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초 록

컴퓨터 대수 시스템(CAS)은 대수적인 수(Q)를 일반 대중들이 쉽게 사용할 수 있게 만들었다. 하지만 아직

셀 수 없을 만큼의 초월수(C ∖Q)가 존재한다. 콘체비치(Kontsevich)와 자기어(Zagier)는 이 틈을 메꾸기

위해피리어드를제안했다. 피리어드는두준대수적집합의부피의차이다. 피리어드는유한한표현즉다항

식의 계수들을 가지고 있고, 모든 대수적인 수와 일부 초월수를 포함하고 있기 때문에 대수적 모델 이론에서

많은 관심을 받고 있다. 최근 연구에서 피리어드의 최악의 경우에 대한 복잡도가 제고직 계층(Grzegorczyk

Hierarchy)에서 낮은 단계에 있다는 것이 밝혀졌다. 한편 흔히 쓰이는 부동소수점 연산은 반올림 오차를

야기하고, 시간이 지남에 따라 그 오차가 누적되어 신뢰할 수 있는 연산을 제공하지 못 한다. 구간 연산은

하나의 부동소수가 아닌, 실제값이 포함된 구간([a; b])을 다루고 모든 연산의 오차를 추적한다. 하지만 그

오차 범위는 점점 커져서 쓸모가 없어지기도 한다. 반대로 정확한 실수 계산은 타입-2 기계의 무한한 연산을

임의의 오차 이내의 유한한 연산으로 근사한다. 다시 말해서 출력 정확도(n)가 주어졌을 때, 2−n 오차 범위

안의 다이애딕 근사값(a/2n)을 구하는 것이다. 이러한 배경에서 이 논문은 피리어드를 계산하는 일반적인

문제를 정확한 실수 계산의 관점에서 명세한다. 그리고 이 논문은 피리어드를 2−n 오차 범위 안으로 계산

하는 알고리즘을 제시하고, 분석하고, 평가한다. 또한 우리는 이 알고리즘을 우리의 선행 연구에서 제시한

알고리즘들과 비교하여 전통적인 이산 계산과 정확한 실수 계산의 장단점을 비교한다. 더 나아가 우리는

피리어드를 계산하는 문제가 NP-hard에 속함을 보인다.

핵 심 낱 말 정확한 실수 계산, 신뢰 가능한 수치해석, 계산 대수 기하학, 랜덤 알고리즘, 계산 복잡도 이론

Abstract

Computer algebra systems (CAS) brought algebraic numbers Q accessible to end-users. Still, there are

uncountable transcendentals C∖Q. Kontsevich and Zagier introduced periods to fill in this gap: a period

is the difference between the volumes of two algebraic sets. Periods are receiving increasing interest in

algebraic model theory as they have finite descriptions, i.e., the polynomials’ coefficients, and include all

algebraic reals as well as some transcendentals. Recent research has located their worst-case complexity

in low levels of the Grzegorczyk Hierarchy. Meanwhile, regular floating-point arithmetic incurs rounding

errors that accumulate over time and hamper reliable computations. Interval arithmetic deals with an

interval [a; b] where the actual value reside instead of a single floating-point approximation to keep track

of the error bounds. The error bound, however, may blow up beyond use. On the other hand, Exact Real

Computation is an approximation of infinite computations of Type-2 machines by finite computations

with arbitrary precision, i.e., given an output precision n, to produce a dyadic approximation a/2n.

In this background, this thesis specify a general problem of computing periods in sense of Exact Real

Computation; then, introduces, analyzes, and evaluates a rigorous algorithms for rigorously computing

periods up to error 2−n. We discuss pros and cons of traditional discrete computation and Exact Real

Computation with our previous algorithms. Furthermore, we show the general problem of computing

periods up to error 2−n is NP-hard.

