 1) ·M (n+ k+
σ) + k2M (k log k)

The coefficients L(k)m,i(0) in Equation 5.3 are rational numbers and can be computed by a recursion formula that is also
given in [Mül93]. �

Theorem 5.2.6: The following is polynomial time computable when given ρs or ρ f names for the input functions.

1. Evaluation ( f , z)→ f (z)

2. Addition ( f1, f2)→ f1 + f2

3. Multiplication ( f1, f2)→ f1 · f2

4. d-fold Differentiation ( f , d)→ f (d) where d is given as unary

5. d-fold Anti-differentiation ( f , d)→
∫

. . .
∫

f where d is given in unary

Proof (Sketch):

Evaluation follows from 5.2.3.

The manipulations that have to be done on the Taylor series are straight forward, e.g. addition can be done by just adding
the coefficients of the two series.

It remains to show how to compute the new parameters A′ and k′ from the parameters A1, A2, k1, k2. The results will just
be listed here without proof.

1. Addition: A′ = A1 + A2 and k′ = max(k1, k2).

2. Multiplication: k′ = 2max(k1, k2) and A′ is some integer such that A′ ≥ A1 · A2 · (1+
k′

e ln 2 ).

3. Differentiation: k′ = 2k and A′ is some integer such that A′ ≥ A
r · (1 +

2k
e ln2 ). Note, that the parameters do not

depend on d.

4. Anti-Differentiation: k′ = k and A′ an integer such that A′ ≥ A · rd .

�

The above can be extended to a data type for analytic functions on arbitrary ball-shaped domains.

But of course, most domains are not ball-shaped and one would also like to represent such domains.

One possible way to represent functions on such a domain, is to cover the domain with balls and use the representation
from Definition 5.2.1 on each ball. As an example, consider functions analytic on the real line [−1,1] (this implies being
analytic on a rectangle around the line [−1,1] in the complex plane).
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(a) For a series name the domain is covered with equally
sized balls. For each ball, a Taylor series around the
center of the ball is given and the properties of Defini-
tion 5.2.1 hold.

−1 1
1
l

1
l

Rl

dom( f )
singulari t y

(b) A function name encodes a closed rectangle around
[−1, 1] where the function is analytic and an upper
bound for the function on that rectangle.

Figure 5.1: Representations for functions analytic on the real line [−1, 1]

Definition 5.2.7: Let f ∈ Cω([−1,1]). A series-name for f is a 5-tuple (M , (xm), (an, j), k, A) where M ∈ N 1 ≤ j ≤ M ,
n ∈ N, xm ∈ [−1,1] and it holds

1. [−1,1] ⊆
⋃M

m=1[xm −
1

4k , xm +
1

4k ]

2. (an,i)n∈N is the series expansion of f around x i

3. |an,i | ≤ Akn for all n ∈ N , 1≤ i ≤ M

To simplify the definition the parameters k and A were chosen global, i.e. they hold for each of the series. That means,
the domain is covered by equally sized balls. Figure 5.1a shows a series name with three series.

The definition can be further simplified by requiring the series centers to be equidistantly distributed on [−1,1] and thus
making it unnecessary to store them in the representation.

A function name as in Definition 5.2.2 can also be defined

Definition 5.2.8: Let Rl := [−1− 1
l , 1+ 1

l ]× [−
1
l , 1

l ] the closed rectangle with distance 1
l around [−1,1] .

A function-name for a function f ∈ Cω([−1,1]) is a 3-tuple ( f |[−1,1], B, l) with B, l ∈ N such that

1. f ∈ Cω(Rl)

2. B is an upper bound for f on Rl

where l is coded in unary and B in binary.

See Figure 5.1b for a picture describing the function name.

Again it can be shown that the two representations are polynomial time equivalent, and that the equivalent to Theorem
5.2.6 holds.

5.3 Analytic Continuation

One problem with the representation in Definition 5.2.7 is that when thinking of this representation as an interface for a
data type, it is very cumbersome for the user to provide all the information needed. He would need to give an algorithm
for as many Taylor series as needed to cover the interval.

As said before, there is no real gain of information by providing all those series. The analytic function is uniquely defined
by the Taylor series around a single point.

