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Abstract

We will introduce a quasilinear, in terms of bit-cost, and implementation friendly version of the Fast Multipole Method (FMM) in
order to solve the real version of Trummer’s Problem, which is closely related to the N-Body Simulation Problem with pairwise
Coulomb forces, whereas our implementation does not use floating point values, i.e. doubles, which would cause rounding errors
during arithmetic operations, but uses only long integers which allow exact addition, subtraction and multiplication. While
solving the differential equation for the previously mentioned problem numerically one has to solve Trummer’s Problem in each
iteration of the Euler Method. Trummer’s Problem is also a common subproblem in many other applications ranging from
nuclear physics, computational biology, computation with structured matrices, etc.

Definition 1 (Trummer’s Problem). Let q := (q1, . . . , qN ) ∈ RN be a vector of N real values, let z := (z1, . . . , zN ) ∈ RN be a
vector of N real values and let C(q, z) be the Cauchy-Matrix defined by C(q, z)i,j := qi

zi−zj
for i 6= j and C(q, z)i,i := 0. The

real version of Trummer’s Problem is the computation of the matrix vector product C(q, z) · q up to a given error 2−E.

The naive algorithm, multiplying each row of the matrix with the vector, has a quadratic unit-cost complexity. The first
quasilinear, in terms of unit cost, solution to Trummer’s Problem was given by Gerasoulis et al. [8] by using fast polynomial
interpolation and evaluation techniques. Further investigations [19] indicate that this approach has a quadratic bit-complexity.
We have shown that, independent of the approach, Trummer’s Problem has a quadratic lower bound indeed. When working with
real numbers and real complexity theory [17, 18] the Fast Multipole Method [26] applied on a Well-Separated Pair Decomposition
[5] turns out to have quasilinear bit-complexity for solving Trummer’s Problem.
The main idea of the Fast Multipole Method is to approximate the problem with Laurent and Taylor series. These series get
manipulated throughout the algorithm and evaluated at the end. The manipulation includes: truncation of Laurent and Taylor
series to a reasonably order, which depends on the given error tolerance 2−E, combination of multiple Laurent and Taylor series,
and conversion between Laurent and Taylor series.
The analysis shows that these manipulations require a fast multiplication of polynomials which uses a Fast Fourier Transform
(FFT) internally. There are libraries which allow a fast multiplication of polynomials with floating point coefficients, but they all
lack a rigorous error analysis.
Since we only deal with integers we need a multiplication of integer polynomials. Therefore we need an integer FFT, which is far
more complicated than the continuous FFT. In order to adapt the continuous FFT to an integer FFT we need an algebraic field
extension of the integers by adjunction of unit roots. Schönhage and Strassen [29] have accomplished this adaption in order to
develop the fast integer multiplication, which is available in some libraries as well. This multiplication is crucial for a fast integer
polynomial multiplication.
But to the best of our knowledge there exist no implementation combining both, i.e. multiplication of integer polynomials.
As stated by Eric Darve [6] the

[. . . ] implementation of the FMM proved to be a rather difficult task in part because of its complexity (many
lines in a complex and long code) and because of the need to optimize all the steps of the FMM.

Therefore we try to reduce the implementation complexity on all costs without losing performance. For the ease of implementation
we do not implement the complicated multiplication of integer polynomials, but we show that we can transform this problem to

Parts of this thesis have already been presented at the fifteenth International Conference on Computability and Complexity in Analysis in
2018.
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a simple multiplication of long integers which has quasilinear bit-complexity. The idea to multiply two polynomials with integer
coefficients is by embedding the coefficients into long integers and multiply them. During the multiplication one has to prevent
overflows, hence the embedded coefficients need a safety distance. By choosing a safety distance of 3, i.e. each coefficient gets
embedded into a block with 3 digits, we get

( 5︸︷︷︸
005

+ 2x︸︷︷︸
002

) · ( 6︸︷︷︸
006

+ 4x︸︷︷︸
004

) = 30︸︷︷︸
030

+ 32x︸︷︷︸
032

+ 8x2︸︷︷︸
008

5︷︸︸︷
5

2x︷︸︸︷
002 ·

6︷︸︸︷
6

4x︷︸︸︷
004 =

30︷︸︸︷
30

32x︷︸︸︷
032

8x2︷︸︸︷
008 ,

which both evaluate the same. Therefore the need to implement a FFT to multiply polynomials and switch between different
data structures is not necessary any more. N.B. The FFT is still crucial to obtain quasilinear complexity, but the implementation
is moved to the long integer library, e.g. the GNU Multiple Precision Arithmetic Library [12] contains a hybrid algorithm which
uses the FFT for very long integers. These integers will be used throughout the complete algorithm, hence the data management
becomes clearer. We keep track of all error bounds on our own and use long integers to encode the real values, instead of relying
on other frameworks for exact real arithmetic [22]. This should result in faster runtime and tighter error bounds. Analysis of the
complete algorithm using the above representation in fact turns out to have quasilinear bit-cost complexity.
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Chapter 1

Introduction

The problem we are going to solve in this thesis was stated 1985 by Prof. Manfred Trummer and published by Gene Golub [10]
in the same year.

The other day we had a seminar by Manfred Trummer of UBC (soon MIT). The following problem arose: We
are given 2n distinct elements ci, i = 1, . . . , 2n. Let bi,j = (ci − cj)−1 when i 6= j else bi,j = 0. Let Y be a vector
with 2n components.

TRUMMER’S PROBLEM

Give an algorithm which depends on the form of B for computing B × Y in less than O (n2) multiplications. If this
is impossible, show that it can’t be done.
Reward: $100

One and a half year later Gerasoulis, Grigoriadis and Liping Sun published an algorithm fulfilling this task in O1(N logn) [8],
measured in unit cost, using fast polynomial interpolation and evaluation techniques. But the big problem of fast polynomial
arithmetic — it is numerically unstable [19], therefore should not be used in practice. This result conjectures, that using fast
polynomial arithmetic to solve Trummer’s Problem is quadratic in N , measured in bit cost. Last year Tsigaridas and Pan [24]
have shown that this approach is quadratically in N indeed.
We have shown that solving Trummer’s Problem exactly, i.e. outputting two integers a and b, such that a

b is the exact solution,
has a lower bound of Ω2(N2), measured in bit cost, cf. section 2.1. In order to achieve subquadratic algorithms we have to drop
the requirement of an exact solution. Therefore we will strive for an algorithm, which computes the solution up to an arbitrary
error. By using this approach we are also able to allow real and complex numbers as input, instead of only integers and rationals.
Therefore we will state the following task

We are given 2n distinct elements ci ∈ C, i = 1, . . . , 2n. Let bi,j = (ci − cj)−1 when i 6= j else bi,j = 0. Let Y
be a vector with 2n components.

real version of TRUMMER’S PROBLEM

Give an algorithm which depends on the form of B for computing B × Y in less than O2(n2) runtime, measured in
bit cost. If this is impossible, show that it can’t be done.

In the next sections we will restate Trummer’s Problem, in section 1.1, which is needed throughout this thesis, give a short
recap about (real) complexity theory in section 1.2 and some motivations in section 1.3 why Trummer’s Problem is not only
academically very interesting, but also very interesting in practice.
Chapter 2 is dedicated to compute the lower bound for both versions of Trummer’s Problem, namely the exact discrete version
and the real version. We develop the main ideas of the Fast Multipole Method in chapter 3 and give an in depth analysis of
this algorithm in chapter 4. In chapter 5 we will develop a nearly optimal algorithm to solve Trummer’s Problem. The next
two chapters deal with the implementation, cf. chapter 6, and the empirical evaluation of the implementation, cf. chapter 7.
Chapter 8 rounds out the thesis with a summary and an outlook.
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1.1 Trummer’s Problem

We restate the previous problem in a formulation we will need later on.

Definition 2. • Let q := (q1, . . . , qN ) ∈ CN be a vector of N complex values.
• Let z := (z1, . . . , zN ) ∈ CN be a vector of N complex values.
• Let C(q, z) be the Cauchy-Matrix defined by C(q, z)i,j := qi

zi−zj
for i 6= j and C(q, z)i,i := 0.

C(q, z) =


0 q1

z1−z2
. . . q1

z1−zN

q2
z2−z1

0 . . .
...

...
. . . . . . qN−1

zN−1−zN
qN

zN−z1
. . . qN

zN−zN−1
0



Trummer’s Problem is the matrix vector product

C(q, z) · q.

Therefore the i-th element of C(q, z) · q is defined by

(C(q, z) · q)i =
N∑
j=1
j 6=i

qiqj
zi − zj

.

1.2 Complexity Theory

This section should be a short recap about discrete and real complexity theory. We will omit too technical notations and details,
e.g. we won’t introduce Turing Machines or computability in general. A good introduction to discrete complexity theory can be
found in [1, 9, 25, 31] and for the real case [17, 18, 33] should be emphasized.
In complexity theory we want to estimate the runtime of an algorithm. We are interested in worst case estimations, i.e. over
estimating the runtime, such that it holds for all possible inputs. In general we want to know the asymptotic runtime, i.e. the
behavior of the runtime, when the size of the problem grows to infinity. In the next sections we will formalize the asymptotic
behavior of a function and define the discrete and real complexity.

1.2.1 Asymptotic Behavior of Functions — The Big O Notation

Let f, g : N→ R be functions, mapping integers to reals. We say f ∈ O (g), iff for a fixed value M ∈ R, M · g dominates f
almost everywhere. More formally that means, there exists a real number M and an integer n0, such that f(n) < M · g(n) for
all n > n0. Informally speaking f does not grow faster than g. The following facts can be proven very easily with the above
definition and are only stated to give an better intuition of the big O Notation.

• Scalar Multiplication: If f ∈ O (g), then for every λ ∈ R, λ · f ∈ O (g) follows.
• Addition: If f1, f2 ∈ O (g), then f1 + f2 ∈ O (g) follows.
• Linear Combination: For f1, . . . , fN ∈ O (g) and λ1, . . . , λN ∈ R, then

∑N
i=1 λi · fi ∈ O (g) follows.

• Transitivity: If h ∈ O (f) and f ∈ O (g), then h ∈ O (g) follows.

2 1. Introduction



For example 0.000001x2 + 99999x ∈ O (x2) — a polynomial is dominated by its leading coefficient. Later in the thesis we will
omit polylogarithmic terms, which could distract from the interesting aspects and to simplify the expressions. Therefore we will
sometimes use Õ to emphasize that we have omitted polylogarithmic terms. We will also use g ∈ Ω(f) to denote that g does not
grow slower than f , therefore we can define Ω by using the equivalence

g ∈ Ω(f) ⇐⇒ f ∈ O (g).

In order to say that two functions grow asymptotically with the same speed we use f ∈ Θ(g), which is equivalent to g ∈ Θ(f).
We define Θ by using both previous definitions

f ∈ Θ(g) ⇐⇒ f ∈ O (g) and f ∈ Ω(g).

1.2.2 Discrete Complexity Theory

In discrete Complexity Theory we want to estimate the runtime of an algorithm, which input and output can be encoded finitely,
e.g. the input could be integers and the output could be rationals. This is the case for Trummer’s Problem, when we restrict
the input to be integers, the output will still be rational. The next question is how to compute the runtime of an algorithm.
Since the time of an implementation of an algorithm to terminate will depend on the specific computer and hardware it uses, we
should abstract from the machine. A first abstraction is called unit cost, where the measure is defined by counting the number of
arithmetic operations, e.g. addition and multiplication of numbers. When dealing with unit cost we will use a 1 as a subscript in
the big O Notation, i.e. O1. This abstraction is good when dealing with floating point arithmetic of fixed size. But when dealing
with numbers of arbitrary size, in reality the time of an arithmetic operation depends on the size of the numbers. Therefore we
should not count the number of arithmetic operations, but the number of bit operations. This leads to the definition of bit
complexity. In the big O Notation we will use 2 as a subscript to denote bit complexity, i.e. O2. But since we will only use bit
complexity later on, we will omit this subscript in most cases. The bit complexity is a more realistic measure of time, because it
describes the mechanics of a real computer better. To give some examples, we are looking at the arithmetic operations addition
and multiplication: Let N1, N2 ∈ N be two integers. Both integers can be encoded using n1 = logN1, resp. n2 = logN2 bits
which is called the size of the encoding and let n = max(n1, n2) be the maximum of both encodings.

• The addition of N1, N2 is exactly one arithmetic operation, therefore the runtime is constant w.r.t unit cost, i.e. + ∈ O1(1).
• The addition of N1, N2 needs linearly many bit operations, therefore the runtime is linear, w.r.t. bit cost, i.e. + ∈ O2(n).
• The multiplication of N1, N2 is exactly one arithmetic operation, therefore the runtime is constant w.r.t unit cost, i.e.
∗ ∈ O1(1).

• In bit cost, the multiplication of N1, N2 is more interesting. Using the written multiplication method, we know since
primary school, we need quadratic many bit operations, hence ∗ ∈ O2(n2). Using the sophisticated Schönhage–Strassen
algorithm we can multiply in subquadratic runtime ∗ ∈ O2(n · logn · log logn), w.r.t. bit cost. By omitting polylogarithmic
terms, addition and multiplication are both linear.

1.2.3 Real Complexity Theory

Real Complexity Theory provides a computer-scientific foundation to Numerics bridging from Recursive Analysis
to practice. [17]

When dealing with real numbers we can simply carry over the unit cost measurements, by defining a machine, the
Blum–Shub–Smale machine (BSS machine) [3], which is capable to do arithmetic over the reals. But it is quite obvious
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that this machine is far from reality, because it is not even possible to encode a real number with finitely many bits. We choose
real numbers, which can be approximated by a fast converging sequence of dyadic rationals. Therefore we will encode a real
number r ∈ R by a sequence of integers zn ∈ Z, such that for all n ∈ N the n-th number divided by 2n is a approximation
up to error 2−n, which means each additional number gives an additional correct bit in the dyadic encoding. Formally this
means | zn

2n − r| < 2−n for all n ∈ N. Using this idea we are able to define the bit complexity for real numbers, by doing the
same as in the discrete case, but we use an additional parameter — the error exponent E ∈ N, which bounds the error of the
approximated result of the algorithm x to the exact result r ∈ R, i.e. |x− r| < 2−E. Therefore this algorithm will return a
sequence of numbers xi which converge fast to the exact result r and therefore encode this number. Throughout the thesis we
will use this definition to estimate the runtime of our algorithms. To give some examples, we are looking at the arithmetic
operations addition and multiplication again: Let x, y ∈ R be two reals with the corresponding series (xi)i, (yi)i ∈ NN, such
that | xi

2n − x| < 2−n, | yi
2n − y| < 2−n. Let E ∈ N be the error exponent for the desired accuracy.

• The addition of x, y is exactly one arithmetic operation, therefore the runtime is constant w.r.t unit cost (using the BSS
machine), i.e. + ∈ O1(1).

• For the addition of x, y, we choose the numbers xE+1, yE+1 and add both, the result has the desired accuracy. The
encoding length of both numbers is linear in E, therefore we see the runtime is linear, w.r.t. bit cost, i.e. + ∈ O2(E).

• The multiplication of x, y is exactly one arithmetic operation, therefore the runtime is constant w.r.t unit cost (using the
BSS machine), i.e. ∗ ∈ O1(1).

• Analogous computations show that the multiplication of x, y is subquadratic in E, i.e. ∗ ∈ O2(E · logE · log logE), w.r.t.
bit cost. By omitting polylogarithmic terms, addition and multiplication are both linear.

1.3 Motivation

In this section we will give further motivation, why Trummer’s Problem is interesting. Therefore we have chosen two applications
— the N-Body Simulation in section 1.3.1 and computations with structured matrices in section 1.3.2. In order to show that
our rigorous approach is important for practice we have implemented another algorithm which uses only the CPP standard
implementation for floating points double in section 1.3.3. In this section we show the numerically instabilities, i.e. huge errors
resulting from the floating point operations and that our approach does not have these obstacles.

1.3.1 Physical View: N-Body Simulation

Consider the problem — you got 2 charged particles on a plane, i.e. in 2 real dimensions. The charges will be denoted by

q1, q2 ∈ R and the positions by

(
x1

y1

)
,

(
x2

y2

)
∈ R2. The induced force onto particle 2 is given by the Coulomb force (in 2

dimensions)

(
Fx

Fy

)
=

prefactor︷︸︸︷
1

2πε ·

coupling of both particles︷ ︸︸ ︷
q1 · q2∣∣∣∣∣

(
x1

y1

)
−

(
x2

y2

)∣∣∣∣∣
·

unit vector denoting
the direction of the force︷ ︸︸ ︷(

x1

y1

)
−

(
x2

y2

)
∣∣∣∣∣
(
x1

y1

)
−

(
x2

y2

)∣∣∣∣∣
= c · q1 · q2

(x1 − x2)2 + (y1 − y2)2 ·

(
x1 − x2

y1 − y2

)
,
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Instead of encoding the positions in the real plane by

(
x

y

)
∈ R2, we will encode them into the complex plane by x+ Iy ∈ C.

Then we see the following instead

c · I · q1 · q2

(x1 + Iy1)− (x2 + Iy2) = c · I · q1 · q2

(x1 − x2) + I(y1 − y2)

= c · I · q1 · q2

((x1 − x2) + I(y1 − y2)) · ((x1 − x2)− I(y1 − y2)) ((x1 − x2)− I(y1 − y2))

= c · I · q1 · q2

(x1 − x2)2 + (y1 − y2)2 ((x1 − x2)− I(y1 − y2))

= c · q1 · q2

(x1 − x2)2 + (y1 − y2)2 ((y1 − y2) + I(x1 − x2)),

which is equivalent to

(
Fy

Fx

)
.

Summation over multiple charged particles shows that computing all pairwise Coulomb forces of particles in two real dimensions
is equivalent to Trummer’s Problem in the complex case. When simulating multiple charged particles one has to solve the
differential equation F (x) = mdx

dt , whereas F is the Coulomb forces introduced before. Solving this equation numerically, e.g.
via the Euler Method, one has to compute all pairwise Coulomb forces in each iteration. Therefore Trummer’s Problem is the key
subproblem for N-Body simulations and faster algorithms for Trummer’s Problem would result in faster algorithms for N-Body
simulation.
As stated by Jack Dongarra and Francis Sullivan [32]

(the Fast Multipole Method belongs to) the 10 algorithms with the greatest influence on the development and
practice of science and engineering in the 20th century.

Which shows that the Fast Multipole Method is very important for practice. Four years earlier Reif and Tate [26] cited a study
which shows that this problem is relevant in practice and needs a lot of computing resources

a study [. . . ] showed that over 30 percent of all compute time on their CRAY-YMP was used for n-body
simulation by molecular chemists.

1.3.2 Computation with Structured Matrices

Another interesting property occurs when computing with Structured Matrices.

Definition 3 (Structured Matrices). The four structured matrices, Toeplitz, Hankel, Vandermonde and Cauchy matrices are
defined in table table 1.1. Pan and Tsigaridas have shown [24] that the computation with three of these four of these matrices
is subquadratic in n, namely computation with Toeplitz, Hankel and Vandermonde matrices, whereas computation involving
Cauchy matrices is still quadratic in N . In this case computation means

• Matrix Vector Multiplication, cf. Trummer’s Problem
• Inversion of a Matrix
• Solution of nonsingular linear systems of equations with these matrices

These operations should be possible in subquadratic runtime using our algorithm. Therefore these families of structured matrices
all behave similar and the Cauchy matrices do not have a special role, which increases their complexity somehow. But these
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Table 1.1.: Definition of Toeplitz, Hankel, Vandermonde and Cauchy matrices [24].

Toeplitz matrices T = (ti−j)n−1
i,j=0 Hankel matrices H = (hi+j)n−1

i,j=0
t0 t−1 . . . t1−n

t1 t0
. . .

...
...

. . . . . . t−1
tn−1 . . . t1 t0




h0 h1 . . . hn−1

h1 h2 . . .
...

... . . . . . . t−1
hn−1 hn . . . h2n−2


Vandermonde matrices V = Vs = (sj−1

i )ni,j=1 Cauchy matrices C = Cs,t =
( 1
si−tj

)n
i,j=1

1 s1 . . . sn−1
1

1 s2 . . . sn−1
2

...
...

...
1 sn . . . sn−1

n




1
s1−t1

1
s1−t2

. . . 1
s1−tn

1
s2−t1

1
s2−t2

. . .
...

...
...

...
1

sn−t1
1

sn−t2
. . . 1

sn−tn



results can be generalized to an even larger family of structured matrices, e.g. to transposed Vandermonde matrices by the
following equality [24]

V Ts = −f
1−n

v
diag(f j)n−1

j=0Ωdiag(ωjn)n−1
j=0Cf,sdiag(sni − fn)n−1

i=0 ,

whereas f is a scalar, s is a vector which defines the Vandermonde matrix Vs, t is a vector defining the function t(x) =
∏n−1
j=0 (x−tj)

and w is a vector defining the coefficients of w(x) = t(x)−xn. This shows, that computation with the transposed of a Vandermonde
matrix is equivalent to computations with Cauchy matrices. Therefore we have shown that the computations with transposed
Vandermonde matrices are possible in subquadratic runtime, instead of the previous known quadratic runtime. Using similar
equalities by Pan and Tsigaridas one can generalize these results to the more general classes of structured matrices with small
displacement rank, e.g. Toeplitz, Hankel, Vandermonde and Cauchy like matrices, which are defined by using the associated
Sylvester displacement operators of the form M 7→ AM −MB where the pair of operator matrices A and B represents the
matrix structure.

1.3.3 Comparison with a naive Implementation using only Doubles

In this section we solve Trummer’s Problem by simply evaluating

N∑
j=1
j 6=i

qiqj
zi − zj

,

whereas only the CPP standard implementation for floating points double is used for all values.
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An alternative implementation to solve Trummer’s Problem using only double values.

std::map<DoubleParticle*, double> solution;

for (auto const& particle : particles) {

double result = 0;

double q1 = particle.charge();

double z1 = particle.position();

for (auto const& other : particles) {

if (particle == other) {

continue;

}

double q2 = other.charge();

double z2 = other.position();

result += (q1 * q2) / (z1 - z2);

}

solution[&particle] = result;

}

We choose the following 7 particles p−3 = (−3, 1020), p−2 = (−2, 1), p−1 = (−1,−1020), p0 = (0, 1), p1 = (1,−1020), p2 =
(2, 1), p3 = (3, 1020). Because the problem is symmetric to the particle in the middle p0, i.e. qi = q−i, zi = −z−i, the resulting
force F0 at this particle vanishes

F0 =
3∑

j=−3
j 6=0

q0qj
z0 − zj

= q0q−3

z0 − z−3
+ q0q−2

z0 − z−2
+ q0q−1

z0 − z−1
+ q0q1

z0 − z1
+ q0q2

z0 − z2
+ q0q3

z0 − z3

= q3

z3
+ q2

z2
+ q1

z1
+ q1

−z1
+ q2

−z2
+ q3

−z3

= q3

z3
− q3

z3
+ q2

z2
− q2

z2
+ q1

z1
− q1

z1

= 0.

By applying the above implementation we get F0 = −4096 6= 0. We have implemented this example in different online cpp
shells which can be found under https://www.onlinegdb.com/BkezQaF8m, http://tpcg.io/ZPxiGl, https://wandbox.org/

permlink/qb8N58h6DzU4UF3W and http://cpp.sh/7ll2b to test different systems and compilers and that everyone is able to
reproduce this value very easy. We hope that some of these links live long enough, otherwise simply copy&paste the below code
and build it with g++ prog.cc -Wall -Wextra -std=c++11 to run locally
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Fully functional implementation, using only double values, to solve a special instance of Trummer’s Problem,
with 7 specific particles, to show the numerically instability.

#include <iostream>

#include <tuple>

#include <vector>

int main() {

std::vector<std::pair<double, double>> particles({{-3, 1e20}, {-2, 1}, {-1, -1e20},

{0, 1}, {1, -1e20}, {2, 1}, {3, 1e20}});

std::vector<std::pair<double, double>> solution;

for (auto const& particle : particles) {

double result = 0;

double z1 = particle.first;

double q1 = particle.second;

for (auto const& other : particles) {

if (particle == other) {

continue;

}

double z2 = other.first;

double q2 = other.second;

result += (q1 * q2) / (z1 - z2);

}

solution.emplace_back(z1, result);

}

std::cout << "at z=" << solution.at(3).first

<< ", we got the force = " << solution.at(3).second << std::endl;

}

When we use our implementation, with the error exponent E = 10, i.e. an absolute error of at most 10−3, we get F0 =
6.33822 · 10−29. We have only used 7 particles for this example, when we deal with thousands of particles the error could be
even worse. This indicates again that Trummer’s Problem is numerically unstable. This could yield to enormous problems in
practice when there occur large forces which are not existent. This problem shows why our implementation is very interesting for
practice — we can avoid such obstacles.
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Chapter 2

Lower Bounds for Trummer’s Problem

In this chapter we compute the lower bounds for both versions of Trummer’s problem. All results are with respect to bit-cost. In
section 2.1 we show that the discrete version of Trummer’s Problem has a quadratic lower bound in N and section 2.2 proofs
the lower bound to solve the real version of Trummer’s Problem is linear in N . Therefore all algorithms solving one of these
problems can not be faster than the corresponding bounds.