Keywords Exact Real Computation, Reliable Numerics, Computational Algebraic Geometry, Random-

ized Algorithms, Computational Complexity Theory
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Chapter 1. Introduction

Humans have been using numbers since the prehistory. Perhaps, they may have started from count-

ing with fingers or objects: one, two, three, four, five, . . . . When they ran out of fingers or objects,

they must have looked for an advanced method. One of the advanced methods is a notched bone, which

dates back to Aurignacian era (35,000 to 20,000 BCE) when Cro-Magnons lived [Ifr00, p. 62]. In modern

mathematics, these numbers are called natural numbers N. The concept of zero has been introduced in

the fifth century CE [Ifr00, p. 416]. Many mathematicians prefer including 0 in natural numbers.

N = {0,1,2,3,⋯} (1.1)

The Neolithic Revolution, the first agriculture revolution, made food surpluses resulting the advent

of commerce. While adding and subtracting numbers in commerce, people must have needed negative

numbers, filling integers Z. When they distribute resources uniformly, they must have needed fractions,

which Pythagoras referred rational Q. Legend says Pythagoras murdered Hippasus for discovering
√

2,

a irrational number.

Z = {⋯,−3,−2,−1,0,1,2,3,⋯} (1.2)

Q = Z × (Z ∖ {0}) (1.3)

Filling in the gap between rational numbers with the limits of Cauchy sequences in Q is real numbers

R. Cantor proved that R is uncountable [Can74]. One of the greatest achievements in modern algebra

is algebraic numbers Q, roots of a non-zero polynomial in one variable with rational coefficients in Q[x],
and complex numbers C = R(i), the field generated by i =

√
−1 over R.

Thanks to the solid foundation in modern algebra, computer science, and computer engineering,

computer algebra systems (CAS) brought algebraic numbers accessible to end-users. Still, there are

uncountable transcendentals C ∖Q. Kontsevich and Zagier [KZ01] introduced periods P, the differences

between the volumes of two semi-algebraic sets, to fill in this gap; see Definition 1. In summary, the

relation of the set N, the group Z, the rings R ∩ P and P, and the fields Q,R ∩ Q,Q,R and C is in

Figure 1.1:

N ⊂ Z ⊂ Q ⊂ R ∩Q ⊂ R ∩ P ⊂ R
∩ ∩ ∩
Q ⊂ P ⊂ C

Figure 1.1: Relation of basic sets of numbers: N,Z,Q,R ∩Q,R,Q, and C

This thesis extends our previous publication “Computing Periods. . . ” in WALCOM 2018, based on ideas in the same

title presented at CCA 2017, which is a joint work with Sewon Park and Martin Ziegler [CPZ18]. This work was supported

by the National Research Foundation of Korea (grant NRF-2017R1E1A1A03071032) and the International Research &

Development Program of the Korean Ministry of Science and ICT (grant NRF-2016K1A3A7A03950702). We thank the

thesis committee members for feedback!
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Definition 1 (periods). A period is a complex number whose real and imaginary parts are values of

absolutely convergent integrals of rational functions with rational coefficients, over Euclidean domains in

Rd given by polynomial inequalities with rational coefficients [KZ01]:

∫
∆

p(x1, . . . , xd)
q(x1, . . . , xd)

dx1 ⋯ dxd (1.4)

where

∆ =
S

⋃
s=1

Ts

⋂
t=1

{x⃗ ∈ Rd ∣ ps,t(x⃗) > 0} and p, q, ps,t ∈ Q[x1,⋯, xd] (1.5)

In Equation (1.5), it is sufficient to restrict the polynomial inequalities to strict inequalities because

of Fact 2. Fact 3 strengthens Fact 2 and proceeds by induction on d: for any fixed (x1, . . . xd−1) ∈∏d−1
i=1 Si,

p(x1, . . . xd−1, Xd) is a univariate polynomial of degree ≤ k.

Fact 2. The set {x⃗ ∣ p(x⃗) = 0} of roots of a non-zero polynomial p has measure zero.

Fact 3. Let S1, . . . , Sd ⊆ R be arbitrary subsets of cardinality ∣Si∣ > k and p ∈ R[X1, . . .Xd] non-zero of

maximal degree ≤ k. Then there exists some x⃗ ∈∏d
i=1 Si with p(x⃗) ≠ 0.