A simplified representation can therefore be as follows
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l

1
l

x0x x1x2

Figure 5.2: Evaluation by Analytic Continuation: to evaluate the function at point x given the series around x0, first the series
around point x1 is computed. This series is used to compute one more series around x2 which then finally can be
evaluated at x .

Definition 5.3.1: A single series name for f ∈ Cω([−1, 1]) is a quadruple (x0, (an)n∈N, k, A) such that

1. (an)n∈N is the series expansion of x around x0

2. A and k are such that |am| ≤ Akm

3. The parameters A and k are valid on the entire rectangle Rl

A series name can be obtained from a single series name by computing the series expansion on another point on the
domain and then iterating this process until the series cover [−1,1].

Since the parameters A and k are such that they hold on the entire rectangle, the new series will be valid on a ball with the
same radius as the original series, effectively extending the domain. This process is called analytic continuation.

The series can be computed either by applying the algorithm from the proof of Theorem 5.2.3 or by directly computing
the derivatives at an other point using Theorem 5.2.6.

Note, however, that iterating this process will break the polynomial time computability, as will be shown in the next
section.

5.4 Runtime Analysis

The previous section gave an overview of the representations and how they can be used to yield efficient (in the sense of
polynomial time computability) operations on analytic functions. Since for practical applications polynomial time com-
putability is too coarse a measure for efficiency, in this section a more refined analysis on the algorithms is done.

The goal is to establish time bounds in terms of the O-notation.

Most of this has already been done in [KST15], thus proofs are omitted or only sketched.

Let T (am, n) denote the running time needed to compute the coefficient am from the Taylor series with an error less than
2−n. The running time of all operations on the Taylor series will depend on this factor.

The following theorems have been shown in [KST15]

Theorem 5.4.1: Given a series name of f ∈ Cω(D). To evaluate f with error less than 2−n

N = k(n+ dlog2(log2(e
2)kAe)

coefficients of the Taylor series are sufficient.
This yields evaluation computable in time

O(NM (N) + N · T (aN , n+ log2(N) + 1))

Theorem 5.4.2: The m-th coefficient of the d-times differentiated series is given by a(d)m = am+d

∏d
i=1(i +m).

Computing the m-th coefficient of the series for the d-fold derivative can thus be done

O(T (am+d , n+ d log2(d +m))) + dM (d log2(d +m) + n))
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Theorem 5.4.3: Given a series name of f ∈ Cω(D), the number of coefficients of the series of the d-fold derivative
computed from f as in Theorem 5.2.6 needed to evaluate this derivative, is given by

Nd = k
�

n+ dlog2(log2(e
4)kAe+

¡

d
�

log2(d) + log2(log2(e)k+ 1)−
1
k

�¤�

.

Thus, evaluating the d-fold derivative of f is possible in time bound by

O(NdM (Nd) + Nd · T (aNd+d , n+ d log2(d + Nd))) + dM (d log2(d + Nd) + n)

For computing the m-th coefficient of a Taylor series around some point the m-th derivative has to be divided by m!. This
division reduces the needed precision leading to

Ncoe f f (m) = 2k
�

n+ dlog2(log2(e
4)kA) +m log2(log2(e)k+ 1)e

�

as the number of coefficients that are needed to compute the m-th coefficients of the Taylor series around another
point.

For stepwise analytic continuation it is necessary to iterate the process of differentiating. For example, using the single
series name when one wants to evaluate the function at a point x that is not inside the ball of the given series, analytic
continuation has to be applied until a series containing x is reached.

Assume for a computation the coefficients up to N of the last series is needed. The previous results lead to the recurrence
relation relation

N (0) = N

N (l+1) = 2k
�

n+ dlog2(log2(e
4)kA) + N (l) log2(log2(e)k+ 1)e

�

further leading to

Theorem 5.4.4: Applying analytic continuation l times, to compute N coefficients of the last series

N (l) = O((2k log2(log2(e)k+ 1))l N) (5.4)

coefficients of the original series are needed.

The above leads to a running bound for evaluating using l-times iterated analytic continuation.

Theorem 5.4.5: The running time of evaluating the l times iterated series is bounded by

O(l(N (l))2M (N (l)) + N (l)T (aN(l), lN (l) log2(N
(l)))) (5.5)

Due to the number of parameters the running time depends on, the above bounds are quite complicated.