2.1 Lower Bound for the Discrete Version of Trummer’s Problem

In this section we proof the lower bound to solve the discrete version of Trummer’s Problem is quadratic in N . To proof this we
need some preliminary lemmas and proof our claimed lower bound in theorem 8. In the following we use pn to denote the nth
prime.

Lemma 4. Let N > 2 and 0 ≤ i, j ≤ N and k ≥ N
2 and xij = (i− j), then k2 does not divide xij .

Proof. Let N > 2 and 0 ≤ i, j ≤ N and k ≥ N
2 and xij = (i − j). By estimating k2 ≥ N2

4 > N ≥ |xij |, we get k2 > |xij |,
hence k2 does not divide xij .

Lemma 5. Let N > 2, 0 ≤ i ≤ N , xij = (i− j) and define aij =
∏N
k=1
k 6=j
k 6=i

pkxik.

Let l ≥ N
2 , with l 6= i. If pnl |

∑N
j=1
j 6=i

aij then there exists a set Kl
n = { ko, for o = 1, . . . , n, with ko 6= l, ko 6= ko′ }, such that

pl | xiko for all ko ∈ Kl
n.

Proof. In this proof we have to restrict all indices in all sums and and in all products not being i. Because i is fixed and too
enhance the readability we we omit the restrictions of the indices not being i in the sums and products, e.g. aij =

∏N
k=1
k 6=j
k 6=i

pkxik −→∏N
k=1
k 6=j

pkxik. Because we require i 6= l, we do not divide by the ith prime pi, therefore the "index not equal i" constraint in

all sums and products, is not necessary in order to follow the proof. We also omit i in the subscripts, e.g. xj = (i − j) and
aj =

∏N
k=1
k 6=j

pkxk. Therefore we get lesser indices and the constraints on the indices of the sums and products are shorter, which
should simplify following the proof.
Let N > 2, and let 0 ≤ i ≤ N be fixed. This lemma will be shown by induction over n for a fixed l 6= i.
Induction start: Choose n = 1 and let p1

l |
∑N

j=1 aj for an l 6= i, then we get

N∑
j=1

aj =
N∑
j=1

N∏
k=1
k 6=j

pkxk

=
N∑
j=1
j 6=l

N∏
k=1
k 6=j

pkxk +
N∏
k=1
k 6=l

pkxk

=
N∑
j=1
j 6=l

plxl

N∏
k=1
k 6=j
k 6=l

pkxk +
N∏
k=1
k 6=l

pkxk.
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Therefore pl divides the first summand
∑N

j=1
j 6=l

plxl
∏N
k=1
k 6=j
k 6=l

pkxk. Since pl divides the sum, it has to divide the second summand

∏N
k=1
k 6=l

pkxk as well. The prime pl can not divide any of the pks, because they are all primes and pairwise distinct, hence there

exists a k 6= l (and k 6= i), such that pl | xk.
Induction step: Choose n+ 1 and let pn+1

l |
∑N

j=1 aj . Since p
n+1
l is a factor, pnl is a factor as well and we can use the induction

hypothesis. Therefore there exists a set Kn = { ko, for o = 1, . . . , n, with ko 6= l, ko 6= ko′ }, such that pl | xko . Using the set
Kn we get

N∑
j=1

aj =
N∑
j=1
j 6=l

plxl

N∏
k=1
k 6=j
k 6=l

pkxk +
N∏
k=1
k 6=l

pkxk cf. the induction start

=
N∑
j=1
j 6=l

plxl

N∏
k=1
k 6=j
k 6=l
k/∈Kn

pkxk
∏

ko∈Kn

pkoxko +
N∏
k=1
k 6=l
k/∈Kn

pkxk
∏

ko∈Kn

pkoxko

Therefore we see pn+1
l divides the first summand, e.g. by choosing pl, xko for ko ∈ Kn. Hence pn+1

l has to divide the second
summand

∏N
k=1
k 6=l
k/∈Kn

pkxk
∏
ko∈Kn

pkoxko as well. We see that pnl divides the last part, i.e. the xko . Because pko 6= pl we can

not use them for the division, also p2
l - xiko = xko , by lemma 4. Hence pl has to divide

∏N
k=1
k 6=l
k/∈Kn

pkxk. Therefore there exists

a kn+1 6= l, kn+1 /∈ Kn, such that pl | xkn+1 . Then we get Kl
n+1 = Kl

n ∪ { kn+1 } which finishes the induction step and our
proof.

Lemma 6. Let aij =
∏N
k=1
k 6=j
k 6=i

pkxik. For each i = 1, . . . , N and for each N
2 ≤ l ≤ N , with l 6= i and after repeated cancellation of

pl from

∑N
j=1
j 6=i

aij∏N
k=1
k 6=i

pkxik

till pl can not be canceled anymore, the prime pl still divides the denominator.

Proof. We use the same notations from lemma 5 and omit the i subscripts and constraints of the sums and products.
Since

∑N
j=1 aj is bounded, there exists a number M such that pMl -∑N

j=1 aj , e.g. by choosing M =
∑N

j=1 aj . Therefore there
exists a number n0, such that pn0

l |
∑N

j=1 aj and pn0+1
l -∑N

j=1 aj .
Since pn0

l |
∑N

j=1 aj then, by lemma 5, there exists the set Kl
n0 = { ko, for o = 1, . . . , n0, with ko 6= l, ko 6= ko′ }, such that

pl | xko for all ko ∈ Kl
n0 . Then we see

N∏
k=1

pkxk = plxl

N∏
k=1
k 6=l

k/∈Kl
n0

pkxk
∏
k∈Kl

n

pkxk,

hence pn0+1
l |

∏N
k=1 pkxk follows directly.

Hence pn0
l can be canceled out and pn0+1

l can not be canceled out. After cancellation of pn0
l , the prime pl does not divide the

remaining numerator, but divides the remaining denominator.
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Lemma 7. Let aij =
∏N
k=1
k 6=j
k 6=i

pkxik. For each i = 1, . . . , N and after complete cancellation of

∑N
j=1
j 6=i

aij∏N
k=1
k 6=i

pkxik

, then for the remaining

denominator D

|D| ≥
N∏

k= N
2

k 6=i

pk

holds.

Proof. We use the same notations from lemma 5 and omit the i subscripts and constraints of the sums and products.
By using lemma 6 we get for each N

2 ≤ l ≤ N with l 6= i, that the prime pl still divides the denominator D after full cancellation.
Therefore

∏N
k= N

2
k 6=i

pk | D, which implies our claim.

By using the previous lemmas we are finally able to proof the lower bounds of Trummer’s Problem.

Theorem 8. Let N denote the number of particles and let M denote the overall encoding size of the input for the discrete version
of Trummer’s Problem, i.e. where we choose rationals for the input and the output, which are encoded using two integers, one
for the numerator and one for the denominator. N.B. N and M can be independent. For the runtime T (N), T (M) we get the
following lower bounds

T (N) ∈ Ω(N2(lnN + ln lnN))

T (M) ∈ Ω(M2(lnM + ln lnM))

for all algorithms which solve the problem.

Proof. Let N > 1011 denote the number of particles. We choose the following particles (qk, zk)k for k = 1, . . . , N , with qk = 1
pk

and zk = k. For a fixed i ∈ N, Trummer’s Problem is given by

N∑
j=1
j 6=i

qiqj
zi − zj

= 1
pi

N∑
j=1
j 6=i

1
pj(i− j)

= 1
pi

∑N
j=1
j 6=i

aij︷ ︸︸ ︷
N∏
k=1
k 6=i
k 6=j

pk

xik︷ ︸︸ ︷
(i− k)

∏N
j=1
j 6=i

pj (i− j)︸ ︷︷ ︸
xij

= 1
pi

∑N
j=1
j 6=i

aij∏N
j=1
j 6=i

pjxij
.

2.1. Lower Bound for the Discrete Version of Trummer’s Problem 11



Using lemma 7 we see that after complete cancellation of
∑N

j=1
j 6=i

qiqj

zi−zj
= 1

pi

∑N
j=1
j 6=i

aij∏N
j=1
j 6=i

pjxij

, then for the denominator D

|D| ≥ pi
N∏

k= N
2

k 6=i

pk

≥
N∏

k= N
2

pk

holds. Therefore we can estimate the encoding length L of the output O = n
d , by using D being the denominator after complete

cancellation we get

L(O) = ln |n|+ ln |d|

≥ ln |D|

≥ ln
N∏

k= N
2

pk

≥ ln
N
2∏

k=1

pk

=
N
2∑

k=1

ln pk

= θ

(
N

2

)
[7] ≥ N

2

(
ln N2 + ln ln N2

)
,

with θ(·) being the Chebyshev function [7]. Therefore the encoding for each i = 1, . . . , N has a lower bound of N2
(

ln N
2 +ln ln N

2
)
.

Iteration over i shows T (N) ∈ Ω(N2(lnN + ln lnN)).
The next step is to compute the lower bound w.r.t. to the encoding size of the input M . We will estimate M depending on the
number of particles N .

M =

the size to encode the
numerators of q1, . . . , qN︷ ︸︸ ︷

1 + . . .+ 1 +

the size to encode the
numerators of z1, . . . , zN︷ ︸︸ ︷

1 + . . .+ 1 +

the size to encode the
denominators of q1, . . . , qN︷ ︸︸ ︷

N∑
i=1

ln pi +

the size to encode the
denominators of z1, . . . , zN︷ ︸︸ ︷

N∑
i=1

ln i

≤ N +N +
N∑
i=1

ln pi +
N∑
i=1

ln pi

= 2N + 2θ(N)

[7] < 2N + 2 · 1.000081N

≤ 5N.

By using the estimation for T (N) and using M < 5N we get T (M) ∈ Ω(M2(lnM + ln lnM)), which finishes the proof.
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2.2 Lower Bound for the Real Version of Trummer’s Problem

In this section we proof the lower bound to solve the real version of Trummer’s Problem is linear in N . This is interesting in
order to rate our developed algorithm, i.e. how good is the algorithm compared to the best possible.

Theorem 9. Let (q̃i, z̃i), for i = 1, . . . , N , denote N particles with q̃i ∈ [0, 1] ⊂ R and z̃i ∈ [0, 1] ⊂ R. Let ms be the separation
of the zi, i.e. |zi − zj | ≥ 2−ms .
Each algorithm, solving Trummer’s Problem, up to an absolute error of 2−E has at least

NE+Nms

runtime.

Proof. We will construct an input, such that we need at least Nms bits for the input and at least NE bits for the output. The
claim follows directly.
Let N ∈ N, 1 ≤ E ∈ N, 1 ≤ ms ∈ N be arbitrary but fixed. Define q̃i = 1, for each i = 1, . . . , N and define z̃i = i · 2−ms , for
i = 1, . . . , N , then the precondition ms being the separation of the zi, i.e. |zi − zj | ≥ 2−ms , is full filled. If we would use less
than ms bits to encode the positions, there are two cases:

1. Two positions have the same encoding. Without loss of generality, let z̃1, z̃2 be these two positions, then the encoded
positions z1, z2 are equal. Therefore, 1

z1−z2
is undefined and we can not solve Trummer’s Problem.

2. One encoded position differs more than 2−ms to the original value. Then there exist another position, such that the
encoded distance is at least 2 · 2−ms , whereas the real distance is only 2−ms . The resulting error will be at least
2ms−1 ≥ 2−E. We will show this by assuming z1 gets encoded to 0 instead of the real value 2−m, then we get

∣∣∣ N∑
i=2

1
z1 − zi

−
N∑
i=2

1
z̃1 − z̃i

∣∣∣ ≥ ∣∣∣ 1
0− 2

2−ms

− 1
1

2−ms −
2

2−ms

∣∣∣ = |2ms−1 − 2ms | = 2ms−1 ≥ 2−E.

In both cases we have seen that the error would be too large, hence the input encoding must have at least the length Nms.
The output encoding must have length NE at least, otherwise the result can not approximate the exact solution up to error
2−E.

2.2. Lower Bound for the Real Version of Trummer’s Problem 13





Chapter 3

Main Idea of the Fast Multipole Method

In this chapter we develop the main ideas of the Fast Multipole Method. We start with different approaches in sections 3.1
to 3.3 by using Taylor series, Laurent series or sums of Laurent series to approximate the problem and finalize the main ideas in
section 3.4.

3.1 Ansatz: Taylor Series

Trummer’s Problem can be rewritten into the problem of evaluating N functions at 1 point each which is shown by using the
next reinterpretation.

(C(q, z) · q)i =
N∑
j=1
j 6=i

qiqj
zi − zj

Reinterpretation of the i-th element of C(q, z) · q, given above, yields to evaluation of the function

iΦ : C→ C : z 7→
N∑
j=1
j 6=i

qiqj
z − zj

in the point z = zi. We see that the complexity of this problem is O1(N2), because we evaluate N functions and each function
has N summations. The next idea is to approximate these functions with polynomials, e.g. Taylor polynomials with expansion
point zL, i.e.

iT : C→ C : z 7→
q∑

k=0

ak(z − zLi
)k.

This yields to evaluating N polynomials at 1 point each. The complexity will be O1(N · q), because we evaluate N functions and
each function has q summations. Our hope is

• the approximation error is small,
• q � N , and
• the computation of the coefficients is subquadratic in N .

If we can accomplish this, the resulting algorithm will have the desired subquadratic runtime. Lemma 26 shows that there exists
a small radius of convergence R and a constant c, such that

∣∣ N∑
j=1
j 6=i

qiqj
zi − zj

−
q∑

k=0

ak(z − zLi
)k
∣∣ ≤ c · 2−q.
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Therefore the approximation error is small and the truncation coefficient q can be chosen linear in the error exponent E, such
that the overall error is smaller than 2−E. Hence the first 2 points are fulfilled. Now we will look at the third point, how to
compute the coefficients. Referring to lemma 26 again, we see that the coefficients are given by

ak =
N∑
i=0

qi
(zL − zi)k+1 ,

therefore the direct computation of these coefficients would need N operations for a single coefficient. Since we compute N · q
coefficients, this will be quadratic in N . Therefore the third point is not fulfilled and we need another approach. Nevertheless we
see, that Taylor series are a good approximation and could be handy later.

3.2 Ansatz: Laurent Series

Consider the following observation

a

z − za
+ b

z − zb
= a

(z − za+zb
2 ) + zb−za

2
+ b

(z − za+zb
2 ) + za−zb

2

For |z − za+zb
2 | � | zb−za

2 |, this yields to

≈ a+ b

z − za+zb
2

.

This means, that if z is far away to the mean of za and zb compared to their distance, then a+b
z− za+zb

2
is a good approximation to

a
z−za

+ b
z−zb

. By generalizing this observation we will approximate Trummer’s Problem with Laurent series instead of Taylor
series.

il : C→ C : z 7→
p∑
k=0

bk
(z − zLi

)k .

This yields to evaluating N polynomials (in 1
z ) at 1 point each. The complexity will be O1(N · p), because we evaluate N

functions and each function has p summations. We got a similar hope as in section 3.1, namely

• the approximation error is small,
• p� N , and
• the computation of the coefficients is subquadratic in N .

If we can accomplish this, the resulting algorithm will have the desired subquadratic runtime.
In the next example we’ll show that a simple approximation with a single Laurent series is not sufficient.

Example 10 (The Convergence of Laurent Series). LetN = 4, q = (1, 1, 1, 1), z = (−1, 0, 1, 2). Then 2Φ : z 7→ 1
z+1 + 1

z−1 + 1
z−2

has singularities at z1 = −1, z3 = 1 and z4 = 2. Each circle containing all three singularities also contains z2 = 0 (a circle is
convex and z2 lies on the line between z1, z3). Therefore expanding 2Φ into a Laurent series would yield to a divergent function
in z = 0.
But, expanding z 7→ 1

z+1 and z 7→ 1
z−1 + 1

z−2 into Laurent series, evaluating them at z = 0 and adding these values would be
possible. This shows that we cannot expand the whole expression into a Laurent series, but we can expand it into a sum of
Laurent series.
In the general case we want to decompose Z = {z1, . . . , zN} into clusters U ⊂ Z, such that
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• each cluster U contains one or several points zi (the clusters won’t be distinct),
• there exist spheres S1,S2, . . ., such that Sj covers all points in Uj ,
• the union of all clusters is Z, and
• for each zi ∈ Z there exist some clusters U1(zi), . . . , Uk(zi), which form a partition of Z \ {zi}.

Using this decomposition, the function

z 7→ qi

k∑
l=1

∑
j∈Ul

qj
z − zj︸ ︷︷ ︸

expand to Laurent series Ul
L(z)

= qi

k∑
l=1

Ul
L(z)

is convergent in z = zi and the sum runs over all particles exactly once, due to the fourth property of the decomposition.

Nevertheless this examples motivates the next approach, a sum of Laurent series.

3.3 Ansatz: Sum of Laurent Series

Approximation of Trummer’s Problem into a sum of Laurent series yields to

iL : C→ C : z 7→
M∑
m=0

p∑
k=0

bk
(z − zmi

)k .

Hence we evaluate N functions, which are the addition of M polynomials (in 1
z ) at 1 point each. The complexity will be

O1(N · p ·M). We got a similar hope as in section 3.2

• the approximation error is small,
• p� N and M � N , and
• the computation of the coefficients is subquadratic in N .

If we can accomplish this, the resulting algorithm will have the desired subquadratic runtime.
Now the important question arises

How to choose the partitioning of the Laurent series?

We will describe the idea behind the construction in the next section using a more geometric approach.

3.4 Main Idea of the Fast Multipole Method

In this section we will omit the technical aspects and only give the idea of the algorithm which will be analysed in detail later.

• STEP 1: Let N = 8 and choose some q, z ∈ C8. The first step is to reinterpret the 8 values of z as 8 different points in the
complex plane with the corresponding values of q, cf. fig. 3.1. Now, each point represents a function Φ : C→ C : z 7→ qi

z−zi
,

which is defined in the complete complex plane. From a physical point of view, these 8 points in the complex plane with
the value qi, can be seen as particles with a charge qi. The above function Φ is the Coulomb field of a charged particle in
two dimensions up to a prefactor. Using this analogue one sees that Trummer’s Problem is equivalent to the N-body
problem, where one has to compute the induced forces by evaluating the Coulomb field for all particles.

3.3. Ansatz: Sum of Laurent Series 17



Figure 3.1.: STEP 1: N = 8 different particles in the complex plane at position zi with their
corresponding charges qi, for i = 1 . . . 8. Each particle induces the Coulomb
field Φi : z 7→ c qi

z−zi
in two dimensions.

• STEP 2: In the next step, we search relatively near pairs of points, cf. fig. 3.2. Each circle, contains 2 neighbors. We
say these neighbors form a cluster of points, which is represented by the circle. Now we combine the functions of two
neighbored points and expand this combination into a Laurent series in the center of the corresponding circle. By doing
this for all neighbored pairs, each circle gets a corresponding Laurent series with the center of the circle as the expansion
point.

• STEP 3: After each neighbored pair of points forms a cluster with corresponding Laurent series, the next step is to merge
neighbored cluster and combine the corresponding Laurent series again, cf. fig. 3.3. This step should be iterated for the
new generated cluster until there is exactly one cluster containing all points. We see that the Laurent series diverge in the
interior of the corresponding circle and converge in the exterior.

• STEP 4: Now we fix one point and choose the left most and call it z1. Our ansatz says we should choose circles, which do
not contain z1 and evaluate the corresponding Laurent series at z1, cf. fig. 3.4. Since these 3 Laurent series converge at
z1, the sum converges as well and the operation is safe. There exist counterexamples, cf. section 4.2.3, where the number
of Laurent series M , we have to consider, is linear in N , therefore overall complexity would be quadratic in N again.
Hence the direct evaluation of the Laurent series should be avoided. As seen in section 3.1 Taylor series could be suitable,
if we are able to compute the coefficients in subquadratic runtime.

• STEP 5: The next step is to transform the 3 Laurent series from above into a Taylor series of the two point cluster in
the upper left corner (this cluster contains z1), cf. fig. 3.5. Later on we will show that this can be done sufficiently fast
in order to get a subquadratic runtime. The next step which leaps into ones eye is to evaluate the constructed Taylor
series at z1, but z1 is on the boundary of the circle of convergence of the Taylor series which will result in problems when
evaluating at z1. Therefore direct evaluation of the Taylor series is not applicable. One can show that direct evaluation of
the Taylor series would indeed result in a quadratic runtime.
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Figure 3.2.: STEP 2: Merging neighbored particles to a cluster, which is represented by a
circle. Additionally calculating the corresponding Laurent series for each circle
C with the center point zC being the expansion point. Each cluster induces
the Coulomb field ΦC : z 7→

∑∞
k=0

bk
(z−zC )k .

Figure 3.3.: STEP 3: Iteratively building up the hierarchy of clusters by merging two clusters
to a new cluster in each iteration. Additionally calculating the corresponding
Laurent series for each circle C with the center point zC being the expansion
point. Each cluster induces the Coulomb field ΦC : z 7→

∑∞
k=0

bk
(z−zC )k .
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Figure 3.4.: STEP 4: Choose the left most particle at point z1 and evaluate the 3 Laurent
series, which clusters form a partition of all other particles, at z1. These Laurent
series converge at z1 and the truncation error would be small. But direct
evaluation would yield to a quadratic algorithm.

Figure 3.5.: STEP 5: Transform the before mentioned 3 Laurent series ΦC : C→ C : z 7→∑∞
k=0

bk
(z−zC )k into a Taylor series C0T : C→ C : z 7→

∑∞
k=0 ak(z − zC0)k

of the two point cluster C0 in the upper left corner (this cluster contains z1).
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• STEP 6: The next step is to "move" the Taylor series to z1, i.e. changing the expansion point from the center of one circle
to the center of another circle (the circle at z1 with radius 0), cf. fig. 3.6. Now the evaluation of this Taylor series at z1 is
trivial, because all non constant terms vanish.

∑q
k=0 ak(zi − zi)k) =

∑q
k=0 ak0k) = a0.

Figure 3.6.: STEP 6: Moving the Taylor series C0T : C→ C : z 7→
∑∞

k=0 ak(z − zC0)k
of the two point cluster C0 in the upper left corner to a Taylor series 1T : C→
C : z 7→

∑∞
k=0 ak(z − z1)k at z1, i.e. changing the expansion point from zC0

to z1. The evaluation at z1 is trivial, because all non constant terms vanish.

When carefully reading the above six steps, one notices, that STEP 2 and STEP 3 induce a partial ordering of the clusters. We
say a cluster is smaller than another cluster, if the all of the represented points of a cluster are contained in the other cluster.
When merging two cluster, we see that the merged cluster is larger than both clusters, w.r.t the partial ordering. This defines a
binary tree, where the last cluster from iterating step 3, is the root and represents all points. The leaves of this tree represent a
single point each. Now we can formalize the procedure from above in algorithm algorithm 1. Now we have shown the main idea
of the Fast Multipole Method. In the next sections of this thesis we will answer the open questions.

COMPUTE CLUSTER HIERARCHY:
• Which particles and clusters should be merged?
• Is this approach possible for arbitrary distributions of particles?
• What is the runtime?

To answer these questions we will introduce the Fair Split Tree in section 4.1 and show we can construct this hierarchy of clusters
for arbitrary distributions of particles in subquadratic runtime. This Fair Split Tree got all desired properties we will need later on.

INITIALIZE:
• How to initialize the Laurent series for each particle?
• How large is the approximation error when the input of the positions and charges of the particles gets approximated?
• What is the runtime?
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The construction of the Laurent series is the aim in section 4.3.1. The approximation of the input with the corresponding error
will be addressed in section 5.4. The subquadratic runtime will be a shown in section 4.4.

UPCAST:
• How to merge two Laurent series into a new one?
• How large is the approximation error by using truncated Laurent series up to order q?
• What is the runtime?

The method to merge two Laurent series into a new one is described in section 4.3.2. The approximation error by using truncated
Laurent series up to order q will be addressed in section 5.1. The subquadratic runtime will be stated in section 4.4.

CONVERSION:
• What is W ?

Which pairs of clusters do we need?

How many of these pairs do we have to consider?

Does W always exist for arbitrary distributions of particles?

How to compute W and what is the runtime?
• How to convert one Laurent series into a Taylor series?
• How large is the approximation error by using truncated Taylor series up to order q?
• What is the runtime?