In fact, every period can be expressed as difference of two semi-algebraic volumes: for co-prime

p, q ∈ Q[x1,⋯, xd], Equation (1.4) translates to

∫
∆p,q,+

1dx⃗ dy − ∫
∆p,q,−

1dx⃗ dy = vol(∆p,q,+) − vol(∆p,q,−) , (1.6)

where

∆p,q,+ ∶= {(x⃗, y) ∈ ∆ ×R ∣ 0 ≤ y ∧ y ⋅ q(x⃗) ≤ p(x⃗)} (1.7)

and

∆p,q,− ∶= {(x⃗, y) ∈ ∆ ×R ∣ 0 ≥ y ∧ y ⋅ q(x⃗) ≥ p(x⃗)} (1.8)

Note that ∆p,q,+,∆p,q,− ⊆ Rd+1 may be unbounded even when ∆ was bounded. However by means

of Singularity Resolution one can, without loss of generality, restrict to compact domains [VS17, Theo-

rem 1.1]. This shows that sum and (Cartesian) product of periods are again periods.

Furthermore, by appropriate rational scaling and shifting, it suffices to restrict the domain bounded

by the unit cube [0; 1)d. Given a domain, we can fit the domain inside the unit cube by scaling the

domain by aj along each xj axis; then, multiplying a−1
1 ⋯a−1

d to the volume of the restricted domain.

Periods are receiving increasing interest in algebraic model theory as they have finite descriptions,

i.e., the polynomials’ coefficients, and include all algebraic reals as well as some transcendentals. An

algebraic real α has a minimal polynomial mα, a unique monic polynomial of least degree in Q[x] of

which α is a root. With appropriate rationals a, b, a′, b′ ∈ Q, the following combination of polynomial

inequality gives a line segment of length ∣α∣:

(mα(x) > 0 ∧ a ≤ x ≤ b) ∨ (mα(x) < 0 ∧ a′ ≤ x ≤ b′) (1.9)

Thus, all algebraic reals are periods with an appropriate integrand 1 or −1. Examples of periods are

in Equation (1.10) and their geometric interpretations in Figure 1.2: an algebraic
√

2, a transcendental

ln(x) for algebraic x, and a transcendental π.

√
2 = ∫

0≤t∧2t2≤1

t dt, ln(x) =
x

∫
1

1/t dt = ∫
t≤x∧s⋅t≤1

1dsdt, π = ∫
x2+y2≤1

1dxdy (1.10)

2
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Figure 1.2: Geometric interpretation of periods

Many interesting open questions evolve around periods; for instance, whether there exists an al-

gorithm that decides whether they are equal or not given two representations of periods [KZ01, Prob-

lem 1]; asking for an “explicit” example of a real number that is not a period [KZ01, Problem 3].

Inner-mathematical candidates are 1/π and e = ∑n 1/n!, but proving so seems infeasible with the current

methods. The families of semi-algebraic domains and of periods are countable, non-periods are abundant.

In fact, every period is computable in the sense of Recursive Analysis [Tur37, Wei00]; therefore any

incomputable reals such as the Halting Problem encoded in binary or random reals [BDC01] like Chaitin’s

Ω cannot be periods. More precisely each period is of lower elementary complexity in Grzegorczyk’s

Hierarchy [Yos08, TZ10, SWG12]. Note that such improved upper complexity bounds give rise to more

candidates of non-periods.

Problem 4. Characterize the computational complexity of periods!

Moreover efficient algorithms for computing, i.e., producing guaranteed high-precision approxima-

tions to periods enable Experimental Mathematics [KZ01, Problem 2]; cmp. [Bai17].

We present a more concise algorithm based on our previous algorithms [CPZ18]. We prove it correct;

describe its implementation in discrete computation unlike our previous algorithms in the convenient

Exact Real Computation paradigm; estimate their cost in the unit cost model; and empirically analyze

and compare its behaviour to our previous algorithms in terms of the output precision and the degree

of the polynomial involved.