To get get simple bounds the following assumptions were made

1. A and k are usually very small compared to the other parameters, thus they are neglected except for the case when
k is in the base of an exponentiation.

2. The time T (am, n) to read a coefficient of the series is neglected. Although this time has a huge impact on the
overall running time, for reasonably fast sequences it will be dominated by the other parameters.

This leads to the following simplified bounds

1. Evaluation of a series-name is possible in time O(nM (n)).

2. Evaluation of the d-fold (anti-)derivative is possible in time O((n+ d)M (n+ d))

3. Evaluation of the l times iterated analytic continuation is possible in time O((2k log k)2l n2M ((2k log k)l n)

4. The number of coefficients that have to be read from the original series to evaluate a series gained by l-times
iterated analytic continuation is bounded by O((2 log2(log2(e) + 1))l) = O(2.56l)
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5.5 Implementation

iRRAM was used as a framework to implement the ideas in the previous section. The goal was to add user friendly classes
for analytic functions to iRRAM. In particular two classes were created for this purpose.

The class BA_ANA is a basic class for analytic functions on a closed disc with rational radius around 0, inspired by Definition
5.2.1.

The class ANA_RECT is a class for functions analytic on an arbitrary real interval [a, b], inspired by Definitions 5.2.1 and
5.2.7.

Both classes provide a common set of operators and methods, in particular

1. It is possible to add, multiply and subtract two objects using the overloaded operators +, ∗, −.

2. It is possible to evaluate the function at x ∈ D using the overloaded operator ()

3. There is a function differentiate (unsigned int n) to get a new object representing the d-th derivative of the
analytic function.

4. There is a function integrate (unsigned int n) to get a new object representing the d-th anti-derivative of the
analytic function.

5. It is possible to get the coefficients of the underlying Taylor series.

Since a power series is an infinite object, some thought has to be put into how to store it on a computer.

Some reasonable approaches are for example

1. A finite implementation. At every point during the execution of the program, a finite initial segment of the
power series is precomputed and stored in memory. The length of the initial segment depends on the required
precision and can change during the run of the program (e.g. with reiterations in iRRAM). All algorithms performing
operations on analytic functions will be given only polynomials, and thus only operate on them.

2. A functional implementation. The coefficients are not precomputed and saved. All algorithms are given the power
series as a function from an integer n to the coefficient an (or a pointer to such a function). If an algorithm needs
to read a coefficient it calls the function.

The second method is very similar to the DAG approach, that is when performing operations that generate new power
series pointers to all functions used have to be saved. It can therefore suffer from the same memory issues as the DAG
approach. Despite that fact and even though the first method is arguably more in the spirit of the iRRAM framework, a
decision was made to follow the second approach.

There are several reasons for that. Firstly, the number of coefficients needed from the power series depends heavily
on the point where the analytic function is evaluated. If the length of the used initial segment grows with the internal
precision of iRRAM, worst case assumptions have to be made on the needed number of coefficients. This would in most
cases be a huge overestimation and therefore lead to longer computation times.

Secondly, the memory issue does not play such a big role in this case. Usually, operations like differentiation or analytic
continuation that increase the size of the DAG are not applied hundred thousands of times, but orders of magnitude less.
Thus, the DAGs stay rather small and easily fit into the main memory of a modern computer.

The pure functional approach, however, has the disadvantage that a coefficient has to be computed every time it is
needed and thus the same work might have to be done many times. Depending on the algorithm, this can lead to very
poor performance.

To prevent this, a form of caching was implemented. The coefficient function is only called the first time when a coefficient
needs to be computed and then saved to the cache. The next time the coefficient is accessed it is taken from the cache
instead of calling the function again. Thus the coefficient is only recomputed when the precision is not sufficient and
iRRAM reiterates the computation.

5.6 Class Overview

In addition to the two classes for analytic functions, several helper classes were implemented. The design of the
implementation is very close to the interface given by the theoretical framework, i.e. there are classes for different
mathematical objects that work on representation classes for that object.
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All classes were implemented with generic types using Templates whenever it made sense.

The following classes exist

5.6.1 POLY

POLY<coeff_type> is a class template for polynomials of a generic coefficient type. The class for the coefficient type
should have implementations of the * and + operators and it should be possible to cast 0 to <coeff_type>.