To answer the questions about W we will introduce the Well-Separated Pair Decomposition in section 4.1.
The method to convert one Laurent series into a Taylor series is described in section 4.3.3. The approximation error by using
truncated Taylor series up to order p will be addressed in section 5.1. The subquadratic runtime will be stated in section 4.4.

DOWNCAST:
• How to change the expansion point of a Taylor series?
• How to merge multiple Taylor series?
• What is the runtime?

The method to change the expansion point of a Taylor series and to merge multiple Taylor series is described in section 4.3.4.
The subquadratic runtime will be stated in section 4.4.

EVALUATION:
• How to evaluate the truncated Taylor series at a given point?
• What is the runtime?

As seen before, the questions about EVALUATION are easy to answer: The evaluation of a Taylor series
∑∞

k=0 ak(z − z0)k) at
the expansion point z0 is trivial, because all non constant terms vanish.

∑∞
k=0 ak(z0 − z0)k =

∑∞
k=0 ak0k = a0. Therefore the

evaluation only has to output a0 which is linear in the encoding length of a0.
Let N denote the number of particles and let E be the error exponent, such that the result is approximated up to an error 2−E.
In section 4.4 we will introduce an algorithm with runtime O2(N ·E4). By further enhancements of the computation process we
are able to save one factor of E, which leads to an algorithm with runtime O2(N ·E3), cf. section 4.5.5. By introducing a new
Well-Separated Pair Decomposition with the corresponding Fair Split Tree adding new main steps to the algorithm and using
results from last year by Tsigaridas and Pan [24] we are able to save an additional factor of E, which leads to an algorithm with
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runtime O2(N ·E2), cf. section 5.7. In section 2.2 we have shown the lower bound of Trummer’s Problem is O2(N ·E), therefore
our developed algorithm is nearly optimal.

Algorithm 1: A Tree Algorithm
Input :N particles with charges qi and positions zi for i = 1, . . . , N .
Output : (C(q, z) · q)i =

∑N
j=1
j 6=i

qiqj

zi−zj
= iΦ(zi), for all i = 1, . . . , N .

// COMPUTE CLUSTER HIERARCHY, cf. STEP 2 and STEP 3
Compute the hierarchy of the clusters for the particles. This forms a tree which will be denoted by T .
// INITIALIZE, cf. STEP 1
foreach leaf U ∈ T do // i.e. each particle

Initialize the Laurent series UL(z) for each particle
end
// UPCAST, cf. STEP 2 and STEP 3
for l := depth(T ) to 1 do // Iterate from the leaves to the root.

foreach inner node U ∈ T with depth l do
Compute the Laurent series UL(z) by combining the Laurent series VL(z),WL(z) of the children V,W .

end
end
// CONVERSION, cf. STEP 5
for all appropriate pairs of clusters U, V ∈ T . We will call the set of all appropriate pairs W . do

Convert the Laurent series VL(z) of the cluster V to the Taylor series UT(z) of the cluster U
end
// DOWNCAST, cf. STEP 6
for l := 1 to depth(T ) do // Iterate from the root to the leaves.

foreach node U ∈ T with depth l do
Compute the new Taylor series UT(z) by combining the Taylor polynomial VL(z) of the parent V with the old Taylor
polynomial UT(z).

end
end
// EVALUATION, cf. STEP 6
foreach leaf U ∈ T do // i.e. each particle

Evaluate the Taylor polynomial UT(z) at z = zU ., i.e. return UT0;
end
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Chapter 4

Bit-Cost Analysis of the Fast Multipole Method

In section 3.4 we have already stated the main ideas of the Fast Multipole Method (FMM) and formalize them within this chapter.
Therefore we will develop the FMM step by step, starting by a method with quadratic runtime in N and improving this method
continually. By highlighting possible pitfalls and lacks of efficiency, we will see that one cannot simplify or omit the main steps
of this version of the FMM. The promised subquadratic runtime will be proven later; we will concentrate on developing the
algorithm at first. Since we want to use truncated Laurent and Taylor series, we have to be able to control the truncation error.
Later on we will see that if the clusters are relatively far away, in comparison to the radius of the enclosing sphere, the error can
be exponentially suppressed in terms of the truncation order. This relatively far away will be defined in section 4.1 by s-well
separated pairs. In the same section we define the Well-Separated Pair Decomposition (WSPD) which is needed throughout the
complete thesis. By using the properties of the WSPD we are able to proof the runtime of our algorithm, reduce the truncation
errors and also proof some possible pitfalls.

4.1 Clustering of Points — The Well-Separated Pair Decomposition

In this section we define the Well-Separated Pair Decomposition and state the most important properties.

Definition 11 (Well-Separated Pair). This definition is based on [23]. Let U, V ⊂ Rd be two finite sets of points. The bounding
box R(U) is the smallest axes-parallel d dimensional hyper-rectangle that contains U .
Let R 3 s ≥ 0. The two sets U, V are called s-well-separated iff

• there exist two d-dimensional spheres SU ,SV with the same radius R,
• SU contains the bounding box R(U) of U ,
• SV contains the bounding box R(V ) of V , and
• the distance between SU ,SV is at least sR.

The real number s is called the separation ratio.

Example 12 (Well-Separated Pair). In this example we want to show what s-well-separated means geometrically in fig. 4.1.
Therefore we use always the same points, cf. fig. 4.1(a). Figure 4.1(b) shows the minimal bounding boxes R(·) for two particles
each and fig. 4.1(c) shows the corresponding minimal spheres containing these bounding boxes. These spheres got different radii,
but in order to say that two sets are well-separated we need spheres with the same radii. In fig. 4.1(d) we want to see if the
two pairs of points in the middle are well-separated, wherefore we have enlarged the smaller sphere, such that both radii of the
spheres are equal. In the next step we move this sphere to the right in order to maximize the distance, without moving the points
in the exterior. Now we see that both sets are 0.8-well-separated. In fig. 4.1(e) we consider the two points in the upper left corner
and one of the previous pairs and do a similar construction as in fig. 4.1(d). Then we see that both sets are 2-well-separated.

Definition 13 (Well-Separated Pair Decomposition). This definition is based on [23]. Let Z ⊂ Rd be a set of N points. Let
R 3 s ≥ 0 be the separation ratio.
A s-Well-Separated Pair Decomposition (WSPD) for Z is a list[

(U1, V1), (U2, V2), . . . , (Ul, Vl)
]
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(a) 8 points in the complex plane used as a basis to show the
s-well-separated geometrically.

(b) Bounding boxes R(·) for two particles each. (c) Spheres containing the bounding boxes R(·).

(d) Two pairs of points which are 0.8-well-separated. (e) Two pairs of points which are 2-well-separated.

Figure 4.1.: Examples for well-separated points.
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of pairs of non-empty subsets of Z, such that

• for each i = 1, . . . , l, the sets Ui and Vi are s-well-separated, and
• for any two distinct points x, y ∈ Z, there exists exactly one index i with 1 ≤ i ≤ l, such that x ∈ U, y ∈ V or vice versa.

The integer l is called the size of the WSPD.

Lemma 14 (Properties of the Well-Separated Pair Decomposition). Let Z ⊂ Rd be a set of N points. Let R 3 s ≥ 0 be the
separation ratio.

• There exists a WSPD W of size O (sdN).
• This WSPD can be computed in O (N logN).
•
∑

(U,V )∈W |U |+ |V | ∈ Θ(N2).
• The clusters U in the WSPD W , i.e. (U, ∗) ∈ W , or (∗, U) ∈ W form a binary tree T by adding Z as the root node.

This tree is called the Fair Split Tree.
– Let U ∈ W . If |U | ≥ 2 then U has exactly two children V,W , which are a partition of U .
– For each two nodes V,W in the tree, either the points of V are included in U (or vice versa) or they are completely
distinct, i.e. do not share any points.

– By iterating from a leaf, which represents exactly one point, to the root only more points get added and no points get
subtracted.

• The size |T | of the split tree T , i.e. the number of nodes, is given by |T | ∈ Θ(N) nodes.
• The depth depth(T ) of the split tree T is given by depth(T ) ∈ Θ(N) in worst case.

Proof. These properties were proven by Callahan in his PhD thesis [5].

Example 15 (Fair Split Tree). In this example we want to show how the Fair Split Tree gets constructed and the correspondence
between the tree, the clusters and the points with the help of figs. 4.2 and 4.3. We use always the same points, cf. fig. 4.1(a).
On the left of each figure there is the Fair Split Tree and on the right the corresponding clusters or bounding boxes of points.
Figure 4.2(a) shows all points with the bounding box of all together. This forms the root of our split tree. By splitting this
bounding box in the middle, cf. the two lines in the middle representing this split in fig. 4.2(b), we get two new boxes. Each box
contains 4 points and represents a node in the tree. By splitting the left box in fig. 4.2(c) again we get two new bounding boxes
with their corresponding nodes. In fig. 4.3(a) we see that both small boxes on the left get split into single points. These points
get added to the tree and form its leaves. Figure 4.3(b) is similar to fig. 4.2(b), but we have split the right box now. And finally
fig. 4.3(c) finishes the tree by splitting the last two boxes on the right into single points, similar to fig. 4.3(a), and appending the
corresponding leaves to the tree.
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(a) The root of the Fair Split Tree (on the left) represents all points with their bounding box (on the right).

(b) By splitting (represented by the two lines in the middle) the bounding box of all points into two parts, we get
two new clusters of points with their bounding box on each side. Both clusters create a new node in the tree
each.

(c) Splitting the left most bounding box creates two new clusters and nodes in the tree.

Figure 4.2.: Example of a Fair Split Tree — part one, cf. fig. 4.2 for the second part. On the left the tree is
presented and on the right the corresponding cluster of points with their bounding boxes.
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(a) Both small boxes on the left get split into single points. These points get added to the tree and form its leaves.

(b) Splitting the right most bounding box creates two new clusters and nodes in the tree.

(c) Both small boxes on the right get split into single points. These points get added to the tree and form its
leaves.

Figure 4.3.: Example of a Fair Split Tree — part two, cf. fig. 4.3 for the first part. On the left the tree is
presented and on the right the corresponding cluster of points with their bounding boxes.
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4.2 Pitfalls, Lacks of Efficiency and their Solutions

In this section we will present some pitfalls and lacks of efficiency which could occur during the FMM and develop an algorithm
which bypasses each of these problems, afterwards. Without knowing these problems the algorithm could seem to be a pedestrian
method.
In section 4.2.1 we state a very easy algorithm using the idea of Laurent series combined with the WSPD to solve Trummer’s
Problem. In section 4.2.2 we proof that it takes too much time to construct all Laurent series using the properties of the
WSPD. By using these properties again, we show in section 4.2.3 that simple evaluation of the Laurent series is too slow as well.
Therefore our later algorithm has to bypass these problems.

4.2.1 A First Algorithm

With the notation of a Well-Separated Pair Decomposition we can now formalize the idea of building clusters, computing the
Laurent series and evaluating them in algorithm 2. The runtime of this naive algorithm will be analyzed in sections 4.2.2
and 4.2.3. Afterwards, we will give improved versions of the construction and evaluation step.

Algorithm 2: A First Algorithm for the Fast Multipole Method.
1 Compute the WSPD W with the corresponding split tree T ;
2 Compute the Laurent series of the function z 7→

∑
j∈U

qj
z − zj︸ ︷︷ ︸

expand to Laurent series UL(z)

= UL(z) for each cluster U ∈ T ;

3 Evaluate the function iΦ(z), by using the previously computed Laurent series, at the point z = zi, i.e. compute
iΦ(zi) =

∑
(U,V )∈W
zi∈U

VL(zi) +
∑

(U,V )∈W
zi∈V

UL(zi) for each zi ∈ Z;

4.2.2 Construction of the Laurent Series

Lemma 16. In algorithm 2, the construction of the Laurent series (line 2) is in Ω(N2), in worst case.

Proof. The construction of the Laurent series UL(z) of U , which represents |U | points, takes at least |U | steps, otherwise we
could exchange one point and the computed Laurent series would not be changed, which cannot be possible.
Then the number of steps in line 2 are at least

∑
U∈T |U |. By choosing Z = (2−1, 2−2, 2−3, . . . , 2−N ), the split tree T will have

depth N and on each level n there are exactly two nodes, one leaf with size 1 and a node U with size N − n. Then we get

∑
U∈T

|U | =
N∑
n=1

(1 +N − n) =
N∑
n=1

n ∈ Ω(N2).

In order to obtain a subquadratic algorithm we improve the construction of the Laurent series, by exploiting the structure of the
split tree T . The construction of all Laurent series will be a bottom-up approach. We start by computing all Laurent series
for the leaves. Afterwards we will compute the Laurent series of an inner node by combining the two Laurent series of its two
children. In fact, this approach tuns out to be subquadratic in N , which will be shown later.
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4.2.3 Evaluation of the Laurent Series

Lemma 17. In algorithm 2, the evaluation of all Laurent series (line 3) is in Θ(N2), in worst case.

Proof. Line 3 in algorithm 2 is equivalent to algorithm 3, which needs at least
∑

(U,V )∈W |U |+ |V | number of steps. Using the
properties of the Well-Separated Pair Decomposition, cf. lemma 14, we get∑

(U,V )∈W

|U |+ |V | ∈ Θ(N2),

which finishes the proof.

1 foreach (U, V ) ∈ W do
2 Evaluate VL(z) for each z ∈ U ;
3 Evaluate UL(z) for each z ∈ V ;
4 end
5 Combine all previous values appropriately, i.e. add all values which belong to zi for each i = 1, . . . , N ;

Algorithm 3: Evaluation of all Laurent series

In order to obtain a subquadratic algorithm we improve the evaluation of the Laurent series. The idea of the fast evaluation is a
top-down approach. For each pair (U, V ) ∈ W we convert the Laurent series VL, which is convergent in the outside of a sphere
containing V , into a truncated Taylor series UT, which is convergent in the bounding box R(U) of U (if there already existed
a Taylor series, we simply add both) and we do the same with exchanged roles of U and V . This conversion turns out to be
subquadratic in N , which will be shown later.
Direct evaluation of these Taylor series turns out to be quadratic in N , with the same argument as used for the direct construction
of the Laurent series. Therefore we exploit the tree structure of T again and go from a node to its children and combine the
Taylor series of the parent and the child. This step is subquadratic in N , which will be shown later.
At the end we evaluate a Taylor series for each point zi ∈ Z which is linear in N .

4.3 Main Operators for the Fast Multipole Method

Combining the ideas from the previous sections, we can synthesize the subquadratic algorithm 4, with the main steps INITIALIZE,
UPCAST, CONVERSION, DOWNCAST and EVALUATION. To analyze this algorithm we derive the formulas for each step in sections 4.3.1
to 4.3.5.

4.3.1 INITIALIZE

Let U ∈ T be a leaf, then U represents exactly one particle. Let zU be the position of this particle and let qU be the charge of
this particle, then the corresponding function z 7→ qU

z−zU
is already a Laurent series with the expansion point zU .

Therefore, the coefficients of the Laurent series are ULk :=

qU , for k = 1
0, else.
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Algorithm 4: Fast Multipole Method — abstract
Input : A tree T with associated WSPD W for N particles with charges qi and positions zi for i = 1, . . . , N .
Output : (C(q, z) · q)i =

∑N
j=1
j 6=i

qiqj

zi−zj
= iΦ(zi) for i = 1, . . . , N .

// INITIALIZE
Compute the Laurent series UL(z) for each leaf U ∈ T ;
// UPCAST
for l := depth(T ) to 1 do

foreach inner node U ∈ T with depth l do
// Let V,W be the children of U.
Compute the Laurent series UL(z) of U by combining the Laurent series VL(z) and WL(z);

end
end
// CONVERSION
foreach pair (U, V ) ∈ W do

Convert the Laurent series VL(z) of V into a Taylor series UT(z) of the paired node U ;
Convert the Laurent series UL(z) of U into a Taylor series VT(z) of the paired node V ;
// If there already existed Taylor series before, add both.

end
// DOWNCAST
for l := 1 to depth(T ) do

foreach node U ∈ T with depth l do
// Let V be the parent of U.
Compute the new Taylor series UT(z) of U by combining the old Taylor series UT(z) of U with the Taylor series
VT(z) of the parent node V ;

end
end
// EVALUATION
foreach leaf U ∈ T do

// Let zU be the position of the point corresponding to the leaf U.
Evaluate the Taylor series UT(z) of U at z = zU ; // which represents evaluating iΦ(z) at z = zU.

end

4.3.2 UPCAST

The idea to combine Laurent series is to shift each series to the same expansion point and add the resulting coefficients afterwards.
This shifting of Laurent series will be treated in lemma 18. Afterwards we present the formulas for the coefficients of the
combined Laurent series.

Lemma 18 (Shifting of Laurent Series). Let the Laurent series 0L(z) :=
∑∞

k=0
0Lk

(z−z0)k , with expansion point z0, be holomorphic

on SR(z0)û. The shifted Laurent series 1L(z) :=
∑∞

k=0
1Lk

(z−z1)k , with expansion point z1, is holomorphic on Sρ(z1)û, with
ρ = R+ |z0 − z1|, and the coefficients are given by

1L0 = 0L0,

1Lk =
k∑

n=1
(z0 − z1)k−n 0Ln

(
k − 1
n− 1

)
, for k ≥ 1.
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Proof. Let ρ = R+ |z0 − z1|, let z ∈ Sρ(z1)û and let 1 ≤ n ∈ N, then we get

0Ln
(z − z0)n = 0Ln

(z − z1 − (z0 − z1))n

= (z0 − z1)−n 0Ln

(
z0−z1
z−z1

)n(
1− z0−z1

z−z1

)n
lemma 39 = (z0 − z1)−n 0Ln

∞∑
k=n−1

(
k

n− 1

)(z0 − z1

z − z1

)k+1

=
∞∑
k=n

(z0 − z1)−n 0Ln
(
k − 1
n− 1

)(z0 − z1

z − z1

)k
.

Hence we get for the shifted function
∞∑
n=0

0Ln
(z − z0)n = 0L0 +

∞∑
n=1

∞∑
k=n

(z0 − z1)−n 0Ln
(
k − 1
n− 1

)(z0 − z1

z − z1

)k
changing the summation order

and the "path" in which the indices are traversed = 0L0 +
∞∑
k=1

k∑
n=1

(z0 − z1)−n 0Ln
(
k − 1
n− 1

)(z0 − z1

z − z1

)k
= 0L0 +

∞∑
k=1

(z − z1)−k
k∑

n=1
(z0 − z1)k−n 0Ln

(
k − 1
n− 1

)
︸ ︷︷ ︸

1Lk

.

Since 0L(z) is holomorphic on SR(z0)û ⊇ Sρ(z1)û and 0L(z) and 1L(z) are identical on Sρ(z1)û, the claim follows.

Using the previous lemma the combined Laurent series can be easily calculated. Let VL(z) :=
∑∞

k=0
VLk

(z−zV )k and WL(z) :=∑∞
k=0

WLk

(z−zW )k be two Laurent series, with the expansion points zV and zW , respectively, then the coefficients of the combined

Laurent series UL(z) :=
∑∞

k=0
ULk

(z−zU )k , with expansion point zU , are given by

UL0 = VL0 + WL0,

ULk =
k∑

n=1

(
(zU − zV )k−n VLn + (zU − zW )k−n WLn

)(k − 1
n− 1

)
, for k ≥ 1.

4.3.3 CONVERSION

In this section we will show how to convert a Laurent polynomial into a Taylor polynomial. Algorithmically we are only able to
handle finitely many coefficients and we only need finitely many coefficients for a good approximation, hence we will restrict the
analysis to truncated series, i.e. polynomials.

Lemma 19 (Conversion from Laurent Polynomials to Taylor Series). Let L(z) :=
∑p

k=0
Lk

(z−zL)k , with expansion point zL, be
holomorphic on SR(zL)û and let zT ∈ SR(zL)û, then the corresponding Taylor series T(z) :=

∑∞
k=0 Tk(z− zT )k, with expansion

point zT , is holomorphic on Sρ(zT ), with ρ = |zL − zT | −R, and the coefficients are given by

T0 =
p∑

n=0
Ln(zT − zL)−n,
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Tk =
p∑

n=1
Ln
(
k + n− 1
n− 1

)
(zT − zL)−k−n, for k ≥ 1.

Proof. Let ρ = |zL − zT | −R, let z ∈ Sρ(zT ) and let 1 ≤ n ∈ N, then we get

Ln
(z − zL)n = Ln

(z − zT + zT − zL)n

= (zT − z)−nLn

( zT−z
zT−zL

)n(
1− zT−z

zT−zL

)n
lemma 39 = (zT − z)−nLn

∞∑
k=n−1

(
k

n− 1

)( zT − z
zT − zL

)k+1

=
∞∑
k=n

(zT − z)k−nLn
(
k − 1
n− 1

)
(zT − zL)−k

=
∞∑
k=0

(zT − z)kLn
(
k + n− 1
n− 1

)
(zT − zL)−k−n.

Hence we get for the local expansion
p∑

n=0

Ln
(z − zL)n = L0 +

p∑
n=1

∞∑
k=0

(zT − z)kLn
(
k + n− 1
n− 1

)
(zT − zL)−k−n

changing
the summation order = L0 +

∞∑
k=0

p∑
n=1

(zT − z)kLn
(
k + n− 1
n− 1

)
(zT − zL)−k−n

= L0 +
p∑

n=1
Ln
(
n− 1
n− 1

)
(zT − zL)−n +

∞∑
k=1

(zT − z)k
p∑

n=1
Ln
(
k + n− 1
n− 1

)
(zT − zL)−k−n

= L0 +
p∑

n=1
Ln(zT − zL)−n︸ ︷︷ ︸

T0

+
∞∑
k=1

(zT − z)k
p∑

n=1
Ln
(
k + n− 1
n− 1

)
(zT − zL)−k−n︸ ︷︷ ︸

Tk

.

Since L(z) is holomorphic on SR(zL)û ⊇ Sρ(zT ) and L(z) and T(z) are identical on Sρ(zT ), the claim follows.

Suppose there already existed a Taylor polynomial UT(z) :=
∑q

k=0 UTk(z − zU )k with the expansion point zU and want to
convert another Laurent polynomial VL(z) :=

∑p
k=0 VLk(z−zV )k to a Taylor polynomial in zU , it remains to add the coefficients

in order to combine the old one with the converted one.

4.3.4 DOWNCAST

The idea to combine Taylor series, is equivalent to the idea for UPCAST, i.e. shift each series to the same expansion point and add
the resulting coefficients afterwards. As in section 4.3.3, we will only consider truncated Taylor series, i.e. Taylor polynomials.

Lemma 20 (Shifting of Polynomials). Let 0T(z) :=
∑q

k=0 0Tk(z − z0)k be a Taylor polynomial with expansion point z0. The
coefficients of the shifted polynomial 1T(z) :=

∑q
k=0 1Tk(z − z1)k, with expansion point z1, are given by

1Tk =
q∑

n=k

(
n

k

)
0Tn(z1 − z0)n−k, for k ≥ 0.
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Proof. Let z, z0, z1 ∈ C and let 1 ≤ n ∈ N, then we get

0Tn(z − z0)n = 0Tn(z − z1 − (z0 − z1))n

= 0Tn(z1 − z0)n
( z − z1

z1 − z0
+ 1
)n

lemma 39 = 0Tn(z1 − z0)n
n∑
k=0

(
n

k

)( z − z1

z1 − z0

)k
=

n∑
k=0

(
n

k

)
0Tn(z1 − z0)n

( z − z1

z1 − z0

)k
.

Hence we get
q∑

n=0
0Tn(z − z0)n =

q∑
n=0

n∑
k=0

(
n

k

)
0Tn(z1 − z0)n

( z − z1

z1 − z0

)k
changing the summation order

and the "path" in which the indices are traversed =
q∑

k=0

q∑
n=k

(
n

k

)
0Tn(z1 − z0)n

( z − z1

z1 − z0

)k
=

q∑
k=0

(z − z1)k
q∑

n=k

(
n

k

)
0Tn(z1 − z0)n−k︸ ︷︷ ︸

1Tk

.

Using the previous lemma the combined Taylor polynomials can be easily calculated. Let UT(z) :=
∑q

k=0 UTk(z − zU )k and

VT(z) :=
∑q

k=0 VTk(z − zV )k be two Taylor polynomials with the expansion points zU , zV , respectively. Then the coefficients of
the combined Taylor polynomial UT(z) :=

∑q
k=0 UT̃k(z − zU )k, with the same expansion point zU , are given by

UT̃ = UT +
q∑

n=k

(
n

k

)
VTn(zU − zV )n−k.

4.3.5 EVALUATION

In the EVALUATION step, we evaluate for each leaf U ∈ T , which represents a particle with charge qU and position zU , the Taylor
polynomial UT(z) :=

∑q
k=0 UTk(z − zU )k, with the expansion point zU , at the point z = zU . Therefore we get

UT(zU ) =
q∑

k=0
UTk(zU − zU )k

= UT0, because all other summands vanish.