Section 1.1 recalls central notions, properties, and practice of real computation; Section 1.2 puts

things in perspective to related work. Section 1.3 specifies the problem this thesis cope with. Section 1.4

compares this thesis with our previous publication. Our algorithm is presented, and proven correct,

in Chapter 2. In Chapter 3, we introduce our implementation, performance measurements, and their

evaluation and interpretation. In Chapter 4, we show the problem of computing periods specified in

Section 1.3 is NP-hard. Chapter 5 expands on future work.

1.1 Real Computation

Regular floating-point arithmetic incurs rounding errors that accumulate over time and hamper

reliable computations. One example is m iterations of logistic map fmr (x) ∶ [0; 1]→ [0; 1] defined by

fmr (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

rx(1 − x) if m = 1

f1
r (fm−1

r (x)) otherwise
(1.11)

3



m

Floating-point arithmetic
Exact Real Computation

32-bit 64-bit 128-bit

fm3.75(0.5) Time fm3.75(0.5) Time fm3.75(0.5) Time fm3.75(0.5) Time

30 0.715239 8 0.718096 0 0.718096 0 0.718097 77

40 0.847816 0 0.416349 0 0.416349 0 0.416349 13

85 0.642700 0 0.550527 0 0.816883 0 0.816938 28

100 0.936589 0 0.936749 0 0.816798 0 0.888294 32

200 0.578099 1 0.220493 1 0.513209 16 0.823557 77

500 0.833184 2 0.786115 2 0.829312 2 0.276754 297

1,000 0.914432 4 0.340803 4 0.662663 5 0.791747 714

10,000 0.222593 68 0.276689 39 0.223618 47 0.824205 130,653

100,000 0.860895 516 0.239181 434 0.521347 511 0.666947 32,783,502

500,000 0.728425 2,155 0.274556 2,155 0.925446 2,681 0.451203 1,245,317,065

Table 1.1: Comparison of computing m iterations of logistic map fmr (x) defined in Equation (1.11) with

r = 3.75 at x = 0.5, up to six decimal places in floating-point arithmetic and Exact Real Computation

(time in µs)

Table 1.1 shows the result of computing fmr (x) where r = 15/4 = 3.75 and x = 1/2 = 0.5 in floating-

point arithmetic. It illustrates rounding errors accumulating over iterations and any fixed-precision

floating-point arithmetic is unreliable. Note that higher fixed-precision floating-point arithmetic does

not guarantee more precise results.

Interval arithmetic deals with an interval [a; b] where the actual value resides instead of a single

floating-point approximation to keep track of the error bounds. The error bound, however, may blow up

beyond use. In case of the aforementioned iterations of logistic map, interval arithmetic results an interval

[0; 1] after a few iterations, which is useless, due to the chaotic behaviour of logistic map. Moreover, a

comparison of two numbers may be meaningless when two intervals representing the numbers overlap.

Exact Real Computation is an approximation of infinite computations of Type-2 machines by fi-

nite computations with arbitrary precision [Wei00, p. 16]. A Type-2 machine M is a Turing machine

with k one-way input tapes Y1,⋯, Yk and a one-way output tape Y0 together with a type specification

(Y1,⋯, Yk, Y0) with Yi ∈ {Σ∗,Σω}, giving the type for each input tape and the output tape [Wei00,

Definition 2.1.1]. Computational complexity of Type-2 machine naturally involves the output length n.

Time complexity of Type-2 machine M on input y is the number of steps which the machine M on input

y needs until it has printed the n-th output symbol [Wei00, Definition 7.1.1]. In other words, we define

computable real numbers, computable sequences of real numbers, and computable real-valued functions

of real variables as follows:

Definition 5 (computable real numbers). An algorithm A computes a real number r if it outputs a

dyadic approximation a/2n of r up to error 2−n:

∣r − an
2n

∣ < 2−n (1.12)

given any output precision n ∈ N in unary word. A real number r is computable if there exist an algorithm

A which computes r.