The following has been implemented for POLY

1. Constructor from a vector<coeff_type> and default constructor (constant zero polynomial).

2. Copy constructor POLY(const POLY<coeff_type>& P) and Copy assignment constructor POLY& operator =
(const POLY<coeff_type>& P).

3. Methods get_degree() and get_coeff(const unsigned int n) returning the degree and a specific coefficient.

4. Addition, Subtraction, Multiplication and Scalar Multiplication via the overloaded operators +, -, *, +=, *=.

5. Evaluation via the overloaded operator ().

6. symbolic differentiation and anti differentiation via the functions void diff(unsigned int) and void
integrate(unsigned int n).

7. A function void rwrite(const POLY<coeff_type>& P, int precision) that outputs the polynomial in the
form an ∗ X n + . . . an ∗ X + a0 where the real numbers a0, . . . , an are written with the number of decimals given by
the parameter precision.

All methods were implemented in the most straight forward way.

5.6.2 FUNC

FUNC<RESULT(PARAM)> is a class template for functions with input of type PARAM and return type RESULT. It can be seen
as a thin wrapper around std::function.

The idea behind FUNC is to have a class for functions in the mathematical sense, thus the classes for the template
parameters should have the arithmetical operators implemented.

The following methods exists

1. Constructors from an std::function or a pointer an std::function.

2. Copy constructor FUNC(const FUNC<RESULT(PARAM)>&) and copy assignment constructor FUNC& operator =
(const FUNC<RESULT(PARAM)>&)

3. Addition, Subtraction, Multiplication and Scalar Multiplication via the overloaded operators +, -, *, +=, *=

4. Evaluation with the operator ()

5. Function Composition with the operator ()

Methods are performed on a representation class called rep_rho_D.

Straight forward implementations of all operations are possible using C++11’s lambda functions, e.g. addition is imple-
mented the following way

alg_func_ptr <PARAM, RESULT> sum(new const alg_func <PARAM, RESULT >(

[alg1, alg2](const PARAM& x) -> RESULT

{return (*alg1)(x) + (*alg2)(x);}

));

5.6.3 POWERSERIES

POWERSERIES<coeff_type> is a class template for power series of a generic coefficient type, i.e. a (symbolic) series of
the form

∑∞
i=0 an · xn.

The same restrictions on the coefficient type as for POLY hold.
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The series itself is represented as a FUNC<coeff_type(unsigned int)>, i.e. a function from the integers to
coeff_type.

Note, that hereby the maximal number of coefficients is limited by the size of unsigned int, but the limit is large enough
to have no practical relevance.

POWERSERIES has the following methods

1. Constructors from a shared_ptr to a FUNC<coeff_type(unsigned int)> and from a single object of coeff_type
(giving a sequence with constant coefficient sequence).

2. Copy constructor POWERSERIES(const POWERSERIES<coeff_type>& P) and copy assignment constructor POWERSERIES&
operator = (const POWERSERIES<coeff_type>& P).

3. A method coeff_type get_coeff(const unsigned int& n) returning the n-th coefficient

4. A method POLY<coeff_type> cut_of_at(const unsigned int& n) that returns the polynomial given by
∑n

i=0 ai x
i .

5. Addition, Subtraction, Multiplication and Scalar Multiplication via the overloaded operators +, -, *, +=, *=

6. symbolic differentiation void differentiate(int n) [where did anti differentiation go?]

7. Composition of POWERSERIES using the operator ()

The methods are mainly implemented as realizer functions on the corresponding representation class rep_rho_dy_omega.

Again, the implementation is mostly straight forward transformations on the power series.

Since the objects that are manipulated are functions C++11’s functional features come in handy and are used heav-
ily.

This class also implements a form of caching for the power series coefficients.

The rep_rho_dy_omega class contains a vector<coeff_type> and whenever a coefficient is read, all coefficients up to
this one are saved in the vector and retrieved from there when read the next time.

5.6.4 BA_ANA

BA_ANA<ARG> is a class template for functions analytic on a closed disc with some rational radius r around 0.

In the current form, for the template parameter ARG only REAL or COMPLEX makes sense.

Apart from the methods at the beginning of this section, the following methods exists

1. A constructor from a POWERSERIES, two INTEGERs k and A and a RATIONAL r. To work correctly r has to be strictly
smaller than the radius of convergence R and it has to hold kp2r < R and |an| ≤

A
rn·2n/k .