Hence we only return UT0 instead of evaluating anything.

4.4 Fast Multipole Method — a quartic Version

By using the operators derived in section 4.3 we get the explicit version of the Fast Multipole Method in algorithm 5. We use
the notation, that zU is the middle point of the bounding box R(U) of a node U ∈ T .
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Algorithm 5: Fast Multipole Method
Input : A tree T with associated WSPD W for N particles with charges qi and positions zi for i = 1, . . . , N .
Output : (C(q, z) · q)i =

∑N
j=1
j 6=i

qiqj

zi−zj
= iΦ(zi), for all i = 1, . . . , N .

// INITIALIZE, cf. section 4.3.1
foreach leaf U ∈ T do // Compute the Laurent polynomial UL(z)

L1 := qU , Lk := 0, for all k = 2, . . . , p;
end
foreach node U ∈ T do // Initialize a Taylor polynomial, which is constant 0.

Tk := 0, for all k = 1, . . . , q;
end
// UPCAST, cf. section 4.3.2
for l := depth(T ) to 1 do // Iterate from the leaves to the root.

foreach inner node U ∈ T with depth l do // Compute the coefficients of the Laurent polynomial UL(z) by
combining the Laurent polynomials VL(z),WL(z) of the children V,W.

// Let V,W be the two children of U.

ULk =
∑k

n=1
(
(zU − zV )k−n VLn + (zU − zW )k−n WLn

)(
k−1
n−1
)
, for all k = 1, . . . , p;

end
end
// CONVERSION, cf. section 4.3.3
foreach (U, V ) ∈ W do // Compute the coefficients of the Taylor polynomial UL(z) by converting the
Laurent polynomial VL(z) and repeat with exchanged roles of U and V .

UT0 := UT0 +
∑p

n=1 VLn(zU − zV )−n;
UTk := UTk +

∑p
n=1 VLn

(
k+n−1
n−1

)
(zU − zV )−k−n, for all k = 1, . . . , q;

Repeat with exchanged roles of U and V ;
end
// DOWNCAST, cf. section 4.3.4
for l := 1 to depth(T ) do // Iterate from the root to the leaves.

foreach node U ∈ T with depth l do // Compute the coefficients of the new Taylor polynomial UT(z) by
combining the Taylor polynomial VL(z) of the parent V with the old Taylor polynomial UT(z).

// Let V be the parent of U.

UTk := UTk +
∑q

n=k
(
n
k

)
VTn(zU − zV )n−k, for all k = 0, . . . , q;

end
end
// EVALUATION, cf. section 4.3.5
foreach leaf U ∈ T do // Evaluate the Taylor polynomial UT(z) at z = zU.

Return UT0;
end

Lemma 21. If computing UPCAST, CONVERSION and DOWNCAST straight forward, i.e. evaluating the expressions directly, this yields
to the following runtime (in unit cost).

• INITIALIZE ∈ O (Np+ |T |q) = O (N(p+ q)).
• UPCAST ∈ O ((|T | −N)p2) = O (Np2).
• CONVERSION ∈ 2O (|W |pq) = O (sdNpq).
• DOWNCAST ∈ O (|T |q2) = O (Nq2).
• EVALUATION ∈ O (N).
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Whereas s denotes the separation ratio of the WSPD and d denotes the dimension. Therefore, the overall runtime, measured in
unit cost, is linear in N and quadratic in p and q, while omitting logarithmic terms.
But the overall runtime, measured in bit cost, in is linear in N and quartic in p and q, while omitting logarithmic terms.

Proof. The runtime, measured in unit cost, of INITIALIZE and EVALUATE is obvious. By using Horner’s Scheme and lemma 14
we get the claimed unit cost runtime for UPCAST, CONVERSION and DOWNCAST.
Analysis of the formulas for UPCAST, CONVERSION and DOWNCAST shows that the intermediate results become too large, which
results in additional factors of p or q, respectively, in terms of bit cost runtime. Since we will derive a better algorithm later on,
we will omit the rigorous proof of this claim.

4.5 Towards a Fast Multipole Method linear in N and cubic in p, q

In this section we will improve the runtime of UPCAST, CONVERSION and DOWNCAST to be linear in N and cubic in p, q, with
respect to bit complexity. In section 4.2 we have already seen, that we cannot omit these steps otherwise the runtime would be
quadratic in N .
In sections 4.5.1 to 4.5.3 we will rewrite the expressions for UPCAST, CONVERSION and DOWNCAST to reveal an interesting structure
of these expressions which can be exploited to get the promised runtime. The structure was first examined by Greengard and
Rokhlin [13] to speed up the continuous Fast Multipole Method using a Fast Fourier Transform. This approach is not possible in
our case, but we will exploit this structure in a different way to reduce the overall runtime by a factor of p, q. In the following we
will use the convention that the first bit of an integer is the least significant bit.

4.5.1 UPCAST

The expression for UPCAST is equivalent to

ULk
(k − 1)! = 1

(k − 1)!

k∑
n=1

(
(zV − zU )k−n VLn + (zW − zU )k−n WLn

)(k − 1
n− 1

)

=
k∑

n=1

(zV − zU )k−n
(k − n)!

VLn
(n− 1)! +

k∑
n=1

(zW − zU )k−n
(k − n)!

WLn
(n− 1)! .

The idea to compute all ULk

(k−1)! , for k = 1, . . . , p, simultaneously, is to encode all information in two large integers and multiply
them afterwards — this approach is called Kronecker Embedding, cf. examples 22 to 24 and the short paragraph in the abstract.
The procedure is split into eight steps:

1. Define an integer (p,P )
VL consisting of p blocks of size P . This integer is called the Laurent coefficient integer of V .

2. Encode the scaled Laurent coefficients V Lj

(j−1)! , for j = 1, . . . , p, in the j-th block of (p,P )
VL .

3. Define an integer (p,P )
(U,V )D consisting of p blocks of size P . This integer is called the distance integer of (U, V ).

4. Encode the scaled distances (zV −zU )i−1

(i−1)! , for i = 1, . . . , p, in the i-th block of (p,P )
(U,V )D.

5. Multiply both integers and save the result.
6. Repeat steps 1− 5 with W and V exchanged.
7. Add the two saved integers from step 5.
8. The coefficients ULk

(k−1)! , for k = 1, . . . , p, are now in the first p blocks of the result of step 7. (The integer of the first p
blocks will be called (p,P )

UL later.)
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Example 22 shows what is happening during the multiplication.
Here we have assumed that all numbers are integers, otherwise this approach would not be possible. Later on we will modify the
expressions to assure that all numbers will be integers.

Example 22 (The Kronecker Embedding for UPCAST). Let p = 3, x = zV − zU . We will show steps 1− 5; the remaining steps
are obvious. The bars | represent the borders of the blocks and we will use the "normal school method" to compute the product.
∗ denotes a value which will not be used, hence we will omit this value.∣∣∣∣ x2

2!

∣∣∣∣ x1

1!

∣∣∣∣ x0

0!

∣∣∣∣ ×

∣∣∣∣ VL3

2!

∣∣∣∣ VL2

1!

∣∣∣∣ VL1

0!

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x0

0!
VL3

2!

∣∣∣∣ x0

0!
VL2

1!

∣∣∣∣ x0

0!
VL1

0!

∣∣∣∣
+
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x1

1!
VL3

2!

∣∣∣∣ x1

1!
VL2

1!

∣∣∣∣ x1

1!
VL1

0!

∣∣∣∣ 0
∣∣∣∣

+
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x2

2!
VL3

2!

∣∣∣∣ x2

2!
VL2

1!

∣∣∣∣ x2

2!
VL1

0!

∣∣∣∣ 0
∣∣∣∣ 0

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x3−3

(3 − 3)!
VL3

(3 − 1)!

∣∣∣∣ x2−2

(2 − 2)!
VL2

(2 − 1)!

∣∣∣∣ x1−1

(1 − 1)!
VL1

(1 − 1)!

∣∣∣∣
+
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x3−2

(3 − 2)!
VL3

(3 − 1)!

∣∣∣∣ x3−2

(3 − 2)!
VL2

(2 − 1)!

∣∣∣∣ x2−1

(2 − 1)!
VL1

(1 − 1)!

∣∣∣∣ 0
∣∣∣∣

+
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x3−1

(3 − 1)!
VL3

(3 − 1)!

∣∣∣∣ x3−1

(3 − 1)!
VL2

(2 − 1)!

∣∣∣∣ x3−1

(3 − 1)!
VL1

(1 − 1)!

∣∣∣∣ 0
∣∣∣∣ 0

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∗

∣∣∣∣ ∗

∣∣∣∣ 3∑
n=1

x3−n

(3−n)!
VLn

(n−1)!

∣∣∣∣ 2∑
n=1

x2−n

(2−n)!
VLn

(n−1)!

∣∣∣∣ 1∑
n=1

x1−n

(1−n)!
VLn

(n−1)!

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∗

∣∣∣∣ ∗

∣∣∣∣ belongs to UL3

(3−1)!

∣∣∣∣ belongs to UL2

(2−1)!

∣∣∣∣ belongs to UL1

(1−1)!

∣∣∣∣
The result encodes the "(v )-part" of the coefficients U

L1
(1−1)! ,

U
L2

(2−1)! ,
U

L3
(3−1)! in the first three blocks. By doing the same for W we can compute U

Lk

(k−1)! .
We see that each block has to have the same size, otherwise the alignment would be destroyed. The size of each block has to be as large as the
size of the largest output coefficient, otherwise there could be an carryover between two blocks.

4.5.2 CONVERSION

The expression for CONVERSION is equivalent to

k! UTk = k!
p∑

n=1
VLn

(
k + n− 1
n− 1

)
(zu − zv )−k−n

=
p∑

n=1

VLn
(n− 1)!

(k + n− 1)!
(zu − zv )k+n

The idea to compute all k! UTk, for k = 0, . . . , q, simultaneously, is the Kronecker Embedding, again.
The procedure is split into six steps:

1. Define an integer (p,Q)
VL consisting of p blocks of size Q.
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2. Encode the scaled Laurent coefficients V Lj

(j−1)! in the j-th block of (p,Q)
VL . (This is exactly the same integer as (p,Q)

VL in
UPCAST, up to the block size Q.)

3. Define an integer (p+q,Q)
(V,U)R consisting of p+ q blocks of size Q. This integer is called the reciprocal integer of (V,U).

4. Encode the scaled reciprocal distances (i−1)!
(zU−zV )i−1 , for i = 1, . . . , p+ q, in the i-th block of (p+q,Q)

(V,U)R .
5. Multiply both integers.
6. The coefficients k! UTk, for k = 0, . . . , q, are now in the blocks p to p+ q of the result of step 5. (The integer of the blocks

blocks p to p+ q will be called (q+1,Q)
UT later.)

Example 23 shows what is happening during the multiplication.
Here we have assumed that all numbers are integers, otherwise this approach would not be possible. Later on we will modify the
expressions to assure that all numbers are integers.

Example 23 (The Kronecker Embedding for CONVERSION). Let p = 2, q = 3, x = zU − zV . We will show steps 1 − 6. As in
example 22, the bars | represent the borders of the blocks and we will use the "normal school method" to compute the product
and ∗ denotes a value which will not be used, hence we will omit the value.∣∣∣∣ VL2

1!

∣∣∣∣ VL1

0!

∣∣∣∣∣∣∣∣× 0!
x1

∣∣∣∣ 1!
x2

∣∣∣∣ 2!
x3

∣∣∣∣ 3!
x4

∣∣∣∣ 4!
x5

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ VL1

0!
0!
x1

∣∣∣∣ VL1

0!
1!
x2

∣∣∣∣ VL1

0!
2!
x3

∣∣∣∣ VL1

0!
3!
x4

∣∣∣∣ VL1

0!
4!
x5

∣∣∣∣
+
∣∣∣∣ ∣∣∣∣ VL2

1!
0!
x1

∣∣∣∣ VL2

1!
1!
x2

∣∣∣∣ VL2

1!
2!
x3

∣∣∣∣ VL2

1!
3!
x4

∣∣∣∣ VL2

1!
4!
x5

∣∣∣∣ 0
∣∣∣∣

=
∣∣∣∣ ∣∣∣∣ ∗

∣∣∣∣ 2∑
n=1

VLn

(n−1)!
(0+n−1)!

x0+n

∣∣∣∣ 2∑
n=1

VLn

(n−1)!
(1+n−1)!

x1+n

∣∣∣∣ 2∑
n=1

VLn

(n−1)!
(2+n−1)!

x2+n

∣∣∣∣ 2∑
n=1

VLn

(n−1)!
(3+n−1)!

x3+n

∣∣∣∣ ∗

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∗

∣∣∣∣ = 0! UT0

∣∣∣∣ = 1! UT1

∣∣∣∣ = 2! UT2

∣∣∣∣ = 3! UT3

∣∣∣∣ ∗

∣∣∣∣

4.5.3 DOWNCAST

The expression for DOWNCAST is equivalent to

k! UTk = k!
q∑

n=k

(
n

k

)
VTn(zU − zV )n−k

=
q∑

n=k

n! VTn
(zU − zV )n−k

(n− k)! .

The idea to compute all k! UTk, for k = 0, . . . , q, simultaneously, is the Kronecker Embedding, again.
The procedure is split into six steps:

1. Define an integer (q+1,Q)
VT consisting of q + 1 blocks of size Q. This integer is called the Taylor coefficient integer of V .

2. Encode j! VTj in the (q − j)-th block of (q+1,Q)
VT , for j = 0, . . . , q. (This is exactly the same integer returned by

CONVERSION.)
3. Define an integer (q+1,Q)

(V,U)D consisting of q + 1 blocks of size Q.
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4. Encode (zU−zV )i−1

(i−1)! in the i-th block of (q+1,Q)
(V,U)D, for i = 1, . . . , q + 1. (The first p blocks are exactly the same blocks of

(p,P )
(V,U)D in UPCAST, up to the size Q.)

5. Multiply both integers.
6. The coefficients k! UTk, for k = 0, . . . , q, are now in the first q+ 1 blocks of the result of step 5. (The integer of the blocks

first q + 1 blocks will be called (q+1,Q)
UT later.)

Example 24 shows what is happening during the multiplication.
Here we have assumed that all numbers are integers, otherwise this approach would not be possible. Later on we will modify the
expressions to assure that all numbers are integers.

Example 24 (The Kronecker Embedding for DOWNCAST). Let q = 3, x = zU − zV . We will show steps 1− 5. As in examples 22
and 23, the bars | represent the borders of the blocks and we will use the "normal school method" to compute the product and ∗
denotes a value which will not be used, hence we will omit the value.∣∣∣∣ x2

2!

∣∣∣∣ x1

1!

∣∣∣∣ x0

0!

∣∣∣∣ ×

∣∣∣∣ 0! VT0

∣∣∣∣ 1! VT1

∣∣∣∣ 2! VT2

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x0

0!
0! VT0

∣∣∣∣ x0

0!
1! VT1

∣∣∣∣ x0

0!
2! VT2

∣∣∣∣
+
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x1

1!
0! VT0

∣∣∣∣ x1

1!
1! VT1

∣∣∣∣ x1

1!
2! VT2

∣∣∣∣ 0
∣∣∣∣

+
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x2

2!
0! VT0

∣∣∣∣ x2

2!
1! VT1

∣∣∣∣ x2

2!
2! VT2

∣∣∣∣ 0
∣∣∣∣ 0

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ x0−0

(0 − 0)!
0! VT0

∣∣∣∣ x1−1

(1 − 1)!
1! VT1

∣∣∣∣ x2−2

(2 − 2)!
2! VT2

∣∣∣∣
+
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∗

∣∣∣∣ x1−0

(1 − 0)!
1! VT1

∣∣∣∣ x2−1

(2 − 1)!
2! VT2

∣∣∣∣ 0
∣∣∣∣

+
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∗

∣∣∣∣ ∗

∣∣∣∣ x2−0

(2 − 0)!
2! VT2

∣∣∣∣ 0
∣∣∣∣ 0

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∗

∣∣∣∣ ∗

∣∣∣∣ 2∑
n=0

xn−0

(n − 0)!
n! VTn

∣∣∣∣ 2∑
n=1

xn−1

(n − 1)!
n! VTn

∣∣∣∣ 2∑
n=2

xn−2

(n − 2)!
n! VTn

∣∣∣∣
=
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∗

∣∣∣∣ ∗

∣∣∣∣ = 0! UT0

∣∣∣∣ = 0! UT1

∣∣∣∣ = 0! UT2

∣∣∣∣

4.5.4 INITIALIZE and EVALUATION

We have seen that UPCAST and CONVERSION use the Laurent coefficient integer (p,Q)
VL which is exactly the return value of UPCAST

(up to a different size of blocks, but this can be repaired easily) and DOWNCAST uses the Taylor coefficient integer (q+1,Q)
VT which

is exactly the return value of DOWNCAST and CONVERSION. The distance integer (q+1,Q)
(V,U)D used by DOWNCAST has the same first p

blocks of the distance integer (p,P )
(V,U)D used by UPCAST (up to a different size of blocks, but this can be repaired easily). Therefore

it would be convenient if INITIALIZE and EVALUATION would use exactly the same integers. This task will be solved within this
small section.
While INITIALIZE we should define the Laurent coefficient integer (p,P )

UL , with p blocks of size P , of each leaf U ∈ T . For
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the leaf U ∈ T the first block of the integer gets initialized by the value qU and the remaining blocks get initialized with 0.
Afterwards we should define the Taylor coefficient integer (q+1,Q)

UT , with q + 1 blocks of size Q, for each node U ∈ T and
initialize it with 0 for each block. This is equivalent to our first version of INITIALIZE.
In the EVALUATION step, we return for each leaf U ∈ T the last block of the Taylor coefficient integer (q+1,Q)

UT . This block
contains the coefficient 0! UT0 = UT0 = UΦ(zU ).

4.5.5 Fast Multipole Method linear in N and cubic in p, q

Combining the ideas from sections 4.5.1 to 4.5.4, we can synthesize algorithm 6, which is linear in N and cubic in p, q

with respect to bit cost. We will use the notation (x,y)
UL ,

(x,y)
UT ,

(x,y)
(V,U)D,

(x,y)
(U,V )R are the Laurent coefficient integer, the Taylor

coefficient integer, the distance integer and the reciprocal integer, with x blocks of size y and zU denotes the middle point of
the bounding box R(U) of U . The claimed runtime can be seen by combining sections 5.6.2, 5.6.3 and 5.6.5 and is given by
O2((|T |+ |W |)(p+ q)3) = O2(N(p+ q)3), by using the properties of the WSPD. Since we will derive an even faster algorithm
in the next chapter we omit a detailed discussion of the claimed runtime.
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Algorithm 6: Fast Multipole Method
Input : A tree T with associated WSPD W for N particles with charges qi and positions zi for i = 1, . . . , N .
Output : (C(q, z) · q)i =

∑N
j=1
j 6=i

qiqj

zi−zj
= iΦ(zi), for all i = 1, . . . , N .

// NOTATION

// (x,y)
UL ,

(x,y)
UT ,

(x,y)
(V,U)D,

(x,y)
(U,V )R are the Laurent coefficient integer, the Taylor coefficient integer, the

distance integer and the reciprocal integer, with x blocks of size y.

// INITIALIZE, cf. section 4.5.4

1 Define the Laurent coefficient integer (p,P )
UL , with p blocks of size P , whereas the first block gets initialized by the value qU

and the remaining blocks get initialized with 0, for each leaf U ∈ T ;
2 Define the Taylor coefficient integer (q+1,Q)

UT , with q + 1 blocks of size Q, whereas each block gets initialized with 0, for
each node U ∈ T ;
// UPCAST, cf. section 4.5.1

3 for l := depth(T ) to 1 do
4 foreach inner node U ∈ T with depth l do

// Let V,W be the two children of U.

5 Encode the scaled distances (zV −zU )i−1

(i−1)! , for i = 1, . . . , p, in the i-th block of (p,P )
(U,V )D;

6 Encode the scaled distances (zW−zU )i−1

(i−1)! , for i = 1, . . . , p, in the i-th block of (p,P )
(U,W )D;

7
(p,P )

UL := (p,P )
(U,V )D ·

(p,P )
VL + (p,P )

(U,W )D ·
(p,P )

WL truncated to the last p blocks. // now, ULi

(i−1)! is in the i-th block.

8 end
9 end

// CONVERSION, cf. section 4.5.2
10 foreach (U, V ) ∈ W do
11 Encode the scaled reciprocal distances (i−1)!

(zU−zV )i−1 , for i = 1, . . . , p+ q, in the i-th block of (p+q,Q)
(V,U)R ;

12 Expand each block of (p,P )
VL to size Q and rename it to (p,Q)

VL ;
13

(q+1,Q)
UT conv := (p+q,Q)

(U,V )R ·
(p,Q)

VL truncated to the blocks from p to p+ q;
14

(q+1,Q)
UT := (q+1,Q)

UT + (q+1,Q)
UT conv // now, i! UTi is in the (q − i)-th block.

15 Redo these steps with interchanged roles of U and V ;
16 end

// DOWNCAST, cf. section 4.5.3
17 for l := 1 to depth(T ) do
18 foreach node U ∈ T with depth l do

// Let V be the parent of U.

19 Encode (zU−zV )i−1

(i−1)! in the i-th block of (q+1,Q)
(V,U)D, for i = 1, . . . , q + 1 ;

20
(q+1,Q)

UT down := (q+1,Q)
VT ·

(q+1,Q)
(V,U)D truncated to the last p blocks;

21
(q+1,Q)

UT := (q+1,Q)
UT + (q+1,Q)

UT down // now, i! UTi is in the (q − i)-th block.
22 end
23 end

// EVALUATION, cf. section 4.5.4

24 Return the last block of the Taylor coefficient integer (q+1,Q)
UT , for each leaf U ∈ T ;
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Chapter 5

Truncated Tree Fast Multipole Method

Remember, the runtime of the "p, q-cubic" algorithm from the previous section was given by O2((|T |+ |W |)(p+ q)3). And using
the "normal" WSPD we get |T |+ |W | ∈ O (N). In order to develop an even faster FMM we try to shrink the tree, such that
|T |+ |W | ∈ O (N/(p+ q)). If this would be possible the corresponding algorithm would have runtime O (N(p+ q)2).
In the former WSPD the tree T had 1 particle per leaf. If we would be able to construct a tree with O (M) particles per leaf, the
remaining tree would have size O (N/M) and |W | ∈ O (N/M). Therefore we will now aim for trees with O (M) particles per leaf.
When dealing with leaves of size M , the steps INITIALIZE and EVALUATE have to be changed. During INITIALIZE we construct
a Laurent series using multiple particles, which is done in lemma 25. In the EVALUATE step we evaluate the Taylor series now at
M different points, instead of simply returning the constant coefficient. Section 5.1 is the groundwork for this algorithm, in
this section we consider leaves which represent multiple particles and the influence on the corresponding Laurent and Taylor
series. In order to work with leaves with more than one particle we need a new Well-Separated Pair Decomposition which will be
introduced in section 5.2. Using these new techniques we are able to define new operators for our algorithm which will be used
afterwards to develop the new algorithm in section 5.3.
In section 5.4 we take care of the sensitivity of the problem, i.e. the induced errors by rounding the input, and in section 5.5 we
consider the other errors which occur, e.g. the truncation errors. These two sections ensure that the overall error gets bounded
by 2−E. In section 5.6 we determine the runtime of each step and combine all results in section 5.7 to proof the claimed runtime
being linear in the number of particles N and quadratic in the error exponent E, which is nearly optimal.

5.1 Truncated Laurent and Taylor Series for multiple Particles

Lemmas 25 and 26 are essential for

• An rigorous error analysis of the algorithm. (Since we use truncated Laurent and Taylor series within our algorithm we
need to control the truncation error.)

• Accelerating the algorithm. (We will get new operators, which allow us to skip several steps of UPCAST, CONVERSION and
DOWNCAST.)

Lemma 25 (Truncated Laurent Series for multiple particles). For i = 1, . . . ,M , let (qi, zi) represent M particles with the
associated Laurent series iL(z) := qi

z−zi
. The Laurent series for all M particles [M ]L(z) :=

∑M
i=1 iL(z) =

∑∞
k=0

Lk
(z−zL)k , with

expansion point ZL, is holomorphic on SR(zL)û, with R = maxi|zL − zi| and the coefficients are given by

L0 = 0,

Lk =
M∑
i=1

qi(zi − zL)k−1, for k ≥ 1.

Moreover, let Q =
∑M

i=1|qi|, then the values of the coefficients can be estimated by

|Lk| ≤ QRk−1.
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Let z ∈ ScR(zL)û, with R 3 c ≥ 1. When truncating the Laurent series up to p-th order, the error will be at most

∣∣
[M ]L(z)−

p∑
k=0

Lk
(z − zL)k

∣∣ ≤ Q
cp(c− 1)R.