4



There are only countable computable real numbers because there are only countable algorithms by

the Cantor’s diagonal argument. An example of incomputable real number is obtained by embedding

the halting problem H in a real number. The halting problem H is a set of pairs ⟨M,x⟩ of a Turing

machine M and an instance x where the Turing machine M on input x halts [Tur37]. Let h be a real

number such that

h ∶= ∑
⟨n⟩∈H

4−n (1.13)

Suppose h is computable. Then, we decide the halting problem by computing n ∈ N such that

⟨n⟩ = ⟨M,x⟩, computing h up to error 2−2n−2, then testing the 2n-th binary place is 1 given a Turing

machine M and an instance x. This is a contradiction because the halting problem is undecidable [Tur37].

Definition 6 (computable sequences of real numbers). An algorithm A computes a sequence of real

numbers (rj) if it outputs a dyadic approximation a/2n of rj up to error 2−n given any output precision

n ∈ N in unary word and any index j ∈ N. A sequence of real numbers (rj) is computable if there exist

an algorithm A which computes (rj).

Definition 7 (computable real-valued functions of real variables). An algorithm A computes a real-

valued function f ∶ Rd → R if it outputs a dyadic approximation a/2n of f(x) up to error 2−n given any

output precision n ∈ N in unary word and oracles X1,⋯,Xd which computes x1,⋯, xd, respectively, for

any x1,⋯, xd ∈ R. A real-valued function f ∶ Rd → R is computable if there exist an algorithm A which

computes f .

For example, addition x + y is computable: given n, compute dyadic approximations a/2n+1 and

b/2n+1 by oracles X and Y of x and y, respectively, up to error 2−n−1; then, output the sum of approx-

imations (a + b)/2n. Also, multiplication x ⋅ y is computable: given n, compute dyadic approximations

a/22n and b/22n by oracles X and Y of x and y, respectively, up to error 2−2n; then, output the product

of approximations ab/2n. Note that the domain of a computable real-valued function is not restricted to

the computable real numbers.

It is well-known from Recursive Analysis that equality of real numbers is incomputable. In other

words, the sign of a real number, sign ∶ R → {−1,0,1}, is incomputable [Wei00, Exercise 4.2.9]. It is

enough to show that there exists a computable sequence (rj) where the sequence (sign(rj)) is incom-

putable. Let ⟨j⟩ = ⟨M,x⟩ and let T ⊆ N such that n ∈ T if the Turing machine M on input x halts in n

steps. Now, we define the sequence (rj) as follows:

rj = ∑
n∈T

4−n (1.14)

The sequence (rj) is computable by simulating the Turing machine M on input x for n steps and

computing the partial sum:
a

2n
= ∑
m∈T,2m≤n

4−m (1.15)

The sequence (sign(rj)) is incomputable because rj = 0 if and only if the Turing machine M on input x

does not halt. Given an oracle of the sequence (sign(rj)), therefore, we can solve the halting problem

H by finding the corresponding j; querying the oracle about the sign of rj ; then, deciding whether the

sign is non-zero: H ≤T {j ∣ rj ≠ 0}.

When r ≠ 0, a näıve algorithm computes the sign of r: compute a dyadic approximation a/2n for

some n; report the sign of a if ∣a/2n∣ > 2−n; otherwise, increment n and repeat. Indeed, this algorithm

freezes when r = 0. Given an oracle of H, we can compute the sign of a real number r by querying the

5



oracle about this algorithm on input r. Therefore, equality of real numbers is Turing equivalent to the

complement of the halting problem: H ≡T {j ∣ rj ≠ 0}.

iRRAM is a C++ exact real computation library [Mül01, MZ14], providing real numbers as abstract

data type with exact operations and partial comparison: A test “r > 0” freezes in case r = 0. Table 1.1

shows the result of computing fmr (x) in Equation 1.11 where r = 15/4 = 3.75 and x = 1/2 = 0.5 in

Exact Real Computation with iRRAM. Exact Real Computation requires more time than floating-point

arithmetic to achieve a correct approximation because iRRAM employs flexible-precision floating-point;

thus, the bit-cost of a floating-point operation is not constant.

To write total programs in spite of comparison being partial, a parallel disjunction is provided:

calling the non-deterministic or multivalued ‘function’ choose(x1 > 0, . . . , xk > 0) returns some integer j

such that xj > 0 holds, provided such j exists.