2. A constructor from a FUNC, two INTEGERs k and A and a RATIONAL r.

3. A method POWERSERIES<ARG> series_around(const ARG&) that computes the series expansion around an arbi-
trary point in the domain.

4. Composition using the () operator.

BA_ANA uses two representation classes, rep_pi, the representation by a power series, and rep_rho_D_refined, the
representation as a function. All operations except evaluation use the power series representation. If the constructor
from a function object is called, the power series will also be computed, thus the rep_pi-name is always available.

Evaluation can also be realized from the rep_pi name, but it will usually be faster to use the function if it is avail-
able.

The methods are implemented as described in Theorems 5.2.6 and 5.2.3.

For evaluation it is very useful to have access to iRRAM’s internal representation of the error of a REAL.
The value f (x) is obtained summing up a finite initial segment of the Taylor series

∑

ai x
n.

The error consists of two parts, the error that is made because of the truncation (see 5.1) and the error that is made
because of the coefficients and x only being available as finite approximations.
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While summing up the terms in the sum, the second type of error might become bigger than the first type. In that case,
it is better to stop the summation and return a REAL with a too big error, to make iRRAM start a new iteration with more
precise approximations to the coefficients and x .

5.6.5 ANA_RECT

The class ANA_RECT represents complex functions that are analytic on an interval [a, b] ⊆ R. The internal representation
is very similar to the one in Definition 5.2.7. That is, a finite sequence of (overlapping) equidistant Taylor sequences
covering the interval and parameters A and k that are valid for all the series.

Apart from the methods common with BA_ANA the following exist

1. A constructor from (a pointer to) a POWERSERIES, the two integers k and A and two REALs left and right that
give the end points of the line where the ANA_RECT object will be defined.

2. A constructor from a function pointer, two INTEGERs l and B and left and right as above.

3. A method get_series_number(int n) that returns a pointer to the POWERSERIES for the n-th series.

4. The method cut_of_at(int n, int m) returns a POLY with the first m coefficients of series n.

The constructor only takes a single POWERSERIES. All other power series needed to cover the interval are computed from
the provided one using analytic continuation.

ANA_RECT uses two representation, a function representation rep_fun and a series representation rep_ana_rect that can
be transformed into each other.

The series representation rep_ana_rect contains a vector with the power series. When evaluating the rep_ana_rect-
name at a point x ∈ C, a Taylor series containing x is chosen and then a BA_ANA object of this series created and evaluated
at the (appropriately shifted) point x .

For other operations, the according transformation of the first series is computed and then the other series are computed
from that.

5.7 Usage

The following C++ program gives an example how the BA_ANA class can be used. ANA_RECT can be used similarly.

1 #include "iRRAM.h"

2 #include "Functions/Analytic/BA_ANA.h"

3 using namespace iRRAM;

4
5 REAL factorial(const int n){

6 if (n==0)

7 return REAL(1);

8 return factorial(n-1)*REAL(n);

9 }

10
11 REAL sinseries(const int n){

12 if (n%2 == 0) return 0;

13 if (n % 4 == 3) return -1/factorial(n);

14 return 1/factorial(n);

15 }

16
17 void compute() {

18 POWERSERIES <REAL> ps_sin(sinseries);

19 BA_ANA<REAL> sinus(ps_sin, 2,2);

20 sinus.differentiate(2);

21 rwrite(sinus(0.2), 20);

22 iRRAM::cout << endl;

23 }

The snippet defines a BA_ANA object for the sine function.
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Lines 5 to 15 define a function that returns with input an integer n the coefficient an of the sine series.

Instead of defining a function it is also possible to use C++11’s lambda feature to define a function object.

The main part of the program happens in iRRAM’s compute function.

Line 18 defines a POWERSERIES object from the series function.

In Line 19 the BA_ANA object is defined from the power series and the parameters A= 2 and k = 2.

This object is then differentiated two times (line 20) and then evaluated at 0.2 (line 21).

The rwrite function is used to output the resulting real number with 20 valid decimal digits.

Note that there are much faster ways to implement the power series for the sine function, but for the example the most
straight forward method was used.

5.8 Evaluation

Due to the chosen functional approach, most operations like differentiation do by themselves not perform any time
critical operations but instead only define a new function to compute the coefficient series of the result.