Proof. At first we consider the coefficients. The idea is to shift each function to zL and add the coefficients afterwards.

[M ]L(z) =
M∑
i=1

qi
z − zi

=
M∑
i=1

ib0 +
∞∑
k=1

ibk
(z − zL)k with ib0 = iL0 = 0 and ibk =

k∑
n=0

(zi − zL)k−n iLn︸︷︷︸
iLn=qi, for k=1; iLn=0, else

(
k − 1
n− 1

)
for k ≥ 1

=
M∑
i=1

∞∑
k=1

(zi − zL)k−1qi

(
k − 1
1− 1

)
(z − zL)−k

=
∞∑
k=1

(z − zL)−k
M∑
i=1

qi(zi − zL)k−1

︸ ︷︷ ︸
Lk

.

The next step is to prove the estimate for the coefficients. Let Q =
∑M

i=1|qi|, then we get

|Lk| =
∣∣ M∑
i=1

qi(zi − zL)k−1∣∣
≤

M∑
i=1
|qi||zi − zL|k−1

≤ QRk−1.

In the last step we will prove the error estimate. Let z ∈ ScR(zL)û, with R 3 c ≥ 1.

∣∣
[M ]L(z)−

p∑
k=0

(z − zL)−kLk
∣∣ ≤ ∞∑

k=p+1

|z − zL|−k|Lk|

≤
∞∑

k=p+1

(cR)−kQRk−1

= Q
cR

∞∑
k=p

(1
c

)k
lemma 39 = Q

cR

( 1
c

)p
1− 1

c

= Q
cp(c− 1)R.

Using this lemma we can now generalize the step INITIALIZE for leaves with multiple particles.
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Lemma 26 (The Truncated Taylor Series for multiple particles). For i = 1, . . . ,M , let (qi, zi) represent M particles with the
associated Laurent series iL(z) := qi

z−zi
. Let SRL

(zL) be a sphere with radius RL and middle point zL enclosing all zi for
i = 1, . . . ,M . Let zT ∈ SRL

(zL)û and let SRT
(zT ) be a sphere with radius RT and middle point zT . We consider two cases

(1) The two spheres SRL
(zL) and SRT

(zT ) are (c− 2)-well-separated.
(2) The sphere SRT

(zT ) is (c− 2)-well-separated to each point zi for i = 1, . . . ,M .

N.B. Case (1) and (2) are not disjoint. But neither (1) is implies (2), nor vice versa.
In the first case, we construct an inexact Taylor series 1T :=

∑∞
k=0 1Tk(z− zT )k, with expansion point zT , by using the truncated

Laurent series
∑p

k=0
Lk

(z−zL)k , from lemma 25.
In the second case, we construct an exact Taylor series 2T :=

∑∞
k=0 2Tk(z − zT )k =

∑M
i=1 iL(z) := qi

z−zi
, with expansion point

zT .
Both Taylor series are holomorphic in SRT

(zT ) and the coefficients are given by

(1) 1Tk =
p∑

n=1

M∑
i=1

qi(zi − zL)n−1
(
k + n− 1
n− 1

)
(zT − zL)−k−n, for k ≥ 0

(2) 2Tk =
M∑
i=1

qi
(zT − zi)k+1 , for k ≥ 0,

and obey the following inequality

(1) |1Tk| ≤ Q
1

Rk+1(c− 1)k+1 ,

(2) |2Tk| ≤ Q
1

Rk+1(c− 1)k+1 ,

with Q =
∑M

i=1|qi|. Let z ∈ SR(zT ). When truncating the Taylor series up to q-th order, the error will be at most

(1)
∣∣

1T(z)−
q∑

k=0
1Tk(z − zL)k

∣∣ ≤ Q
R(c− 2)

( 1
c− 1

)q+1
,

(2)
∣∣

2T(z)−
q∑

k=0
2Tk(z − zL)k

∣∣ ≤ Q
R(c− 2)

( 1
c− 1

)q+1
.

Proof. We start with case (1) and conclude case (2) by taking the limit p→∞.
The coefficients and the holomorphic area follow directly from lemma 25 in combination with lemma 19.
Let R = maxi|zL − zi|, let |zT − zL| ≥ cR with R 3 c > 2, then

|Tk| =
∣∣ p∑
n=1

M∑
i=1

qi(zi − zL)n−1
(
k + n− 1
n− 1

)
(zT − zL)−k−n

∣∣
≤

p∑
n=1

M∑
i=1
|qi||zi − zL|n−1

(
k + n− 1
n− 1

)
|zT − zL|−k−n

≤ Q
p∑

n=1
Rn−1

(
k + n− 1
n− 1

)
(cR)−k−n

≤ Q 1
(cR)k+1

∞∑
n=0

(
k + n

n

)(1
c

)n
lemma 39 = Q 1

(cR)k+1
1(

1− 1
c

)k+1
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= Q 1
Rk+1

1
(c− 1)k+1 .

Now we prove the error estimate for the truncated local expansion. Let Q =
∑M

i=1|qi|, let |zT − zL| ≥ cR with R 3 c ≥ 2, and
let z ∈ SR(zT ), then we get

∣∣ ∞∑
k=0

Tk(z − zT )k −
q∑

k=0

Tk(z − zT )k
∣∣ ≤ ∞∑

k=q+1

|Tk||z − zT |k

≤
∞∑

k=q+1

Q
Rk+1(c− 1)k+1R

k

= Q
(c− 1)R

∞∑
k=q+1

( 1
c− 1

)k
lemma 39 = Q

(c− 1)R

( 1
c−1
)q+1

1− 1
c−1

= Q
R(c− 2)

( 1
c− 1

)q+1
.

For the second case, we get the coefficients in case (1) by taking the limit p→∞, i.e.

Tk = lim
p→∞

p∑
n=1

M∑
i=1

qi(zi − zL)n−1
(
k + n− 1
n− 1

)
(zT − zL)−k−n

=
M∑
i=1

qi
1

(zT − zL)k+1 lim
p→∞

p−1∑
n=

(
k + n

n

)
(zT − zL)−n(zi − zL)n

lemma 39 =
M∑
i=1

qi
1

(zT − zL)k+1
1(

1− zi−zL
zT−zL

)k+1

=
M∑
i=1

qi
(zT − zi)k+1 .

For the estimate of the coefficients, we already know |zT − zi| ≥ cR, with R 3 c > 2, therefore

|Tk| ≤
M∑
i=1
|qi||zT − zi|−k−1

≤ Q(cR)−k−1.

The proof for the error estimate for the truncated local expansion is exactly the same as in case (1).

We see that in case (1), we can use the previous FMM. Using case (2) of this lemma we will define the new step, TAYLOR, in the
FMM, which directly computes the truncated Taylor series for M particles, without using UPCAST, CONVERSION and DOWNCAST.
Let U, V denote two nodes in the tree, e.g. the tree from the previous FMM. Let V represent |V | particles (q1, z1), . . . , (q|V |, z|V |).
The Taylor series for the particles in U , UT(z) :=

∑∞
k=0 Tk(z − zU )k, with expansion point zU , converges for all particles in U
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and the error of the truncated series is exponentially suppressed by the truncation order q, if the requirements of case (2) are
fulfilled. The coefficients are given by

UTk =
|V |∑
i=1

qi
(zU − zi)k+1 , for k ≥ 0.

Later on we will define a new WSPD, such that the requirements of case (2) will be fulfilled.

5.2 Truncated Tree Well-Separated Pair Decomposition

Since our new idea uses a tree which has Θ(M) particles in each leaf, there will not exist a WSPD in general. By redefining a
well-separated pair we are able to construct the Well-Separated Pair Decomposition again. Using this approach we get are finally
able to develop the Truncated Tree Fast Multipole Method.

Definition 27 (Internal Fair Split Tree and Well-Separated Pairs). This definition is based on [26]. Let Z = z1, . . . , zN ∈ Rn

be N points. Let Z be the root node of a binary tree TM . The children of a node U ∈ TM are obtained by splitting the bounding
box R(U) of U at the longest side in half. The particles corresponding to the "left" part belong to one children, and the particles
on the "right" side belong to the other children of U . We do not split if the size of the node is less than 2M . The size of each
leaf U ∈ TM is bounded by M and 2M , i.e. M ≤ |U | < 2M . A tree obeying these properties is called an internal fair split tree.
Let TM be an internal fair split tree of Z. A pair of nodes (U, V ) is called truncated tree s-well-separated iff

• Case 1 : U and V are internal nodes and they are s-well-separated in the old definition (the requirements of case (1) in
lemma 26 are fulfilled), i.e.

– there exist two d-dimensional spheres SU ,SV with the same radius R,
– SU contains the bounding box R(U) of U ,
– SV contains the bounding box R(V ) of V , and
– the distance between SU ,SV is at least sR.

• Case 2 : U is an internal node, V is a leaf and U is s-well-separated to each point zi in V (the requirements of case (2) in
lemma 26 are fulfilled), i.e.

– there exist a d-dimensional sphere SU with the radius R,
– SU contains the bounding box R(U) of U , and
– the distance between SU and each point in V is at least sR.

• Case 3 : U and V are leaves.

The real number s is called the separation ratio.
N.B. This definition is not symmetric, i.e. (U, V ) could be well-separated, if (V,U) is not well-separated, due to case 2. Case 3
assures that there will always exist a WSPD for an internal fair split tree TM . We see that this definition is dependent of the
underlying tree and it is a generalization of the old definition. For the tree T = T1, where each leaf contains exactly one particle,
both definitions are equivalent.

The old definition of the WSPD does not have to be changed as long as we use the new definition of well-separated pairs.
Let TM be a internal fair split tree with leaf size M and associated WSPD W .
We will denote W (1) to contain all pairs of nodes which are well-separated, w.r.t. case 1, i.e. W (1) contains all well-separated
inner node pairs. We will denote W (2) to contain all pairs of nodes which are well-separated, w.r.t. case 2, i.e. W (2) contains all
well-separated (leaf, inner node) pairs. We will denote W (3) to contain all pairs of nodes which are well-separated, w.r.t. case
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3, i.e. W (3) contains all well-separated (leaf, leaf) pairs. By using similar techniques like Callahan to estimate the number of
well-separated pairs, Reif and Tate [26] have shown |W (1)|+ |W (2)|+ |W (3)| ∈ O (|TM |) ∈ O

(
N
M

)
and this truncated tree with

the corresponding WSPD can be computed in subquadratic time. In the section 5.3 we will discuss the consequences of this new
definition of well-separated pairs and develop a new FMM algorithm.

5.3 Truncated Tree Fast Multipole Method

In this section we will track what is happening for an arbitrary but fixed particle (z1, q1) in the different cases in the WSPD.
During this observation we will develop an algorithm using the new WSPD. The proof of correctness follows by the construction.
Let Z = z1, . . . , zN ∈ Rn be the positions of N particles with the charges q1, . . . , qN . Let TM be an internal fair split tree of Z
with the corresponding WSPD W . Due to the properties of the internal fair split tree TM , there exists for each point zi exactly
one leaf, which contains zi. This leaf will be denoted by l(zi). Due to the properties of the WSPD, there exists for each pair of
leaves (l(z1), l), with l(z1) as the first entry, exactly one pair (U, V ) ∈ W , such that l(z1) ∈ U and l ∈ V , which represents a
pairing of z1 to each particle in l. Therefore, there exists exactly one pairing of z1 to each other particle. This ensures that
each pair of particles gets regarded exactly once in the algorithm. N.B. z1 will be paired to itself as well. Now we compute∑

j∈V
j 6=i

q1qj

z1−zj
for each V from the pairing. Therefore we consider the three cases in the definition of the well-separated pairs.

• Case 1 : U and V are internal nodes and they are s-well-separated definition. Then we can use INITIALIZE and UPCAST

to compute the Laurent series for V . Afterwards we use CONVERSION to get the Taylor series and evaluate it at z = z1, or
use DOWNCAST and postpone the evaluation.

• Case 2 : U is an internal node, V is a leaf and U is s-well-separated to each point zi in V (the requirements of case (2)
in lemma 26 are fulfilled). Therefore we can directly construct the Taylor series for U induced by the particles in V .
Afterwards evaluate at z = z1, or use DOWNCAST and postpone the evaluation.

• Case 3 : U and V are leaves. Then we will directly compute
∑

j∈V
j 6=i

q1qj

z1−zj
.

These ideas are formalized in algorithm 7.
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Algorithm 7: Truncated Tree Fast Multipole Method — abstract
Input : An internal fair split tree TM with leaf size M and associated WSPD W for N particles with charges qi and positions zi

for i = 1, . . . , N .
Output : (C(q, z) · q)i =

∑N
j=1
j 6=i

qiqj

zi−zj
= iΦ(zi) for i = 1, . . . , N .

// INITIALIZE
foreach leaf U ∈ T do // Remember that U represents multiple particles.

Compute the Laurent series UL(z), by using lemma 25;
end
// UPCAST
for l := depth(T ) to 1 do

foreach inner node U ∈ T with depth l do
// Let V, W be the children of U.
Compute the Laurent series UL(z) of U by combining the Laurent series VL(z) and WL(z);

end
end
// CONVERSION

foreach pair (U, V ) ∈ W (1)
M do

Convert the Laurent series VL(z) of V into a Taylor series UT(z) of the paired node U ;
Convert the Laurent series UL(z) of U into a Taylor series VT(z) of the paired node V ;
// If there already existed Taylor series before, add both.

end
// TAYLOR

foreach pair (U, V ) ∈ W (2)
M do

Directly compute the Taylor series UT(z) for U induced by the particles in V , by using lemma 26;
// If there already existed Taylor series before, add both.

end
// DOWNCAST
for l := 1 to depth(T ) do

foreach node U ∈ T with depth l do
// Let V be the parent of U.
Compute the new Taylor series UT(z) of U by combining the old Taylor series UT(z) of U with the Taylor series VT(z) of
the parent node V ;

end
end
// EVALUATION1
foreach leaf U ∈ T do // Remember that U represents multiple particles.

// Let zi, for i = 1, . . . , |U |, be the positions of the particles in U.
Evaluate the Taylor series UT(z) of U at z = zi, for i = 1, . . . , |U | ;

end
// EVALUATION2

foreach pair (U, V ) ∈ W (3)
M do

// Let Uzi, Uqi, for i = 1, . . . , |U |, be the positions and charges of the particles in U and let Vzj , Vqj, for
j = 1, . . . , |V |, be the positions and charges of the particles in V .

Directly compute
∑

j∈V
j 6=i

Uqi V qj

U
zi−V

zj
, for i = 1, . . . , |U | ;

end
Add the results from EVALUATION1 and EVALUATION2 and return them;

5.4 Sensitivity of the Problem

We will consider Trummer’s Problem in the real case and, without loss of generality, the absolute value of all coefficients is
bounded by 1, which can be achieved by scaling the problem appropriately. Let (q̃i, z̃i), for i = 1, . . . , N , denote N particles
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with q̃i ∈ [0, 1] ⊂ R and z̃i ∈ [0, 1] ⊂ R. The first task is to encode the real numbers q̃i and z̃i. Since real numbers have an
infinite encoding, we will consider m-approximations of the real numbers, i.e. numbers qi, zi, such that

|q̃i − qi| ≤ 2−mq

|z̃i − zi| ≤ 2−mz ,

holds. An m-approximations is equivalent to using a lattice with distance 2−m and rounding each point to the nearest lattice
point.
Lemmas 28 and 29 regards the errors which occur by using m-approximations and corollary 30 summarizes how to choose mq

and mz in order to obtain an error of at most 2−E.

Lemma 28 (A Lattice for the Positions). Let (q̃i, z̃i), for i = 1, . . . , N , denote N particles with q̃i ∈ [0, 1] ⊂ R and z̃i ∈ [0, 1] ⊂
R. Let ms be the separation of the zi, i.e. |zi − zj | ≥ 2−ms . Let zi be the mz-approximation, with mz ≥ ms + 1, of z̃i, then
the approximation error will be at most

N∑
i=1

∣∣∣∣∣
N∑
j=1
j 6=i

q̃iq̃j
z̃i − z̃j

−
N∑
j=1
j 6=i

q̃iq̃j
zi − zj

∣∣∣∣∣ ≤ 22ms−mz+1N2.

Proof. Let (q̃i, z̃i), for i = 1, . . . , N , denote N particles with q̃i ∈ [0, 1] ⊂ R and z̃i ∈ [0, 1] ⊂ R. Let ms be the separation of
the zi, i.e. |zi − zj | ≥ 2−ms . Let zi be the mz-approximation, with mz ≥ ms + 1, of z̃i, then we get∣∣∣∣ q̃iq̃j

z̃i − z̃j
− q̃iq̃j
zi − zj

∣∣∣∣ =
∣∣∣∣ q̃iq̃j
z̃i − z̃j

− q̃iq̃j
2−mz [2mz z̃i]− 2−mz [2mz z̃j ]

∣∣∣∣
≤ |q̃i||q̃j |

∣∣∣∣ 2−mz [2mz z̃i]− z̃i + z̃j − 2−mz [2mz z̃]j
(z̃i − z̃j)(2−mz [2mz z̃i]− 2−mz [2mz z̃j ])

∣∣∣∣
≤ 2−mz

|[2mz z̃i]− 2mz z̃i|+ |2mz z̃j − [2mz z̃]j |
|z̃i − z̃j | · |2−mz [2mz z̃i]− 2−mz [2mz z̃j ]|

lemma 40 ≤ 2−mz
1

|z̃i − z̃j | · (|z̃i − z̃j | − 2−mz )

≤ 2−mz
1

2−ms · (2−ms − 2−mz )︸ ︷︷ ︸
≥2−ms−1

≤ 2−mz+2ms+1.

Summation over i, j = 1, . . . , N , with i 6= j, finishes the proof.

Lemma 29 (A Lattice for the Charges). Let (q̃i, z̃i), for i = 1, . . . , N , denote N particles with q̃i ∈ [0, 1] ⊂ R and z̃i ∈ [0, 1] ⊂
R. Let ms be the separation of the zi, i.e. |zi − zj | ≥ 2−ms . Let qi be the mq-approximation, with mq ≥ ms + 1, of q̃i, then the
approximation error will be at most

N∑
i=1

∣∣∣∣∣
N∑
j=1
j 6=i

q̃iq̃j
zi − zj

−
N∑
j=1
j 6=i

qiqj
zi − zj

∣∣∣∣∣ ≤ 2ms−mq+3N2.
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Proof. Let (q̃i, z̃i), for i = 1, . . . , N , denote N particles with q̃i ∈ [0, 1] ⊂ R and z̃i ∈ [0, 1] ⊂ R. Let ms be the separation of
the zi, i.e. |zi − zj | ≥ 2−ms . Let qi be the mq-approximation, with mq ≥ ms + 1, of q̃i, then we get∣∣∣∣∣ q̃iq̃j

zi − zj
− qiqj
zi − zj

∣∣∣∣∣ =
∣∣∣∣∣ q̃iq̃j
zi − zj

− 2−mq [2mq q̃i]2−mq [2mq q̃j ]
zi − zj

∣∣∣∣∣
= |q̃iq̃j − (q̃i + 2−mq [2mq q̃i]− q̃i)(q̃j + 2−mq [2mq q̃j ]− q̃j)|

|zi − zj |
lemma 40
expanding

triangle inequality
≤ 2ms+1(|q̃i(2−mq[2mqq̃j ]−q̃j)|+|(2−mq[2mqq̃i]−q̃i)q̃j |+|(2−mq[2mqq̃i]−q̃i)(2−mq[2mqq̃j ]−q̃j)|)

≤ 2ms+1(2−mq + 2−mq + 2−mq + 2−mq )

≤ 2ms+3−mq .

Summation over i, j = 1, . . . , N , with i 6= j, finishes the proof.

Corollary 30. Let (q̃i, z̃i), for i = 1, . . . , N , denote N particles with q̃i ∈ [0, 1] ⊂ R and z̃i ∈ [0, 1] ⊂ R. Let ms be the
separation of the zi, i.e. |zi − zj | ≥ 2−ms .
Let r̃ ∈ RN be the vector of the exact solution of Trummer’s Problem, by using the exact values of q̃i and z̃i, for i = 1, . . . , N , as
input. Let mq,mz

r ∈ RN be the vector of the approximative solution of Trummer’s Problem, by using the mq-approximation of q̃i
and the mz-approximation of z̃i, for i = 1, . . . , N , as input. By choosing mq = E+ms+4+2 lgN and mz = E+2ms+2+2 lgN ,
the vector mq,mz

r ∈ RN of the approximative solution is an E-approximation of the vector r̃ ∈ RN of the exact solution, w.r.t.
the L1 norm, i.e.

N∑
i=1
|mq,mz

ri − r̃i| ≤ 2−E.

Therefore mq ∈ Θ̃(E+ms) and mz ∈ Θ̃(E+ms).

Proof. Let (q̃i, z̃i), for i = 1, . . . , N , denote N particles with q̃i ∈ [0, 1] ⊂ R and z̃i ∈ [0, 1] ⊂ R. Let ms be the separation of
the zi, i.e. |zi − zj | ≥ 2−ms . Let r̃ ∈ RN be the vector of the exact solution of Trummer’s Problem, by using the exact values of
q̃i and z̃i, for i = 1, . . . , N , as input. Let mq,mz

r ∈ RN be the vector of the approximative solution of Trummer’s Problem, by
using the mq-approximation of q̃i and the mz-approximation of z̃i, for i = 1, . . . , N , as input. Let mq = E+ms + 4 + 2 lgN
and mz = E+ 2ms + 2 + 2 lgN , then we get

N∑
i=1
|mq,mz

ri − r̃i| =
N∑
i=1

∣∣∣∣∣
N∑
j=1
j 6=i

qiqj
zi − zj

−
N∑
j=1
j 6=i

q̃iq̃j
z̃i − z̃j

∣∣∣∣∣
≤

N∑
i=1

∣∣∣∣∣
N∑
j=1
j 6=i

qiqj
zi − zj

−
N∑
j=1
j 6=i

q̃iq̃j
zi − zj

∣∣∣∣∣+
N∑
i=1

∣∣∣∣∣
N∑
j=1
j 6=i

q̃iq̃j
zi − zj

−
N∑
j=1
j 6=i

q̃iq̃j
z̃i − z̃j

∣∣∣∣∣
lemmas 28 and 29 ≤ 22ms−mz+1N2 + 2ms−mq+3N2

≤ 22ms−(E+2ms+2+2 lgN)+1+2 lgN + 2ms−(E+ms+4+2 lgN)+3+2 lgN

= 2−E.
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5.5 Approximation Errors

Within this section we analyze where errors, e.g. errors due to truncated series, occur and how to suppress them such that the
overall error of the result will be at most 2−E, for an arbitrary error exponent E.
In the algorithm we will use integer arithmetic and not floating point arithmetic. Therefore addition, subtraction and multiplication
are exact and division is inexact. This error can be suppressed by multiplying with a large number before. For generality we
will allow real numbers and an input, instead of rational numbers. The output will be rational numbers, which approximate
the exact output arbitrarily precise. Let r1, . . . , rN be the exact results and let r̂1, . . . , r̂N be the approximate output, then we
require |r1 − r̂1|+ . . .+ |rN − r̂N | ≤ 2−E for an arbitrary error exponent E.

5.5.1 Truncation Error for Laurent Series

Lemma 31 states the error when using truncated Laurent series instead of Laurent series up to infinity order. Using this lemma
we are able to compute an appropriate truncation parameter p for the Laurent series, such that the overall error is bounded by
2−E.

Lemma 31 (The Truncation Error for Laurent Series).∣∣∣∣∣ ∑
(U,V )∈W 1

zi∈U

∞∑
k=0

VLk
(zi − zV )k −

∑
(U,V )∈W 1

zi∈U

p∑
k=0

VLk
(zi − zV )k

∣∣∣∣∣ ≤ ∑
(U,V )∈W 1

zi∈U

QV
(c− 1)RV

(1
c

)p
.

Proof. ∣∣∣∣∣ ∑
(U,V )∈W 1

zi∈U

∞∑
k=0

VLk
(zi − zV )k −

∑
(U,V )∈W 1

zi∈U

p∑
k=0

VLk
(zi − zV )k

∣∣∣∣∣ ≤ ∑
(U,V )∈W 1

zi∈U

∣∣∣∣∣
∞∑
k=0

VLk
(zi − zV )k −

p∑
k=0

VLk
(zi − zV )k

∣∣∣∣∣
lemma 25 ≤

∑
(U,V )∈W 1

zi∈U

QV
cp(c− 1)RV

.

Therefore we see p ∈ Θ̃(E).