Subject to this modified semantics of tests, Exact Real Computation allows to conveniently process

real arguments and intermediate results as entities, näıvely without precision considerations. On the other

hand, the output or return value of a function in iRRAM merely needs to be provided in approximation up

to absolute error 2p for any parameter p ∈ Z passed. The following algorithm demonstrates this paradigm

with the trisection method for finding the promised unique and simple root of a given continuous function

f ∶ [0; 1] → [−1; 1] while avoiding the sign test “0 < f(a) ⋅ f(b′)” to fail in case b′ already happens to be

a root:

Algorithm REAL Trisection(INTEGER p, REAL→ REAL f)

1: REAL a ∶= 0; REAL b ∶= 1

2: while choose ( b − a > 2p−1 , 2p > b − a) == 1 do

3: REAL a′ ∶= 2
3
a + 1

3
b; REAL b′ ∶= 1

3
a + 2

3
b

4: if choose ( 0 > f(a) ⋅ f(b′) , 0 > f(a′) ⋅ f(b)) == 1 then

5: b ∶= b′

6: else

7: a ∶= a′

8: end if

9: end while

10: return a

Figure 1.3: Pseudocode of root finding algorithm with trisection

Remark 8. A caveat, in Exact Real Computation the bit — as opposed to unit — cost of each operation

may well depend on the value (and internal precision) of the data being processed. For instance a

sign test “x > 0” will take time between linear and quadratic in n ≈ log2(1/∣x∣): to obtain the dyadic

approximation an/2n of x up to error 2−n and verify it to be strictly larger than 2−n. Similarly, a parallel

test choose(x1 > 0, . . . , xk > 0) will take time roughly k ⋅minj<k log(1/∣xj ∣).

1.2 Periods and their Computational Complexity

It has been shown that periods are of lower elementary complexity [TZ10, SWG12]. The present

section recalls this and related notions with their connections to resource-bounded complexity.
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In Grzegorczyk’s Hierarchy, Lower Elementary means the smallest class of total multivariate func-

tions f ∶ Nd → N = {0,1,2,⋯} containing the constants, projections, successor, modified difference

x � y = max{x − y,0}, and is closed under composition and bounded summation f(x⃗, y) = ∑yz=0 g(x⃗, z).
We write M2 = E2 for the smallest class of such f containing the constants, projections, succes-

sor, modified difference, binary multiplication, and closed under both composition and bounded search

µ(f)(x⃗, y) = min{z ≤ y ∶ f(z̄, z) = 0}.

A real number r is lower elementary if there exist lower elementary integer functions f, g, h ∶ N→ N
with ∣r − f(N)−g(N)

h(N) ∣ < 1/N for all N > 0; similarly for a real number in M2.

A real number r is computable in time t(n) and space s(n) if a Turing machine can, given n ∈ N
and within these resource bounds, produce some an ∈ Z with ∣r − an/2n∣ ≤ 2−n [Ko91].

Fact 9. a) All functions from M2 are lower elementary; and the latter functions grow at most poly-

nomially in the value of the arguments. In terms of the binary input length and with respect to

bit-cost, lower elementary functions are computable using a linear amount of memory for interme-

diate calculations and output, that is, they belong to the complexity class FSPACE(n).

b) FSPACE(n) is closed under bounded summation and therefore coincides with the class of lower

elementary functions. The 0/1-valued functions (that is, decision problems) in M2 exhaust the

class SPACE(n) [Rit63, §4]; cmp. [Kut87].

c) π and e = ∑n 1/n! and Liouville’s transcendental number L = ∑n 10−n! and the Euler-Mascheroni

Constant γ = limn ( − ln(n) +∑nk=1 1/k) are all lower elementary [Sko08, §3].

d) The set of lower elementary real numbers constitutes a real closed field: Binary sum and product

and reciprocal of lower elementary real numbers, as well as any real root of a non-zero polynomial

with lower elementary coefficients, are again lower elementary [SWG12, Theorem 2].

e) Arctan, natural logarithm and exponential as well as Γ and ζ function map lower elementary reals

to lower elementary reals [TZ10, §9].

f) Natural logarithm maps periods to periods; ζ(s) is a period for every integer s ≥ 2 [KZ01, §1.1].

g) Periods are lower elementary [TZ10, Corollary 6.4].

h) Given a Boolean expression ϕ(x1,⋯, xm) as well as the degrees and coefficients of the polynomials

pj defining its constituents Spj , deciding whether the semi-algebraic set ϕ(Sp1 ,⋯, Spm) is non-

empty/of given dimension [Koi99] is complete for the complexity class NP0
R ⊇ NP.