As long as no coefficient is accessed, this function is not called and thus no operations performed. Thus, the only time
critical operations are evaluation and printing coefficients.

Consequently the way to measure the complexity of the other operations, is evaluating the resulting function at some
point.

For example for measuring the complexity of differentiation, one can first differentiate the function and then measure
the running time of evaluating the differentiated function.

Running time measurements were performed for several different test functions. In particular, a number of tests were
performed on the functions x → sin(x), x → 1

1+x2 , x → ln(2+ x) and x →
p

2+ x .

The additional parameters A and k for those functions were chosen as small as possible and are between 1 and 2 for all
functions.

As the running times are very similar for all the functions, only a few examples are included here.

To better understand the generated graphs, it is important to note that due to the iterative concept of the iRRAM, the
running time is not continuous in the desired output precision, but grows stepwise with the iteration of the iRRAM.

All the evaluations were performed using a Mac-Book Pro with a 2 GHZ Intel Core i7 processor and 4GB of RAM. The
code was compiled using gcc version 4.9.1 and iRRAM version 2013 01.

To get a reliable estimate for the running time, all evaluation scripts were run twice and the average of the two runs
taken.

Below the results for both the evaluations performed on the both the BA_ANA and the ANA_RECT data-type are
shown.

41



5.8.1 BA_ANA

Figure 5.3: running time evaluating BA_ANA at fixed point x = 0.8 depending on the desired number of valid decimals

Figure 5.4: running time evaluating differentiated BA_ANA with series for sin(x) at fixed point x = 0.8 with different number of
desired valid decimals depending on the number of differentiation

All operations on BA_ANA are expected to run in polynomial time. Thus, the algorithms are expected to run reasonably
fast.

This could be verified in the performed tests. Figure 5.3 depicts the running time for the two real-valued functions
x → sin(x) and x → 1

1+x2 . Similar results were obtained for other functions.

Of course it’s possible to compute those functions much faster, e.g. by using iRRAM’s built-in sin function. However to
obtain the above results no special properties of those functions were used, but only the information contained in the
Taylor series and the two additional parameters. Thus, the results obtained are very general and should hold for all kind
of functions (as long as the complexity to compute the series is similar).

5.4 shows how the running time depends on the number of differentiation.
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Other operations like addition and multiplication yield similar running times and the results are therefore omitted.

All in all, the running times obtained for the tested examples were very close to what was expected from the theoretical
analysis, and seem to be quite good, although due to the lack of similar approaches to compute analytic functions, it is
hard to make any comparisons.

5.8.2 ANA_RECT

Since most operations on the power series on ANA_RECT and BA_ANA are identical‚ and are therefore expected to behave
similarly, the crucial part of evaluating BA_ANA is the evaluation using analytic continuation.

In particular the following questions are interesting

1. How does the running time depend on the number of analytic continuations and on the output precision?

2. How many coefficients of each power series are needed?

3. How does the number of coefficients needed grow with the number of iterations and the output precision?

From the theoretical analysis, the expected behavior is that the running time for evaluating at a fixed point should depend
polynomially on the desired output precision n, bounded by O(n4).

In the number of analytic continuations it should grow exponentially.

A similar dependency on output precision and number of analytic continuations should hold for number of coefficients
that are read from the original series given to the constructor of the ANA_RECT object.

Figure 5.5: running time of ANA_RECT computing the sine function at the boundary of the third series, depending on the number of
valid digits. The text above the bars shows the highest internal precision and the number of iterations iRRAM did.

Figure 5.6 shows, how the running time of evaluating at a fixed point x depends on the desired number of valid decimals.
x is chosen so that 3 analytic continuations are necessary.

The plot also contains the information on how many iterations iRRAM performed and the maximum internal precision
(text above the bars). Every bar is broken down into smaller bars that show how much time was spent in each iteration
of the iRRAM.

The reason for the running time going down again between 75 and 100 decimals is that the iterations do not always
have the same size, but iRRAM makes estimates on a good step size. The internal precision in the end is −375 for both
n = 75 and n = 100, but for 75 the first estimate is too small, leading to a total number of 3 iterations instead of only 2
iterations for n= 100.

However, the plot also clearly indicates that the running time is always strongly dominated by the time spent in the last
iteration.