5.5.2 Truncation Error for Taylor Series

This section is similar to the previous, here we consider truncated Taylor series instead of Laurent series. Lemma 32 states the
error when using truncated Taylor series instead of Taylor series up to infinity order. Using this lemma we are able to compute
an appropriate truncation parameter q for the Taylor series, such that the overall error is bounded by 2−E.

Lemma 32 (The Truncation Error for Taylor Series).∣∣∣∣∣ ∑
(U,V )∈W 1

zi∈U

∞∑
k=0

UTk(zi − zU )k −
∑

(U,V )∈W 1

zi∈U

q∑
k=0

UTk(zi − zU )k
∣∣∣∣∣ ≤ ∑

(U,V )∈W 1

zi∈U

QU
RU (c− 2)

( 1
c− 1

)q+1
.
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Proof. ∣∣∣∣∣ ∑
(U,V )∈W 1

zi∈U

∞∑
k=0

UTk(zi − zU )k −
∑

(U,V )∈W 1

zi∈U

q∑
k=0

UTk(zi − zU )k
∣∣∣∣∣ ≤ ∑

(U,V )∈W 1

zi∈U

∣∣∣∣∣
∞∑
k=0

UTk(zi − zU )k −
q∑

k=0
UTk(zi − zU )k

∣∣∣∣∣
lemma 26 ≤

∑
(U,V )∈W 1

zi∈U

QU
RU (c− 2)

( 1
c− 1

)q+1
.

Therefore we see q ∈ Θ̃(E).

5.5.3 Rounding Error for CONVERSION

During the CONVERSION step, cf. algorithm 6 line 9ff., we need a division, which could result in rounding errors. These rounding
errors will be estimated in lemma 34.

Lemma 33.

|UTk − CONV
UTk| ≤ 2−mCONVQVRpV 6p,

whereas CONV
UTk is obtained by CONVERSION, cf. algorithm 6 line 9ff., including an inexact division.

Proof.

|UTk − CONV
UTk|

=
∣∣∣∣ 1
k!(p− 1)!

p∑
n=1

(p− 1)! VLn
(n− 1)!

(k + n− 1)!
(zu − zv )k+n −

2−mCONV

k!(p− 1)!

p∑
n=1

(p− 1)! VLn
(n− 1)!

[ 2mCONV

(zu − zv )k+n

]
(k + n− 1)!

∣∣∣∣
≤ 2−mCONV

1
k!

p∑
n=1

(k + n− 1)!|VLn|
(n− 1)!

∣∣∣∣ 2mCONV

(zu − zv )k+n −
[ 2mCONV

(zu − zv )k+n

]∣∣∣∣
≤ 2−mCONV

p∑
n=1
QVRn−1

V

(
k + n− 1
n− 1

)
≤ 2−mCONVQV

1−RpV
1−RV

(
2p
p

)
≤ 2−mCONVQVRpV 6p.

Lemma 34 (The Rounding Error for CONVERSION).∣∣∣∣∣ ∑
(U,V )∈W 1

zi∈U

q∑
k=0

UTk(zi − zU )k −
∑

(U,V )∈W 1

zi∈U

q∑
k=0

CONV
UTk(zi − zU )k

∣∣∣∣∣ ≤ 2−mCONV
∑

(U,V )∈W 1

zi∈U

QVRq+1
U RpV 6p.
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Proof. ∣∣∣∣∣ ∑
(U,V )∈W 1

zi∈U

q∑
k=0

UTk(zi − zU )k −
∑

(U,V )∈W 1

zi∈U

q∑
k=0

CONV
UTk(zi − zU )k

∣∣∣∣∣ ≤ ∑
(U,V )∈W 1

zi∈U

q∑
k=0

|zi − zU |k|UTk − CONV
UTk|

lemma 33 ≤
∑

(U,V )∈W 1

zi∈U

q∑
k=0

RkU2−mCONVQVRpV 6p

lemma 39 ≤ 2−mCONV
∑

(U,V )∈W 1

zi∈U

QVRq+1
U RpV 6p.

Therefore mCONV ∈ Θ̃(Emz) ∈ Θ̃(E2 +Ems).

5.6 Runtime of the Main Steps

In this section we analyze each step of the Truncated Tree Fast Multipole Method sections 5.6.1 to 5.6.6. In section 5.7 we
combine all previous results in order to give an estimation of the overall runtime, which is one of our main results.
In the following analysis let µ(k) denote the runtime of the multiplication of two integers with k bits encoding. Also we scale all
charges and positions by mq, respectively mz, and round them afterwards to integers. These values will be the input of our
algorithm. Then 2mz−ms ≤ |zi| ≤ 2mz , for all i = 1, . . . , N and |qi| ≤ 2mq holds.

5.6.1 INITIALIZE

// INITIALIZE
1 foreach leaf U ∈ T do // Remember that U represents multiple particles.

// Compute the Laurent series UL(z), by using lemma 25

2 UL̂k := (p− 1)! ULk

(k−1)! = (p− 1)!
∑

i:zi∈U qi(zi − zU )k−1, for k ≥ 1;
3 Define the Laurent coefficient integer (p,P )

UL , with p blocks of size P , whereas the k-th block gets initialized by the value
L̂k;

4 end

We see that for each leaf, this problem is equivalent to the multiplication of a transposed Vandermonde Matrix, whereas the
generating vector of the Vandermonde Matrix is given by si = zi − ZU , with the vector q. As shown by Tsigaridas and Pan [24]
this problem can solved in Õ (E3), because p ∈ O (E). Therefore the overall runtime is given by Õ (|TM |E3).

5.6.2 UPCAST

Lemma 35 (Runtime of UPCAST). The runtime of UPCAST is Õ (|TM |(E2ms +E3)) and all divisions are exact.

Proof. Since p ≥ i the divisions in line 5 is exact.
For the division in line 10 we recall section 4.5.1 with the equation

ULk
(k − 1)! =

k∑
n=1

(zV − zU )k−n
(k − n)!

VLn
(n− 1)! +

k∑
n=1

(zW − zU )k−n
(k − n)!

WLn
(n− 1)! .
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// UPCAST
1 for l := depth(T ) to 1 do
2 foreach inner node U ∈ T with depth l do

// Let V,W be the two children of U.

// Let (p,P )
(U,V )D,

(p,P )
(U,W )D be the distance integers with p blocks of size P.

3 (zV − zU )1−1 (p−1)!
(1−1)! = (p− 1)!;

4 for i := 1 to p− 1 do

5 (zV − zU )i (p−1)!
i! = (zV − zU )i−1 (p− 1)!

(i− 1)!︸ ︷︷ ︸
known from previous iteration

/i · (zV − zU );

6 end
7 Encode the scaled distances (zV − zU )i−1 (p−1)!

(i−1)! , for i = 1, . . . , p, in the i-th block of (p,P )
(U,V )D;

8 Redo the above steps with interchanged roles of V and W ;
// Let (p,P )

UL be the Laurent coefficient integer with p blocks of size P of U.

9
(p,P )

UL ′ := (p,P )
(U,V )D ·

(p,P )
VL + (p,P )

(U,W )D ·
(p,P )

WL truncated to the last p blocks;
10

(p,P )
UL := (p,P )

UL ′/(p− 1)! // now, UL̂i is in the i-th block.
11 end
12 end

By multiplying with
(
(p− 1)!

)2 on both sides, we see that
(
(p− 1)!

)2
ULk

(k−1)! is in the k-th block of (p,P )
UL ′, cf. line 5. Therefore

we can divide by (p− 1)! exactly.
For line 3 we assume the integer (p − 1)! is precomputed. In line 5, the runtime for each multiplication and division is
O (µ(p(lg p+mz))), cf. lemma 41. Hence the overall runtime for lines 3 to 8 is O (pµ(p(lg p+mz))).
In line 9 we can neglect the runtime of the addition and the truncation, because the time for the multiplication is larger and is
given by O (µ(pP )). The division in line 10 has the same runtime.
Iteration over each node yields the complete runtime O (|TM |µ(pP + p2(lg p+mz))).
By estimating the size of the blocks, we get

lg
∣∣∣∣ ((p− 1)!)2

ULk
(k − 1)!

∣∣∣∣ ≤ lgQURk−1
U p2p lemma 25

≤ mq lgN + pmz + 2p lg p.

Therefore we get

P ≤ mq lgN + pmz + 2p lg p

∈ Θ̃(Ems +E2).

Therefore the long integers, into which the coefficients get embedded, have p blocks of size dmq lgN + pmz + 2p lg pe. Hence
the integers have size pdmq lgN + pmz + 2p lg pe ∈ Θ̃(E2ms +E3). Therefore the overall runtime is Õ (|TM |(E2ms +E3)).

5.6.3 CONVERSION

Lemma 36 (Runtime of CONVERSION). The runtime of CONVERSION is Õ (|W 1
M |(E2ms+E3)) and the division in line 11 is exact.
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// CONVERSION
1 foreach (U, V ) ∈ W (1) do

// Let (q+p,Q)
(V,U)R be reciprocal integers with q + p blocks of size Q.

2 (zU − zV )1−1 := 1;
3 Compute

[
2mCONV

(zU−zV )1−1

]
(1− 1)!;

4 for i := 1 to p+ q − 1 do
5 (zU − zV )i := (zU − zV )i−1︸ ︷︷ ︸

known from previous iteration

·(zU − zV ) ;

6 Compute
[

2mCONV

(zU−zV )i

]
i!

7 end
8 Encode the scaled reciprocal distances

[
2mCONV

(zU−zV )i−1

]
(i− 1)!, for i = 1, . . . , p+ q, in the i-th block of (p+q,Q)

(V,U)R .;

9 Expand each block of (p,P )
VL to size Q and rename it to (p,Q)

VL ;
10

(q+1,Q)
UT conv := (p+q,Q)

(U,V )R ·
(p,Q)

VL truncated to the blocks from p to p+ q;
11

(q+1,Q)
UT conv := (q+1,Q)

UT conv/(p− 1)!;
12

(q+1,Q)
UT := (q+1,Q)

UT + (q+1,Q)
UT conv // now, 2mCONVi! UTi is in the (q − i)-th block.

13 Redo these steps with interchanged roles of U and V ;
14 end

Proof. For the division in line 11 we recall section 4.5.2 with the equation

k! UTk =
p∑

n=1

VLn
(n− 1)!

(k + n− 1)!
(zu − zv )k+n .

By multiplying with (p− 1)!2mCONV on both sides, we see that (p− 1)!2mCONVk! UTk is in the (q − k)-th block of (q+1,Q)
UT conv, cf.

line 10. Therefore we can divide by (p− 1)! exactly.
In line 5, the runtime for each multiplication is O (µ(pmz)), cf. lemma 41. In line 6, the runtime for the division is O (µ(mCONV +
pmz)) and for the multiplication we get O (µ(mCONV + p lg p)), cf. lemma 41. Hence the overall runtime for lines 2 to 9 is
O ((p+ q)µ(mCONV + p(lg p+mz))).
The runtime of line 12 is dominated by the runtime of line 10, which is given by O (µ((p+ q)Q)). The division in line 11 has the
runtime O (µ(qQ+ p lg p)).
Iteration over each type-1 well-separated pair yields the complete runtime O (|W 1

M |µ((p+ q)(Q+mCONV + p(lg p+mz)))).
By estimating the size of the blocks, we get

lg|2mCONVk! UTk| ≤ lg 2mCONVQUpp lemma 26

≤ mCONV +mq lgN + p lg p.

Therefore we get

Q ≤ mCONV +mq lgN + p lg p

∈ Θ̃(Ems +E2).

Therefore the long integers, into which the coefficients get embedded, have p+q blocks of size dmCONV+mq lgN+p lg pe. Hence the
integers have size (p+ q)dmCONV +mq lgN + p lg pe ∈ Θ̃(E2ms +E3). Therefore the overall runtime is O (|W 1

M |(E2ms +E3)).
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5.6.4 TAYLOR

Lemma 26 shows how to compute the coefficients of the Taylor series. This can be done similar as in section 5.6.1 — one sees
that the second case can be solved by multiplying a transposed Vandermonde matrix with a vector and for the first case we need
to multiply a transposed Vandermonde matrix with a vector and afterwards a transposed Vandermonde matrix with the solution.
Therefore this problem can be solved again in Õ (E3), cf. [24], for each W (2)-pair. Therefore the overall runtime is given by
Õ (|W (2)|E3).

5.6.5 DOWNCAST

// DOWNCAST
1 for l := 1 to depth(T ) do
2 foreach node U ∈ T with depth l do

// Let V be the parent of U.

// Let (q+1,Q)
(V,U)D be the distance integer with q + 1 blocks of size Q. One could reuse the

distance integers from UPCAST.

3 (zU − zV )1−1 (q−1)!
(1−1)! = (q − 1)!;

4 for i := 1 to q do

5 (zU − zV )i (q−1)!
i! = (zU − zV )i−1 (q − 1)!

(i− 1)!︸ ︷︷ ︸
known from previous iteration

/i · (zU − zV );

6 end
7 Encode (zU−zV )i−1

(i−1)! in the i-th block of (q+1,Q)
(V,U)D, for i = 1, . . . , q + 1 ;

8
(q+1,Q)

UT down := (q+1,Q)
VT ·

(q+1,Q)
(V,U)D truncated to the last p blocks;

9
(q+1,Q)

UT down := (q+1,Q)
UT down/(q − 1)!;

10
(q+1,Q)

UT := (q+1,Q)
UT + (q+1,Q)

UT down // now, 2mCONVi! UTi is in the (q − i)-th block.
11 end
12 end

Lemma 37 (Runtime of DOWNCAST). The runtime of DOWNCAST is Õ (|TM |(E2ms +E3)) and all division are exact.

Proof. Since q ≥ i the divisions in line 5 is exact.
For the division in line 9 we recall section 4.5.3 with the equation

k! UTk =
q∑

n=k

n! VTn
(zU − zV )n−k

(n− k)! .

By multiplying with (q − 1)!2mCONV on both sides, we see that (q − 1)!2mCONVk! UTk is in the (q − k)-th block of (q+1,Q)
UT down, cf.

line 8. Therefore we can divide by (q − 1)! exactly.
For line 3 we assume the integer (q − 1)! is precomputed. In line 5, the runtime for each multiplication and division is
O (µ(q(lg q +mz))), cf. lemma 41. Hence the overall runtime for lines 3 to 7 is O (qµ(q(lg q +mz))).
In line 10 we can neglect the runtime of the addition and the truncation in line 8, because the time for the multiplication is
larger and is given by O (µ((p+ q)Q)). The division in line 11 has the runtime O (µ(qQ+ q lg q)).
Iteration over each node yields the complete runtime O (|TM |µ((p+ q)(Q+ q(lg q +mz)))) ∈ O (|TM |(E2ms +E3)), cf. the
proof of lemma 36.
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5.6.6 EVALUATION1 and EVALUATION2

EVALUATION2 is Trummer’s Problem again. In order to implement this, we suggest an recursive implementation. In order to
show the runtime, we simply use Tsigaridas and Pan’s results [24] again. The cubic runtime in E is sufficient for our required
overall runtime.
EVALUATION1 is the multipoint evaluation, i.e. multiplication of a Vandermonde matrix with a vector again. Hence the runtime
is cubic in E again. By iterating over all leaves we get the combined runtime of EVALUATION1 and EVALUATION2, which is given
by Õ (|TM |E3).

5.7 Fast Multipole Method linear in N and quadratic in E

Combining the sections about the runtime analysis sections 5.6.1 to 5.6.6 with the sections about the errors analysis sections 5.4
and 5.5.1 to 5.5.3, we see that algorithm 7 is linear in the number of nodes in the Tree, i.e. N

E
and cubic in the error exponent E,

resp. in E3 +E2 ·ms, with respect to bit cost, therefore complete problem can be solved in Õ2(N · (E2 +E ·ms). Compared to
the lower bound O2(N · (E+ms), cf. section 2.2, this algorithm is nearly optimal up to a factor of E and polylogarithmic terms.
What makes it labor-intensive to implement this algorithm is the need to implement the fast computation with structured
matrices, i.e. Vandermonde and transposed Vandermonde matrices, whereas the latter requires computations with a Cauchy
matrices. Therefore a recursive approach would be very interesting and promising.
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Chapter 6

Implementation

The big problem while implementing the Fast Multipole Method was stated by Eric Darve [6]

However, implementation of the FMM proved to be a rather difficult task in part because of its complexity (many
lines in a complex and long code) and because of the need to optimize all the steps of the FMM.

Therefore the big challenge for the implementation is to reduce the implementation complexity on all costs without losing
performance.
In section 6.1 we present the challenges to implement the Fast Multipole Method and in section 6.2 we describe how to implement
the two modules, the Fast Multipole Method and the Well-Separated Pair Decomposition, as well as some helper functionalities
which are needed during the implementation. Section 6.3 states some more interesting properties of our implementation, e.g. we
have solved an even larger family of problems and not only Trummer’s Problem and section 6.4 completes this chapter with some
implementation statistics about the effort which is needed for the implementation and the resulting implementation complexity,
measured using the cyclomatic complexity.

6.1 Challenges to implement the Fast Multipole Method

To estimate the time we need to implement the software we use the COCOMO model developed by Barry W. Boehm [4]. The
needed effort E, i.e. the number of month one person needs to implement the algorithm, is given by

E = a ·
(
LOC
1000

)b
,

whereas LOC is the number of lines of delivered code, i.e. number of lines of code, without comments, without blank lines,
without tests, without benchmarks, without makefiles, etc. The parameters a and b are fitted by Boehm from historical projects.
By classifying the projects into ’easy’, ’intermediate’ and ’complex’ he got the following values

• a = 2.4, b = 1.05 for an ’easy’ project,
• a = 3.0, b = 1.12 for an ’intermediate’ project, and
• a = 3.6, b = 1.20 for a ’complex’ project.

The model function is more interesting than the explicit values of a and b, namely the non linear behavior
(LOC

1000
)b. This

means that we should try to split the algorithm in multiple independent modules. The steps of the Fast Multipole Method
are not independent of each other, therefore the whole FMM should be contained in one module. But the Well-Separated Pair
Decomposition is completely independent of the FMM and solves an interesting problem on its own. Therefore the Well-Separated
Pair Decomposition forms the second module. This separation into two modules should reduce the overall effort to implement
everything.
The biggest "problem" of all existing approaches are the two different views of the series, namely the series in position space, the
"normal" view, and the coefficients in the momentum space, the view after the Fourier transform. This duality is called Pontryagin
duality, cf. [28]. Using these two views one is able to speed up the algorithm, because the multiplication of polynomials is way
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faster by using the latter view., after the Fourier transform. These two views induce a lot of additional complexity; but on
the other hand, we should use the Fast Fourier Transform in order to speed up the computations. The big challenge is now
how to unify both views such that the implementation complexity is reduced, but the FFT is still applicable to speed up the
multiplication of polynomials. This view and the corresponding data structure should be used throughout the complete algorithm
to further simplify the implementation.
In order to support more software and other libraries, the next challenge is dedicated the user-friendliness. Here we want that on
the one hand the library should be easy to build and to integrate in other software and on the other hand the usage should be
easy.
Summarized we got the following challenges for our implementation

• The Library has to be fast and satisfy the claimed runtime complexity.
• User-friendliness: easy building, integration and usage of the library.
• Minimized implementation complexity

– Split the solution into two modules the Well-Separated Pair Decomposition and the Fast Multipole Method.
– Unify the two views onto the series and the corresponding unified data structure should be used throughout the

complete algorithm to simplify the implementation.
– The source code should be easily maintainable, i.e. a good coding style and a clean code.

The requirement for maintainability and readability of the code, is obvious and should not be emphasized here. To fulfill this
task, we comply with ’Google C++ Style Guide’ [11], remove redundant code by refactoring, do not nest "if", "for", "switch"
control structures too deeply, etc.
The other requirements from above will be discussed in the next sections. The runtime of the implementation will be discussed
in section 7.2.

6.1.1 User-friendliness: easy Building, Integration and Usage of the Library

In order to build the library we have chosen CMake (version >= 3.5) as our build tool, which simplifies the build process for
multiple platforms. We have build and tested the library with macOS and ubuntu. The library needs the C++11 standard, but
no C++14 or C++17 features. These features sometimes result in problems when compiling with windows, therefore we have
omitted them.
The only requirement is GMP [12]. This library supports computations with arbitrary long integers. The integer multiplication
in GMP uses a hybrid ansatz, i.e. the called algorithm depends on the length of the integers. For small integers the school
book method with the bit-complexity O2(n2), is used. For medium sized inputs the Karatsuba method with the bit complexity
O2(nlog2 3) is used, for larger sized inputs one of the Toom-Cook methods, which run in O2(n1+ε), are used, namely in increasing
order: Toom-3, Toom-4, Toom-6.5 and Toom-8.5. For very large inputs GMP uses the Schönhage–Strassen algorithm, with
O2(n · logn · log logn runtime. Therefore we’ve found a library which implements the required fast integer multiplication, such
that our estimated runtime can be achieved. Since GMP is the only requirement and available on all systems, e.g. by using
their packet managers: apt-get on ubuntu, brew on macOS, choco or vcpkg on Windows, etc. this simplifies the building and
integration of the library drastically.
To simplify the integration the complete library is header only, therefore one gets no problems while linking.
Due to heavy use of templates one is able to use a lot of different types as input, e.g. integers and doubles can be used for the
positions and charges. Using GMP values, e.g. mpz_t, mpq_t and mpf_t, is also possible. Therefore it should be quit easy to
integrate this library into an existing application, because there is no conversion of the data types needed.

60 6. Implementation



6.1.2 Unified Data Structure throughout the complete Algorithm

As described before the biggest "problem" of all existing approaches are the two different views of the series. Therefore we have
chosen to unify both views using the Kronecker Embedding, cf. example 22. Throughout the whole implementation we are
able to use only this view — the Coefficient Integers. The problem of the embedding are the different signs of the coefficients,
because we are only able to encode them properly when all coefficients have the same sign. Without considering the signs the
multiplication would produce wrong results.
Using the following observation we able to work with different signs of the coefficients.

Observation 38. Let x, y be arbitrary real valued functions and x+, x−, y+, y− positive real valued functions, such that x =
x+ − x−, y = y+ − y−. Then we get the following

x · y = (x+ − x−) · (y+ − y−)

= x+ · y+ + x− · y− − x+ · y− − x− · y+

= (x+ · y+ + x− · y−)− (x+ · y− + x− · y+)

= xy+ − xy−.

Therefore we can simply multiply real valued functions just by multiplication and addition of positive functions. We say two
positive real valued functions x+, x− ≥ 0 represent the function x iff x = x+ − x−. We say x+, x− ≥ 0 are a normalized
representation of x iff for all values k in the domain not both functions x+ and x− are strictly greater than zero at k, i.e.
x+(k) > 0 =⇒ x−(k) = 0 and x−(k) > 0 =⇒ x+(k) = 0, which is equivalent to x+ · x− = 0, whereas · is the pointwise
multiplication. By choosing a finite domain x, y become vectors which correspond to our large integers. Hence we distinguish
between the positive and negative coefficients and are able to safely multiply them using the previous method. To implement
this view we use the four large integers for each node in the fair split tree

• positive Taylor coefficients,
• negative Taylor coefficients,
• positive Laurent coefficients,
• negative Laurent coefficients.

We do not need any more additional data structures. This simplifies the implementation and reduces its complexity. But the
biggest advantage by using this approach is we do not have to implement an integer FFT. For small instances the FFT could not
be the best choice, because of the constants, and a naive method is faster. Therefore a hybrid algorithm would be better, which
induces even more implementation complexity. Using our approach we simply multiply the long integers and GMP takes care of
the hybridisation. Therefore the cumbersome part is outsourced to GMP, which is a highly optimized library [12].

The speed of GMP is achieved by using fullwords as the basic arithmetic type, by using sophisticated algorithms,
by including carefully optimized assembly code for the most common inner loops for many different CPUs, and by
a general emphasis on speed (as opposed to simplicity or elegance).

By caching 2m, (p− 1)!, (q − 1)! we get further speedups.
The classes of the two modules of our algorithm are described in sections 6.2.1 and 6.2.4. We omit some functions and internals
which do not help the reader to understand the algorithms.
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6.2 Implementation of the Algorithms

In sections 6.2.1 and 6.2.4 we describe how to implement the Well-Separated Pair Decomposition and the Fast Multipole Method,
whereas section 6.2.2 describes the implementation for some helper functionality, which is used for refactoring the code. The
implementation to compute all necessary parameters needed during the WSPD and the FMM can be found in section 6.2.3.

6.2.1 Well-Separated Pair Decomposition

In this section we describe all classes which are involved to compute the Well-Separated Pair Decomposition.
The Particle class defines the input of our algorithm. In order to support multiple different value types for the charge and the
position, both are templatized. This class has no further functionality besides storing the input. The template parameters X and
Q are forwarded public to other classes by using Particle::POSITION and Particle::CHARGE.