Table 5.1 shows the number N (l) of coefficients accessed from the original series when evaluated at a point where l
analytic continuations are necessary depending on the internal precision of iRRAM.
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Figure 5.6: Number of coefficients read from the original series when evaluating sine-function with 150 valid decimals, depending
on the number of analytic continuations

prec N (1) sec
50 71 0

136 271 0
242 527 2
375 842 6
541 1235 20

(a) evaluating at series 1

prec N (0) N (1) N (2) N (3) N (4)

50 13 30 59 112 212
136 55 120 234 442 833
242 109 236 458 863 1626
375 175 378 733 1382 2603
541 258 556 1078 2031 3825

(b) evaluating at series 3

Table 5.1: Number of coefficients accessed in an iRRAM iteration of precision prec when evaluating at on the boundary of the first
and third series.

How the running time and the number of coefficients depends on the number of analytic continuations can also be
observed in Figure 5.7 and Table 5.2.

It can be seen that the number of coefficients read approximately doubles in each analytic continuation and thus grows
a little slower than the upper bound established in the theoretical analysis.

All in all the figures are very well in accordance with the qualitative behavior expected from the analysis in the theory
section.
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(a) sin(x) (b) log(2+ x)

Figure 5.7: log-scale plot of the running time for ANA_RECT with 150 valid digits at the boundary of the l-th series.

precision series 0 series 1 series 2 series 3 series 4 series 5 series 6
52 1914 1039 576 325 185 104 55
512 3721 2021 1121 633 361 204 109

2300 5978 3247 1801 1017 580 328 175
7550 8775 4766 2644 1493 851 481 257

Table 5.2: The number of coefficients read from each series depending on iRRAM’s precision. Results are for the sine function
evaluated at the border of the series 6.

45



6 Conclusion

Two case studies have been presented, showing some of the possibilities and limitations of exact real arithmetic.

The first case study was a reimplementation of a algorithm on floating point numbers in exact real arithmetic. The au-
tomatic precision control in iRRAM made the implementation much simpler. Also, the iRRAM version makes it possible, to
compute any point of the shadowing orbit with arbitrary little error, instead of just giving bounds for the position.

The second case study gave an example on how the theoretical results from computable analysis can be applied to yield
practical algorithms. The empirical evaluation of the running time, showed that the bounds found with the help of real
complexity theory correspond well with the implementation. This can be seen as evidence, that the models used in
computable analysis map the reality quite well.

6.1 Possible Future Work

There are several possible extensions for both case studies. In general, it would be interesting to reimplement the
algorithms in some other exact real arithmetic framework and compare the results.

Apart from that some possible extensions are listed below.

For the dynamical systems case studies the following is possible

1. Forward algorithm. An alternative to the algorithm implemented in the case study can be found in [CP91].
Instead of starting from the last point in the pseudo orbit and going backwards, this algorithm proceeds in forward
direction. This algorithm could also be implemented in iRRAM and the results compared to the ones obtained in
this thesis.

2. Multi-dimensional shadowing. Hammel, Yorke and Grebogi also briefly mention their results obtained for the
two-dimensional case in their paper. They examined the Henon map

xn+1 = 1− ax2
n + yn

yn+1 = −J xn

where J is the determinant of the Jacobian of the map. They found a similar shadowing result to the one mentioned
in the case study for this map. In their implementation the true orbit is confined in a parallelogram to bound the
position. iRRAM could be used to compute such an orbit exactly.

The data-type for analytic functions could be extended in the following ways

3. Improvement of Running Time. The current implementation of the data type for functions analytic on [0,1] uses
iterated analytic continuation to evaluate the function at points where the given Taylor series is not valid. This
makes the representation simple, but the running time is exponential in the number of continuations. In practice,
it is therefore not possible to have more than a few analytic continuations, Additional theoretical investigation
should be done to find out, if it is possible to improve the running time, or if a high computational complexity is
inherent to the problem.

4. Multi-dimensional functions. The implementation presented in this thesis only works with 1-dimensional func-
tions. For many applications, however, the analytic functions are more-dimensional. The data-type should be
extended to work with multi-dimensional Taylor series.

5. Applications. It would also be interesting, to use the implementation to solve a practical problem involving
analytic functions. Such problems could for example be found in the theory of Ordinary Differential Equations.
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