Particle class storing the templatized input

template <class X, class Q>

class Particle {

public:

using POSITION = X;

using CHARGE = Q;

public:

Particle(POSITION position, CHARGE charge);

POSITION position() const;

CHARGE charge() const;

private:

POSITION _x;

CHARGE _q;

};

The Particles class represents multiple particles. The very important feature of this container is the very small and constant size,
i.e. the size is independent of the number of particles it contains. The class only contains two iterators, otherwise we would have
huge memory problems. In order to achieve this very small memory footprint all particles will be stored in a std::list<Particle>.
Similar to the particle class it forwards all necessary internal types. The function diameter() returns the diameter of the smallest
ball containing all particles, i.e. the maximal pairwise distance of all contained particles in the one dimensional case. The
function center() returns the center point of this ball. These geometric properties are not cached to save memory but will be
computed in constant time. The function begin(), end(), empty() and size() are the standard functions needed, such that the
particles class is a nice C++ container, i.e. the possibility of range-based for loops and the usage of the standard C++ algorithms
which are defined in the <algorithm> header [16].
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Particles class representing multiple particles including their geometric properties of the smallest
surrounding ball

template <class Particle>

class Particles {

public:

using POSITION = typename Particle::POSITION;

using CHARGE = typename Particle::CHARGE;

using ITERATOR = typename std::list<Particle>::iterator;

public:

Particles(ITERATOR begin, ITERATOR end);

ITERATOR begin();

ITERATOR end();

bool empty() const;

int size() const;

POSITION diameter() const;

POSITION center() const;

private:

typename std::list<Particle>::iterator _begin;

typename std::list<Particle>::iterator _end;

};

The Node class represents multiple particles and is an internal class only, i.e. the user does not need it. It got these three main
tasks

• Storing the children of this node of the corresponding tree and giving access to the tree structure, e.g. iterating over the
children or retrieving the parent.

• Giving access to all other well-separated nodes.
• Storing the data which is needed in the Fast Multipole Method, i.e. the four large integers mentioned in section 6.1.2.

The functions add_child(const Particles particles) and add_WS_partner(Node& partner) are needed while constructing the Fair
Split Tree and the corresponding Well-Separated Pair Decomposition. The functions parent(), children() and WS_partners()
are used to iterate over the tree and the corresponding WSPD. diameter() and center() simply forward the same functions of
the represented particles. By using signed_distance(Node const& second_node) one gets the distance between the centers of
two nodes U,W , whereas the center of a node is the center of the corresponding particles. The distance is signed, i.e.

U.signed_distance(V ) = −V .signed_distance(U).

abs_distance(Node const& second_node) is the absolute value of the signed distance. Similar to the other classes it forwards all
necessary internal types.
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Node class representing particles and the ordering of the corresponding clusters. It also stores the data
structures needed for the Fast Multipole Method. Using this class one is able to iterate over the Fair Split

Tree and the corresponding Well-Separated Pair Decomposition.

template <class Particles>

class Node {

using POSITION = typename Particles::POSITION;

using CHARGE = typename Particles::CHARGE;

public:

Node(const Node* parent, const Particles particles);

Node& add_child(const Particles particles);

void add_WS_partner(Node& partner);

Node* parent();

std::vector<Node>& children();

std::list<Node*>& WS_partners();

POSITION diameter() const;

POSITION center() const;

POSITION abs_distance(Node const& second_node) const;

POSITION signed_distance(Node const& second_node) const;

private:

const sorted_particles _particles;

mpz_class _Laurent_coefficient_pos;

mpz_class _Laurent_coefficient_neg;

mpz_class _Taylor_coefficient_pos;

mpz_class _Taylor_coefficient_neg;

};

The Tree class is constructed using all particles and initializes the root node with all given particles during the constructor.
By calling compute_split_tree(double ratio, int leaf_size) the Fair Split Tree gets computed, where split(Node<Particles>&
parent, double ratio, int leaf_size) is used internally. The double ratio is the ratio r between the volumes of the two resulting
clusters after a split, cf. [5] for a detailed description of this algorithm. The possible values for the ratio r are given by 1

3 ≤ r ≤
2
3 .

The parameter int leaf_size corresponds to the size of the leaves of the Fair Split Tree. This parameter is important when one
wants to implement the Truncated Tree Fast Multipole Method, cf. chapter 5. When using the normal Fast Multipole Method
we choose leaf_size = 1 and for the Truncated Tree Fast Multipole Method we choose leaf_size ∈ O (E). Afterwards one can
iterate over all nodes by calling nodes(). The nodes get traversed in hierarchical order, which are defined by a breath first search
over the fair Split Tree. This function is needed for the UPCAST. The function reverted_nodes() returns the same nodes, but
in reverted order. This function is needed for the DOWNCAST.
compute_WSPD(double ratio, int leaf_size, double separation) is used to compute the Well-Separated Pair Decomposition
with the separation constant double separation, where find_pairs(Node<Particles>& left, Node<Particles>& right, double
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separation) is used internally. The runtime of this algorithm is linearithmic in the number of particles, cf. [5] for a detailed
description and analysis of this algorithm. After the WSPD is computed one can iterate over all well-separated pairs by calling
the pairs() function.
The to_plantuml(bool with_hierarchy, bool with_WSPD) function can be used to export the complete tree into a plantuml file
[27]. Afterwards this file can be transformed via plantuml into a diagram of the tree. Using the argument with_hierarchy one
can decide whether the hierarchy should be shown or not and by using the argument with_WSPD one can decide whether he
wants to see the well-separated pairs as well. The corresponding Laurent and Taylor series of each node shown as well. This
functionality was very helpful during implementation and debugging.

The Tree class is used to compute the Fair Split Tree and the Well-Separated Pair Decomposition. After
initializing these structures one can iterate over all nodes in hierarchical order and over all pairs of

well-separated clusters.

template <class Particles>

class Tree {

public:

Tree(Particles particles);

std::string to_plantuml(bool with_hierarchy, bool with_WSPD) const;

std::vector<Node<Particles>*>& nodes();

std::vector<Node<Particles>*>& reverted_nodes();

std::vector<std::pair<Node<Particles>*, Node<Particles>*>>& pairs();

protected:

int compute_split_tree(double ratio, int leaf_size);

int split(Node<Particles>& parent, double ratio, int leaf_size);

int compute_WSPD(double ratio, int leaf_size, double separation);

void find_pairs(Node<Particles>& left, Node<Particles>& right, double separation);

private:

Node<sorted_particles> _root;

};

These four classes are sufficient for the Well-Separated Pair Decomposition and form the foundations of the Fast Multipole
Method. The most interesting part is the algorithm to compute the Well-Separated Pair Decomposition in linearithmic time
which is far from obvious.

6.2.2 Helper Functionality

In this section we describe some helper functionality which is widely used throughout the Fast Multipole Method. The
functionality is independent of the Fast Multipole Method, therefore it is outsourced in this class. Some more Fast Multipole
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Method specific helper functionality is included in the FMM class. The Helper does not store any data, it only consolidates
different functionalities which are described here. Most of the functions should return multiple return values, instead we have
chosen to always return void and only change the first N arguments with non constant references which are mostly called r,
r_pos or r_neg. This unifies and simplifies our API.
By using set_zero(mpz_class& integer, uint64_t size) one sets size limbs of the GMP integer to zero. This functionality is
needed to initialize an GMP integer during the INITIALIZE step and during computations to reuse allocated memory. When
one wants to add two integers and one of both summands is not necessary anymore, in_place_add(mpz_class& r, mpz_class
const& s, uint64_t size) should be used which could be seen as r += s. The uint64_t size is needed for internal purposes.
The next functions are meant to used for our coefficient vectors x, i.e. we should encode them into two integers, the positive
part x_pos and the negative part x_neg. The result is always r_pos and r_neg. We only want to consider the case, where the
block_size of all integers are the same. This assumption is sufficient for our algorithms and simplifies the implementation.
To multiply two coefficient vectors x and y, cf. section 6.1.2, we split up both into the positive and negative part. The analysis
of our algorithm shows that there are a lot of cases, where the negative part is zero, e.g. the scaled (reciprocal) distance integers,
cf. sections 4.3.2 to 4.3.4, in UPCAST, CONVERSION and DOWNCAST have an alternating sign when computed from the
node U to the node V and are strictly positive in the other direction, i.e. from the node V to the node U . Therefore we got a
specialization for the case, where one of the coefficient vectors are strictly positive. But we generalize the multiplication functions
such that the number of coefficients in the vectors are different, i.e. the number of blocks (uint64_t blocks1 6= uint64_t blocks2).
The two cases of the product function run in O2(n · logn · log logn) for large inputs. For smaller inputs a hybrid method is used
by the underlying GMP library.
The next two functions are block by block, resp. vector, functions as well. blockwise_subtract(. . . ) is used subtract two vectors
s1 and s2 and returns the resulting vector split into the positive and negative part. The blockwise_division(. . . ) function is
used to divide each coefficient of a vector which is encoded into an integer by the given divisor.
The last function is the normalization of a coefficient vector, cf. section 6.1.2, i.e. for all k = 1, . . . , n not both kth coefficient of
x+ and x− are strictly greater than zero. This minimizes the encoding of the coefficient vector and accelerates the algorithm.
By calling normalize(mpz_class& pos, mpz_class& neg, . . . ) the corresponding vector r = pos + neg gets normalized to achieve
the minimal encoding.
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Helper class containing several methods needed in the Fast Multipole Method

class Helper {

public:

static void set_zero(mpz_class& integer, uint64_t size);

static void in_place_add(mpz_class& r, mpz_class const& s, uint64_t size);

static void product(mpz_class& r_pos, mpz_class& r_neg,

mpz_class const& s1_pos, uint64_t blocks1,

mpz_class const& s2_pos, mpz_class const& s2_neg, uint64_t blocks2,

uint64_t block_size);

static void product(mpz_class& r_pos, mpz_class& r_neg,

mpz_class const& s1_pos, mpz_class const& s1_neg, uint64_t blocks1,

mpz_class const& s2_pos, mpz_class const& s2_neg, uint64_t blocks2,

uint64_t block_size);

static void blockwise_subtract(mpz_class& r_pos, mpz_class& r_neg,

mpz_class const& s1, mpz_class const& s2,

uint64_t nbr_blocks, uint64_t block_size);

static void blockwise_division(mpz_class& r, mpz_class const& block,

uint64_t nbr_blocks, uint64_t block_size,

mpz_class const& divisor);

static void normalize(mpz_class& pos, mpz_class& neg,

uint64_t nbr_blocks, uint64_t block_size);

}

6.2.3 Parameters

In this section we describe the Parameters class which computes and stores all needed parameters for our algorithms. The class
gets constructed using all particles a factor xDen which rescales all positions by 1

xDen and a factor qDen which rescales all charges
by 1

qDen and the desired accuracy E, such that the result is an approximation to the exact result up to an error of at most 2−E.
The parameters are described below

• The parameter uint64_t ms corresponds to the minimal pairwise distance of all particles (uint64_t ms is computed in
linear time).

• The parameter uint64_t mq is a scaling factor for all charges, such that they can be encoded by integers and the resulting
error gets bounded by 2−E.

• The parameter uint64_t mz is a scaling factor for all positions, such that they can be encoded by integers and the resulting
error gets bounded by 2−E.

• The parameter uint64_t p is the truncation parameter of the Laurent series, i.e. it denotes the number of coefficients of
the Laurent series.
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• The parameter uint64_t P is the size of the blocks in the integer representing the Laurent series.
• The parameter uint64_t P_limbs is the number of limbs, cf. [12], which are needed that the size of the blocks are great

enough, i.e. P_limbs · mp_bits_per_limb ≥ P.
• The parameter uint64_t q is the truncation parameter of the Taylor series, i.e. it denotes the number of coefficients of the

Taylor series.
• The parameter uint64_t Q is the size of the blocks in the integer representing the Taylor series.
• The parameter uint64_t Q_limbs is the number of limbs, cf. [12], which are needed that the size of the blocks are great

enough, i.e. Q_limbs · mp_bits_per_limb ≥ Q.
• The parameter uint64_t m_conv is an additional factor needed in the CONVERSION step, such that the resulting error

gets bounded by 2−E despite the divisions are not exact.
• The parameter double c is the separation constant needed for the Well-Separated Pair Decomposition.

The size of the integers representing a Laurent series are given by P_limbs · mp_bits_per_limb · p and size of the integers
representing a Taylor series are given by Q_limbs · mp_bits_per_limb · q. All parameters are computed accordingly to the
analysis of the Fast Multipole Method in order to achieve our estimated runtime and error bounds.

Parameters class used to compute and store all necessary parameters for our algorithms

class Parameters {

public:

template <class Particle>

Parameters(std::vector<Particle> const& particles,

typename Particle::POSITION const& xDen,

typename Particle::POSITION const& qDen,

uint64_t E);

private:

uint64_t ms;

uint64_t mq;

uint64_t mz;

uint64_t p;

uint64_t P;

uint64_t P_limbs;

uint64_t q;

uint64_t Q;

uint64_t Q_limbs;

uint64_t m_conv;

double c;

};
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6.2.4 Fast Multipole Method

In this section we describe the FMM class which computes the Fast Multipole Method.
The two protected functions distance_integer(mpz_class& r_pos, mpz_class const& dist_pos) and distance_integer(mpz_class&
r_pos, mpz_class& r_neg, mpz_class const& dist_neg) are used to compute the scaled (reciprocal) distance integers, cf. sec-
tions 4.3.2 to 4.3.4. If the distance between two nodes is positive, the scaled (reciprocal) distance integer only contains positive
entries, therefore we only need one output argument. In this case we will use the first method. If the distance between two nodes
is negative, the signs of the entries of the scaled (reciprocal) distance integer are alternating, therefore the output has to be split
into the positive and the negative part. In this case we will use the second method.
The functions INIT(Tree<Particles>& tree), UPCAST(Tree<Particles>& tree), CONVERSION(Tree<Particles>& tree) and
DOWNCAST(Tree<Particles>& tree) are implemented as described in sections 4.3.1 to 4.3.4. The implementation for the
function std::map<Particles*, mpf_class> EVALUATE(Tree<Particles>& tree) is straight forward by simply returning the
scaled constant coefficient for each leaf, i.e. particle. std::map<Particles*, mpf_class> was chosen as the return type, because
the mpf_class holds arbitrarily accurate floating point values and the map is a convenient container for other applications
requiring the Fast Multipole Method.

FMM class computing the Fast Multipole Method

template <class Particles>

class FMM {

public:

FMM(Parameters const& parameters);

void INIT(Tree<Particles>& tree);

void UPCAST(Tree<Particles>& tree);

void CONVERSION(Tree<Particles>& tree);

void DOWNCAST(Tree<Particles>& tree);

std::map<Particles*, mpf_class> EVALUATE(Tree<Particles>& tree);

protected:

void distance_integer(mpz_class& r_pos, mpz_class const& dist_pos);

void distance_integer(mpz_class& r_pos, mpz_class& r_neg, mpz_class const& dist_neg);

};

6.3 Additional Properties of the Implementation

It turns out, that this implementation does not only solve Trummer’s Problem

(C(q, z) · q)i =
N∑
j=1
j 6=i

qiqj
zi − zj

,

it solves a variety of similar problems, namely

N∑
j=1
j 6=i

qiqj
(zi − zj)k

,
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for a fixed k ∈ N. Therefore we are able to solve the N-body problem for more forces, e.g. using intermolecular forces [20], like
the Debye force which scales with r−6 by choosing k = 6. By choosing k = 2 we can solve the three dimensional Coulomb force.
By choosing different k’s running the corresponding algorithms and adding the results we can easily solve the following problem

N∑
j=1
j 6=i

K∑
k=0

qi,kqj,k
(zi,k − zj,k)k .

Therefore we can solve the N-body problem, where multiple forces occur, e.g. the Coulomb and Debye forces. In molecular
chemistry in nearly all problems multiple forces occur, therefore our algorithm can be easily adapted to these wider range
of problems. But to be fair, at the moment the algorithm only supports the one dimensional real case, the extension to two
dimensions is straight forward using complex values. The extension to three dimension should be possible using quaternions.
The trick to handle these numbers is equivalent to the trick for the negative numbers, i.e. splitting them up into the positive
real, positive complex, negative real and negative complex part and for quaternions analogously. By using quaternions one has to
take a bit more care, because of their non commutativity. With this algorithm we are now able to extend the problem to an even
wider range of problems, namely problems where the forces are not a Laurent Polynomial, like before, to problems which forces
can be approximated by Laurent Polynomial. These forces occur in nuclear physics.
Only with a slight modification of the INITIALIZE step one can solve the following problem

N∑
j=1
j 6=i

K∑
k=0

qi,kqj,k
(zi − zj)k

.

Hence we do not need to run the algorithm multiple times, which saves an additional factor of k for the runtime. Also the overall
implementation complexity is reduced.

6.4 Statistics of our Implementation

As stated in section 6.1 the effort, in person month, to implement software is given by

E = a ·
(
LOC
1000

)b
,

whereas LOC is the number of lines of delivered code and the parameters a and b are given by

• a = 2.4, b = 1.05 for an ’easy’ project,
• a = 3.0, b = 1.12 for an ’intermediate’ project, and
• a = 3.6, b = 1.20 for a ’complex’ project.

Our Implementation needs 998 lines of delivered code for the implementation of the Fast Multipole Method and 498 lines of
delivered code for the implementation of the Well-Separated Pair Decomposition. By using the COCOMO model we get the
following estimated for the effort in person months

• 3.6 person month if the algorithm is considered ’easy’,
• 4.4 person month if the algorithm is considered ’intermediate’,
• 5.2 person month if the algorithm is considered ’complex’.
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The order of magnitude of the effort is not that bad estimated.
Using the COCOMO model we have estimated the overall effort needed for implementation. In order to estimate the complexity
of each function separately we need a different approach, the cyclomatic complexity which was developed by Thomas J. McCabe
[21] in order to estimate the complexity of source code. Informally speaking the cyclomatic complexity of an implementation of
a procedure is the number of independent paths. If there are no control flow statements, like "if", there is exactly one path,
hence the cyclomatic complexity is 1. If there is one "if", the path splits up, and the cyclomatic complexity is 2 and if there is a
"switch" statement with 4 possible cases, then the path gets split into 4 independent paths, therefore the cyclomatic complexity
is 4 for this part. The cyclomatic complexity can be used to compute the number of test cases we need to achieve a 100% test
coverage of our implementation.
Thomas J. McCabe has suggested that the cyclomatic complexity should be at most 10 for each function, if the complexity is
higher, the function should be rewritten to reduce it. We have used the pmccabe [2] tool to analyze the cyclomatic complexity
during our implementation in order to fulfill McCabe’s suggestion. The final version of our implementation1 got the following
cyclomatic complexities cc

• Well-Separated Pair Decomposition from section 6.2.1: cc ≤ 8.
• Fast Multipole Method from section 6.2.4: cc ≤ 7.
• Computation of the parameters from section 6.2.3: cc ≤ 4.
• Helper functionalities from section 6.2.2: cc ≤ 4.

All cyclomatic complexities are lower than 10, hence we have accomplished McCabe’s suggestion.

1 We have ignored the complexity of output functionality, e.g. functions which produce plantuml output, because these functions could be
deleted without influencing the Fast Multipole Method.
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Chapter 7

Empirical Evaluation

In this chapter we empirically evaluate our implementation of the Fast Multipole Method in order to show the correctness of our
implementation in section 7.1 and the claimed subquadratic runtime in section 7.2. In section 7.3 we estimate the memory usage
of our algorithm by using a fit to measured values. All benchmarks have been executed on the same computer (Ubuntu 16.04.4
LTS, 64 GB RAM, Intel® Core™ i7-6950X CPU @ 3.00GHz) and using only a single CPU core. More detailed information on
the machine can be found in the footnote1.

7.1 Correctness of the Implementation

To test the correctness of the implementation we have run several instances of Trummer’s Problem with different particles, i.e.
different positions and charges. By using Mathematica [15] we are able to solve the same problem up to arbitrary accuracy.
Our tests have shown that both produce the same results, which indicates that our implementation contains no errors. These
benchmarks were very helpful while debugging the algorithm.

7.2 Runtime of the Implementation

We have already estimated the asymptotic behavior O2(NE3). In this section we will empirically evaluate the runtime, i.e.
estimating the constants in the big-O notation. The idea to estimate the runtime is by fitting a model function to multiple
benchmarks. For the benchmarks we use an equidistant distribution of particles in the unit interval. We’ve chosen the following
grid for our parameters, the number of particles N = 2000, . . . , 30000 and the error exponent E = 2, . . . , 30. Because of the
huge memory consumption, cf. section 7.3, we can not expand the grid much further. The measured runtime are displayed in
tables 7.1 to 7.3. In the next two section we operate with the measured values in order to fit the runtime function.

1 MemTotal: 65886036 kB, Buffers: 39920 kB, SwapTotal: 67018748 kB, Writeback: 0 kB, AnonPages: 63927028 kB, Mapped: 46172 kB, Shmem: 4492 kB, Slab: 109496
kB, KernelStack: 7616 kB, PageTables: 219252 kB, NFS_Unstable: 0 kB, Bounce: 0 kB, WritebackTmp: 0 kB, CommitLimit: 99961764 kB, Committed_AS: 113900456
kB, VmallocTotal: 34359738367 kB, HardwareCorrupted: 0 kB, AnonHugePages: 403456 kB, CmaTotal: 0 kB, CmaFree: 0 kB, HugePages_Total: 0, HugePages_Rsvd: 0,
HugePages_Surp: 0, Hugepagesize: 2048 kB, DirectMap4k: 135828 kB, DirectMap2M: 11309056 kB, DirectMap1G: 57671680 kB, vendor_id: GenuineIntel, cpu family: 6,
model: 79, model name: Intel(R) Core(TM) i7-6950X CPU @ 3.00GHz, stepping: 1, microcode: 0xb00001c, cpu MHz: 2999.882, cache size: 25600 KB, physical id: 0, siblings:
20, core id: 0, cpu cores: 10, apicid: 0, initial apicid: 0, fpu: yes, fpu_exception: yes, cpuid level: 20, wp: yes, flags:, fpu, vme, de, pse, tsc, msr, pae, mce, cx8, apic, sep, mtrr,
pge, mca, cmov, pat, pse36, clflush, dts, acpi, mmx, fxsr, sse, sse2, ss, ht, tm, pbe, syscall, nx, pdpe1gb, rdtscp, lm, constant_tsc, arch_perfmon, pebs, bts, rep_good, nopl,
xtopology, nonstop_tsc, aperfmperf, eagerfpu, pni, pclmulqdq, dtes64, ds_cpl, vmx, est, tm2, ssse3, sdbg, fma, cx16, xtpr, pdcm, pcid, dca, sse4_1, sse4_2, x2apic, movbe,
popcnt, tsc_deadline_timer, aes, xsave, avx, f16c, rdrand, lahf_lm, abm, 3dnowprefetch, epb, intel_pt, tpr_shadow, vnmi, flexpriority, ept, vpid, fsgsbase, tsc_adjust, bmi1,
hle, avx2, smep, bmi2, erms, invpcid, rtm, cqm, rdseed, adx, smap, xsaveopt, cqm_llc, cqm_occup_llc, cqm_mbm_total, cqm_mbm_local, dtherm, ida, arat, pln, pts,
bogomips: 5996.30, clflush size: 64, cache_alignment: 64, address sizes: 46 bits physical, 48 bits virtual
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Table 7.1.: Measured Runtime for the implementation of the Fast Multipole Method for N = 2500, 5000, 7500, 10000.

2500 5000 7500 10000
2 7, 7, 7, 7, 7 19, 19, 19, 18, 18 30, 30, 30, 30, 30 48, 48, 48, 48, 48
5 12, 12, 12, 12, 12 29, 29, 29, 29, 29 56, 56, 56, 56, 56 82, 82, 82, 82, 82
7 16, 16, 16, 16, 16 42, 41, 42, 41, 41 68, 68, 69, 68, 68 104, 103, 104, 103, 103
10 26, 26, 26, 26, 26 62, 62, 62, 62, 62 102, 103, 104, 103, 103 172, 171, 172, 169, 171
12 33, 34, 34, 34, 33 89, 89, 89, 89, 88 141, 141, 142, 141, 142 205, 207, 212, 210, 209
15 49, 49, 50, 49 127, 128, 127, 128, 127 183, 183, 183, 183 289, 288, 290, 288
17 65, 65, 65, 65 156, 156, 155, 155 230, 228, 229, 229 367, 369
20 84, 84, 84, 84 198, 198, 198, 198, 198 291, 292, 291 460, 462, 463
22 100, 100, 100 237, 237, 237 368, 368 601
25 134, 135, 135 324, 324, 324, 325 487, 486 696, 695
27 160, 160, 160 374, 373, 375 547, 547 819
30 197, 197, 197 444, 444, 443 665, 668 1101, 1101
32 240, 240, 239 520, 519 779, 777 1240

Table 7.2.: Measured Runtime for the implementation of the Fast Multipole Method for N = 12500, 15000, 17500, 20000, 22500.

12500 15000 17500 20000 22500
2 74, 73, 73, 74 81, 81, 81 105, 105, 105 134, 134, 134 158, 155, 157
5 132, 132, 132, 132 129, 129, 128, 129 174, 174, 174 211, 212, 211, 210 253, 252, 253
7 165, 166, 166, 166 169, 170, 169 235, 234, 234 279, 278 340, 339
10 250, 248, 247, 249 267, 265, 267 340, 338 421, 423, 422 481, 488
12 320, 315 336, 333 436, 435 525, 519 614, 614
15 412, 411 417, 421, 420 605, 595 699, 684, 701 833, 835
17 528, 529 512, 516 707, 705 805, 803 994, 998
20 694, 685 690, 690, 690 915, 914 1099, 1089, 1108 1334
22 827 964 1108 1413 1549
25 1023 1131, 1130 1290 1667, 1682 2032
27 1226 1319 1633 1978 2405
30 1509 1649 2081 2475 3024
32 1782 1791 2266 2764 3395

Table 7.3.: Measured Runtime for the implementation of the Fast Multipole Method for N = 25000, 27500, 30000, 32500.

25000 27500 30000 32500
2 202, 203, 203 199, 199, 198 209, 208, 207 254, 255, 254
5 322, 322, 322, 324 313, 313 314, 315, 314 390, 389
7 423, 422 428, 432 457, 451 476, 473
10 613, 619, 607 606, 612 675, 674, 675 618, 622
12 784, 782 737, 736 774, 762 778, 791
15 1023, 1012, 1024 958, 957 1000, 985, 1000 1080, 1095
17 1240, 1242 1196, 1212 1241, 1238 1496, 1500
20 1653, 1651 1597 1712 1777
22 1760 1889 1892 2308
25 2532, 2542 2489 2685 2746, 2785
27 2786 2785 2862, 2872 3358, 3350
30 3637 3686, 3684 3551, 3567 3727, 3710
32 4053 3961, 3965 4511, 4506 4685, 4670
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7.2.1 Runtime of the Implementation with a variable Number of Particles and fixed Error Exponent

5000 10000 15000 20000 25000 30000
N number of particles
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Time in seconds

(a) Runtime of the implementation for a fixed error exponent
E = 2. The dots are the measured runtime and the line
is the fitted function TE=2(N) = 0.000384 ·N1.29 − 4.74,
which is nearly linear.
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(b) Runtime of the implementation for a fixed error exponent
E = 5. The dots are the measured runtime and the line
is the fitted function TE=5(N) = 0.00248 ·N1.15 − 14.4,
which is nearly linear.
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(c) Runtime of the implementation for a fixed error exponent
E = 7. The dots are the measured runtime and the line
is the fitted function TE=7(N) = 0.00266 · N1.17 − 17.9,
which is nearly linear.
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(d) Runtime of the implementation for a fixed error exponent
E = 10. The dots are the measured runtime and the line
is the fitted function TE=10(N) = 0.0167 · N1.03 − 45.3,
which is nearly linear.

Figure 7.1.: Runtime of the implementation for a fixed error exponent E = 2, 5, 7, 10 with the measured runtime and the
fitted functions TE=∗(N) = a ·N b − c, with b ≈ 1, which is nearly linear.

To fit the runtime for fixed values of the error exponent E we have chosen TE=∗(N) = a ·N b + c as the model function. We get
the following values for our fit parameters with the corresponding errors (all values are rounded up to three significant digits).
Figures 7.1 to 7.3 shows the measured values and the corresponding fitted function which looks nearly linear in N in all cases.
The fitted exponent b for all fixed values of E is approximately 1. For our further analysis we set the exponent to 1, such that
the runtime is a polynomial.
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(a) Runtime of the implementation for a fixed error exponent
E = 12. The dots are the measured runtime and the line
is the fitted function TE=12(N) = 0.0368 ·N0.975 − 60.5,
which is nearly linear.
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(b) Runtime of the implementation for a fixed error exponent
E = 15. The dots are the measured runtime and the line
is the fitted function TE=15(N) = 0.0430 ·N0.987 − 73.0,
which is nearly linear.
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(c) Runtime of the implementation for a fixed error exponent
E = 17. The dots are the measured runtime and the line
is the fitted function TE=17(N) = 0.0101 ·N1.147 − 25.2,
which is nearly linear.
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(d) Runtime of the implementation for a fixed error exponent
E = 20. The dots are the measured runtime and the line
is the fitted function TE=20(N) = 0.0148 · N1.14 − 45.4,
which is nearly linear.

Figure 7.2.: Runtime of the implementation for a fixed error exponent E = 12, 15, 17, 20 with the measured runtime and the
fitted functions TE=∗(N) = a ·N b − c, with b ≈ 1, which is nearly linear.

Table 7.4.: Fitted values with the corresponding error bounds for the runtime using the model function TE=∗(N) = a ·N b + c for a
fixed error exponents E.

fixed error exponent E prefactor a exponent b constant offset c
2 0.000384± 0.000264 1.29± 0.07 −4.74± 4.48
5 0.00249± 0.00210 1.15± 0.08 −14.4± 10.2
7 0.00267± 0.00188 1.17± 0.07 −17.9± 10.7
10 0.0167± 0.0145 1.03± 0.08 −45.4± 23.4
12 0.0368± 0.0345 0.975± 0.088 −60.5± 32.4
15 0.0430± 0.0432 0.987± 0.094 −73.0± 46.7
17 0.0101± 0.0091 1.15± 0.09 −25.2± 39.7
20 0.0148± 0.0144 1.14± 0.09 −45.4± 55.3
22 0.0573± 0.0480 1.02± 0.08 −96.3± 64.3
25 0.0401± 0.0472 1.08± 0.11 −91.2± 113.6
27 0.0680± 0.0662 1.04± 0.09 −115± 110
30 0.431± 0.585 0.888± 0.127 −356± 257
32 0.0597± 0.0568 1.09± 0.09 −116± 147
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(a) Runtime of the implementation for a fixed error exponent
E = 22. The dots are the measured runtime and the line
is the fitted function TE=22(N) = 0.0573 · N1.02 − 96.3,
which is nearly linear.
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(b) Runtime of the implementation for a fixed error exponent
E = 25. The dots are the measured runtime and the line
is the fitted function TE=25(N) = 0.0401 · N1.08 − 91.2,
which is nearly linear.
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(c) Runtime of the implementation for a fixed error exponent
E = 27. The dots are the measured runtime and the line
is the fitted function TE=27(N) = 0.0680 · N1.04 − 114,
which is nearly linear.
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(d) Runtime of the implementation for a fixed error exponent
E = 30. The dots are the measured runtime and the line
is the fitted function TE=30(N) = 0.431 · N0.888 − 356,
which is nearly linear.
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(e) Runtime of the implementation for a fixed error exponent
E = 32. The dots are the measured runtime and the line
is the fitted function TE=32(N) = 0.0597 · N1.09 − 116,
which is nearly linear.

Figure 7.3.: Runtime of the implementation for a fixed error exponent E = 22, 25, 27, 30, 32 with the measured runtime and
the fitted functions TE=∗(N) = a ·N b + c, with b ≈ 1, which is nearly linear.
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7.2.2 Runtime of the Implementation with a fixed Number of Particles and variable Error Exponent

In this section we do the similar analysis as in section 7.2.1 but now the number of particles N is fixed. To fit the runtime for
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(a) Runtime of the implementation for a fixed number of particles
N = 2500. The dots are the measured runtime and the
line is the fitted function TN=2500(E) = ·E, which is nearly
quadratic.
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(b) Runtime of the implementation for a fixed number of particles
N = 5000. The dots are the measured runtime and the
line is the fitted function TN=5000(E) = ·E, which is nearly
quadratic.
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(c) Runtime of the implementation for a fixed number of particles
N = 7500. The dots are the measured runtime and the
line is the fitted function TN=7500(E) = ·E, which is nearly
quadratic.
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(d) Runtime of the implementation for a fixed number of particles
N = 10000. The dots are the measured runtime and the line
is the fitted function TN=10000(E) = ·E, which is nearly
quadratic.

Figure 7.4.: Runtime of the implementation for a fixed number of particles N = 2500, 5000, 7500, 10000 with the measured
runtime and the fitted functions TN=∗(E) = a ·Eb − c, with b ≈ 2, which is nearly quadratic.

fixed values of the error exponent E we have chosen TE=∗(N) = a ·N b + c as the model function. Figures 7.1 to 7.3 shows the
measured values and the corresponding fitted function which looks nearly linear in N in all cases. The fitted exponent b for all
fixed values of E is approximately 1. For our further analysis we set the exponent to 1, such that the runtime is a polynomial.
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(a) Runtime of the implementation for a fixed number of particles
N = 12500. The dots are the measured runtime and the line
is the fitted function TN=12500(E) = ·E, which is nearly
quadratic.
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(b) Runtime of the implementation for a fixed number of particles
N = 15000. The dots are the measured runtime and the line
is the fitted function TN=15000(E) = ·E, which is nearly
quadratic.
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(c) Runtime of the implementation for a fixed number of particles
N = 17500. The dots are the measured runtime and the line
is the fitted function TN=17500(E) = ·E, which is nearly
quadratic.
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(d) Runtime of the implementation for a fixed number of particles
N = 20000. The dots are the measured runtime and the line
is the fitted function TN=20000(E) = ·E, which is nearly
quadratic.

Figure 7.5.: Runtime of the implementation for a fixed number of particles N = 12500, 15000, 17500, 20000 with the
measured runtime and the fitted functions TN=∗(E) = a ·Eb − c, with b ≈ 2, which is nearly quadratic.

Table 7.5.: Fitted values with the corresponding error bounds for the runtime using the model function TN=∗(E) = a ·N b + c for a
fixed number of particles N .

fixed number of particles N prefactor a exponent b constant offset c
2500 0.0738± 0.0079 2.31± 0.03 9.74± 0.76
5000 0.386± 0.036 2.06± 0.03 19.6± 1.7
7500 0.482± 0.050 2.11± 0.03 38.3± 2.6
10000 0.605± 0.101 2.18± 0.05 62.7± 5.8
12500 1.02± 0.14 2.13± 0.04 95.2± 6.8
15000 1.02± 0.21 2.15± 0.06 95.8± 11.7
17500 1.60± 0.34 2.08± 0.06 130± 16
20000 1.74± 0.25 2.11± 0.04 161± 13
22500 1.81± 0.26 2.16± 0.04 192± 14
25000 2.49± 0.47 2.11± 0.06 249± 24
27500 2.31± 0.50 2.14± 0.06 237± 29
30000 1.36± 0.49 2.30± 0.10 295± 44
32500 3.00± 0.94 2.09± 0.09 268± 49

7.2. Runtime of the Implementation 79



5 10 15 20 25 30
E error exponent

500

1000

1500

2000

2500

3000

Time in seconds

(a) Runtime of the implementation for a fixed number of particles
N = 22500. The dots are the measured runtime and the line
is the fitted function TN=22500(E) = ·E, which is nearly
quadratic.
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(b) Runtime of the implementation for a fixed number of particles
N = 25000. The dots are the measured runtime and the line
is the fitted function TN=25000(E) = ·E, which is nearly
quadratic.
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(c) Runtime of the implementation for a fixed number of particles
N = 27500. The dots are the measured runtime and the line
is the fitted function TN=27500(E) = ·E, which is nearly
quadratic.
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(d) Runtime of the implementation for a fixed number of particles
N = 30000. The dots are the measured runtime and the line
is the fitted function TN=30000(E) = ·E, which is nearly
quadratic.
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(e) Runtime of the implementation for a fixed number of particles
N = 32500. The dots are the measured runtime and the line
is the fitted function TN=32500(E) = ·E, which is nearly
quadratic.

Figure 7.6.: Runtime of the implementation for a fixed number of particles N = 22500, 25000, 27500, 30000, 32500 with
the measured runtime and the fitted functions TN=∗(E) = a ·Eb − c, with b ≈ 2, which is nearly quadratic.
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7.2.3 Runtime of the Implementation with a variable Number of Particles and a variable Error Exponent

As seen before the runtime for fixed values of E seems to be linear in N and for fixed values of N it seems to be quadratic in
E, although our estimates have shown that the runtime should be cubic in E. Since our previous estimations only considered
the worst case, this difference can be explained, because the equidistant distribution could not be the worst case. To get an
overall estimation for the runtime we have chosen the superposition of both functions, i.e. a linear polynomial for fixed E and a
quadratic polynomial for fixed N , which results in the following model function

Tseconds(N,E) = a1,2N ·E2 + a1,1N ·E+ a1,0N + a0,2E
2 + a0,1E+ a0,0.

When choosing N in thousands we get the following coefficients

• a1,2 = 0.147± 0.005,
• a1,1 = −0.308± 0.182,
• a1,0 = 9.996± 1.267,
• a0,2 = −0.191± 0.097,
• a0,1 = −0.357± 3.285,
• a0,0 = −26.611± 22.771.

Therefore the runtime in seconds, with the number of particles in thousands N and the error exponent E, can be described by

Tseconds(N,E) = 0.147N ·E2 − 0.308N ·E+ 9.996N − 0.191E2 − 0.357E− 26.611.

The relative error errrel between the fitted function Tseconds(N,E) and the measured values tmeasured,seconds(N,E), i.e. errrel =
tmeasured,seconds(N,E)−Tseconds(N,E)

tmeasured,seconds(N,E) , is bounded by ±20%, i.e. −20% < errrel < +20%. Figure 7.7 shows the fitted function
Tseconds(N,E) in orange and the measured values in blue and we see that the fit is quiet good. In order to further justify our
fit, we have measured a point far from the measured grid, namely the point 60000 particles and an error exponent of 60. The
measured runtime was tmeasured,seconds(60, 60) = 25835s. The runtime forecasted by our fit is given by Tseconds(60, 60) = 30575,
which is an overestimation with the relative error errrel = −18%, it is also bounded by ±20%, like before, which shows the
quality of our fit. In practice we will have a small error Exponent, but a lot of particles. Therefore we have also measured
points with a lot of particles N = 200000, 500000, 1000000 and a small error exponent E = 8. But we have seen that we
ran out of memory for the large benchmark and got huge memory problems for the smaller ones, e.g. swapping memory to
the harddrive. Therefore we need an algorithm with lesser memory consumption, cf. section 8.1.4. The runtime is given by
tmeasured,seconds(200, 8) = 6432s and tmeasured,seconds(200, 8) = 18736s. The discrepancy to the model function can be explained
by the usage of the swap and the polylogarithmic terms we have omitted in the fit. But in order to fit the polylogarithmic terms
we need way more points in our benchmark grid over a very long range of values.
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Figure 7.7.: Runtime of our implementation of the Fast Multipole Method.

7.3 Memory Consumption of the Implementation with a variable Number of Particles and a variable Error Exponent

The analysis for the memory consumption is similar to the analysis of the runtime. Therefore we omit the analysis here and
simply state the results.
The memory consumption for fixed values of E seems to be linear in N and for fixed values of N it seems to be quadratic in
E. To get an overall estimation for the memory consumption we have chosen the superposition of both functions, i.e. a linear
polynomial for fixed E and a quadratic polynomial for fixed N , which results in the following model function, which is the same
as in section 7.2.3.

MMB(N,E) = a1,2N ·E2 + a1,1N ·E+ a1,0N + a0,2E
2 + a0,1E+ a0,0.

When choosing N in thousands we get the following coefficients, rounded to three significant digits

• a1,2 = 0.703± 0.017,
• a1,1 = 9.98± 0.57,
• a1,0 = 132± 4,
• a0,2 = −0.257± 0.291,
• a0,1 = −22.4± 9.6,
• a0,0 = −276± 65.
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Therefore the memory consumption in MB, with the number of particles in thousands N and the error exponent E, can be
described by

MMB(N,E) = 0.703N ·E29.98N ·E+ 132N − 0.257E2 − 22.4E− 276.

The relative error errrel between the fitted function MMB(N,E) and the measured values mmeasured,MB(N,E), i.e. errrel =
mmeasured,MB(N,E)−MMB(N,E)

mmeasured,MB(N,E) , is bounded by 5%, i.e. −5% < errrel < +5%, which is even better as before. Figure 7.8 shows the
fitted function MGB(N,E) in orange and the measured values in blue and we see that the fit is very good. In order to further

Figure 7.8.: Memory consumption of our implementation of the Fast Multipole Method.

justify our fit, we have measured a point far from the measured grid, namely the point 60000 particles and an error exponent of
60. The measured memory consumption was mmeasured,MB(60, 60) = 167GB. The memory consumption forecasted by our fit is
given by MMB(60, 60) = 189GB, which is an overestimation with the relative error errrel = −18%, which shows the quality of
our fit.
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Chapter 8

Conclusion

In this thesis we have achieved the following

• Showed the lower bound to solve the discrete version of Trummer’s Problem is in Ω2(N2).
• Developed an algorithm to solve the real version of Trummer’s Problem in O2(N ·E2).
• Showed the lower bound to solve the real version of Trummer’s Problem is in Ω2(N ·E), therefore our algorithm is nearly

optimal, besides polylogarithmic terms and an additional factor of E.
• We have implemented the Well-Separated Pair Decomposition and the O2(N ·E3) version of the Fast Multipole Method,

with a low implementation complexity, measured using the cyclomatic complexity.
• Our algorithm can be used to solve the N-body problem, where multiple forces occur, e.g. the Coulomb and Debye forces.
• Our benchmarks have shown that the runtime of our implementation is in O2(N ·E2) and the memory consumption is in
O2(N ·E2) as well.

• Shown with a minimal example that Trummer’s Problem is numerically unstable, hence our exact algorithm is very
interesting in practice.

8.1 Outlook

In this section we present four extensions to this thesis

• an efficient computation with structured matrices in section 8.1.1,
• the two dimensional real case in section 8.1.2,
• the three dimensional real case in section 8.1.3,
• a memory efficient algorithm to solve Trummer’s Problem in section 8.1.4.

8.1.1 Efficient Computation with Structured Matrices with Small Displacement Rank

We can easily extend our results to the computation with structured matrices with small displacement rank, cf. section 1.3.2.
This should be possible straight forward and unify Tsigaridas and Pan’s results [24], i.e. all computations should be linear,
independent whether a Cauchy matrix is included or not.
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8.1.2 Two Dimensional Real Case

In order to extend our algorithm to the two dimensional real case we use complex values, cf. section 1.3.1. In order to encode
these values we do the same trick as in section 6.1.2 but we split the complex coefficient vectors x ∈ Cn into 4 strictly positive
real vectors x+,r, x−,r, x+,i, x−,i ∈ Rn+, such that x = x+,r − x−,r + Ix+,i − Ix−,i. The multiplication is done as follows

x · y =(x+,r − x−,r + Ix+,i − Ix−,i) · (y+,r − y−,r + Iy+,i − Iy−,i)

= x+,r · y+,r − x+,r · y−,r + Ix+,r · y+,i − Ix+,r · y−,i
− x−,r · y+,r + x−,r · y−,r − Ix−,r · y+,i + Ix−,r · y−,i
Ix+,i · y+,r − Ix+,i · y−,r − x+,i · y+,i + x+,i · y−,i

− Ix−,i · y+,r + Ix−,i · y−,r + x−,i · y+,i − x−,i · y−,i
= (x+,r · y+,r + x−,r · y−,r + x+,i · y−,i + x−,i · y+,i)

− (x+,r · y−,r + x−,r · y+,r + x+,i · y+,i + x−,i · y−,i)

+ I(x+,r · y+,i + x−,r · y−,i + x+,i · y+,r + x−,i · y−,r)

− I(x+,r · y−,i + x−,r · y+,i + x+,i · y−,r + x−,i · y+,r)

=xy+,r − xy−,r + Ixy+,i − Ixy−,i.

Hence we need 16 multiplications instead of 4 like before. Therefore the runtime will be approximately 4 times slower, but the
analysis is the same and the error bounds are the same. This is extension is straightforward.

8.1.3 Three Dimensional Real Case

In order to solve the real three dimensional problem all existing approaches choose a expansion into spherical harmonics, cf.
[14] for a detailed discussion, instead of our Laurent and Taylor series. The problem is, we would have to do a similar analysis
again, we would need a new implementation, etc. Our idea is to use quaternions. Using this approach we can describe up to 4
dimensions. But the problem of the quaternions, is their non-commutativity, nevertheless Taylor and Laurent series are possible,
cf. [30]. Using the same trick as before, we will split the coefficient vector into 8 strictly positive positive real vectors, with a
similar multiplication scheme. This time we need 64 multiplications, hence the runtime will be approximately 4 times slower
than in the complex case. For the analysis and error bounds we suppose they are the same or easily extendable, because in most
proofs we only consider the absolute values. Therefore our algorithm is easily extendable up to four real dimensions.

8.1.4 Memory efficient algorithm

By choosing a different WSPD, where all well-separated pairs contain a leaf, cf. [5], the number of pairs only grows with an
additional factor of logN , which can be neglected. But using this WSPD we can use another algorithm algorithm 8, which
should use substantial less memory. Therefore we could solve larger problems with this idea.
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Algorithm 8: Memory Efficient Fast Multipole Method.
// INITIALIZE
Initialize the constant coefficient of the corresponding Laurent series for each leaf;
// DOWNCAST & CONVERSION
Let U be the root;
Do the CONVERSION from all well-separated leaves to U ;
DOWNCAST U to both children;
Delete U to save memory;
Set U to the deepest children, i.e. use a depth first search over the tree and iterate again;
When we have reached a leaf only save the constant coefficient and delete the others;
// UPCAST & CONVERSION
Let V be a leaf;
UPCAST V and its sibling to their parent;
CONVERSION of this parent to all well-separated leaves (only save the constant coefficient);
Delete V and its sibling again;
Iterate till the complete tree is traversed;
// EVALUATION
Simply return all saved values, i.e. the constant coefficients;
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Appendix A

Identities and Estimations

A.1 Identities and Estimations

Lemma 39 (Sums). Let q ∈ C with |q| 6= 1, then we get

(1)
b∑

n=a
qn = qa − qb+1

1− q ≤︸︷︷︸
for |q| < 1

qa

1− q ,

(2)
b∑

n=a
nqn−1 = aqa−1 + (1− a)qa − (b+ 1)qb + bqb+1

(1− q)2 ≤︸︷︷︸
for |q| < 1

aqa−1 + (1− a)qa
(1− q)2 .

Let x, y ∈ C, with |x|, |y| < 1 and α ∈ Z, then we get

(3)
∞∑

k=−∞

(
α

k

)
xk = (1 + x)α, for α ∈ N, this is also true for |x| ≥ 1,

(4)
∞∑
n=k

(
n

k

)
yn = yk

(1− y)k+1 ,

(5)
∞∑
n=0

(
n+ k

n

)
xn = 1

(1− x)k+1 ,

(6)
∑
n,k

(
n+ k

n

)
xnyk = 1

1− x− y ,

(7)
∞∑
n=0

(
n+ k

n

)
nxn−1 = (k + 1)

(1− x)k+2 .

Proof. The first sum is the geometric series. The second equation is the derivative of the first equation. The third and fourth
equation can be found in [34, p. 16]. The fifth and sixth equation can be found in [34, p. 53]. Equation seven is the derivative of
the fifth equation.

Lemma 40 (Rounding estimation). Let x, y ∈ R. Let m ∈ N, such that |x− y| ≥ 2−m. Then

|x− y|+ 2−m ≥ 2−m
∣∣[2mx]− [2my]

∣∣ ≥ |x− y| − 2−m.

Proof. Let x, y ∈ R. Let m ∈ N, such that |x− y| ≥ 2−m. Let εx := [2mx]− 2mx, εy := [2my]− 2my, then − 1
2 ≤ εx, εy ≤

1
2

follows.

|x− y|+ 2−m ≥ 2−m
(
|2mx− 2my|+ |εx|+ |εy|

)
≥ 2−m

∣∣2mx+ εx − 2my − εy
∣∣

= 2−m
∣∣[2mx]− [2my]

∣∣
= 2−m|2mx+ εx − 2my − εy|
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≥ 2−m
∣∣ 2m|x− y|︸ ︷︷ ︸

≥1

− (|εx|+ |εy|)︸ ︷︷ ︸
≤1

∣∣
= |x− y| − 2−m(|εx|+ |εy|)

≥ |x− y| − 2−m

Lemma 41. Let 1 ≤ i ≤ p ∈ N, then

lg (p− 1)!
(i− 1)! ∈ O (p lg p).

Let U, V ∈ TM

lg(|zU − zV |i) ∈ O (p(mINIT +mmax(z))).

holds.
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