Item a) follows by structural induction. Together with b) it relates resource-oriented to Grzegor-

czyk’s structural Complexity Theory. Note that the hardness Result h) does not seem to entail a lower

bound on the problem of approximating a fixed volume; in fact many of the usual reductions among real

algebraic decision problems [Mee06] fail under volume considerations. Common efficient and practical

algorithms tailored for approximating L, e, γ, or the period π do so up to absolute error 1/N ∶= 2−n within

time polynomial in the binary precision parameter n = log2N [Kan03]; whereas the best runtime bound

known for SPACE(n) is only exponential [Pap94, Problem 7.4.7]. On the other hand exponential-time

algorithms may well be practical [FG06, KF10].
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1.3 Problem Statement

In this background, we specify the problem of computing periods as follows:

Definition 10 (computing periods). Given polynomial inequalities ps,t > 0 with rational coefficients in

Q[x1,⋯, xd] in a disjunctive normal form and an output precision n ∈ N in a unary word, produce a

dyadic approximation a/2n of the volume of domain ∆ from Equation (1.5) satisfying the polynomial

inequalities bounded by the unit cube up to error 2−n:

∣vol(∆) − a

2n
∣ ≤ 2−n where ∆ =

S

⋃
s=1

Ts

⋂
t=1

{x⃗ ∈ Rd ∣ ps,t(x⃗) > 0} (1.16)

1.4 Comparison of this Thesis and our Previous Publication

In this section, we compare this thesis and our previous publication “Computing Periods. . . ” in

WALCOM 2018 [CPZ18]. In the previous publication, we considered the sum of the squares of polyno-

mials in the analyses:

p =
M

∑
j=1

p2
j (1.17)

The roots of p, however, captures the simultaneous roots of p1,⋯, pM only, not the union of the roots

of each polynomial. Therefore, the analyses are wrong because non-simultaneous roots of a polynomial

can cause an error. With the product of polynomials p1,⋯, pM , the analyses are correct:

p =
M

∏
j=1

pj (1.18)

Because the sign of a real number is incomputable, we introduced three algorithms to avoid a root

when computing the sign of the function value of the given polynomials at a point in each sub-cube:

randomized, deterministic, and transcendental algorithms. The randomized algorithm evaluates the sign

at a real random point based on Fact 2. The deterministic algorithm evaluates the signs at more than

one points in parallel based on Fact 3. Finally, the transcendental algorithm evaluates the sign at an

algebraically independent point based on Fact 11. Note that x⃗ ∈ Rd is algebraically independent if and

only if it is not a root of any polynomials with rational coefficients in Q[x1,⋯, xd]. Fact 11 is the

Lindemann-Weierstrass Theorem, applied to linear independence of prime square roots over rationals.

Fact 11. For p1, . . . , pd pairwise distinct primes, x⃗ ∶= (e
√

2, e
√

3, . . . , e
√
pd) is algebraically independent:

q(x⃗) ≠ 0 for every non-zero d-variate polynomial q with integer coefficients; and more generally q(A ⋅ x⃗+
b⃗) ≠ 0 for any vector b⃗ ∈ Ad with algebraic coefficients and invertible d × d-matrix A ∈ GLd(A).

Because the image of the restriction of polynomials with rational coefficients to Q is subsets of Q,

we choose a rational point in each sub-cube, namely the center of sub-cube, and evaluate the signs of the

polynomials at the rational points in this thesis. This results a more concise algorithm than the previous

three algorithms.

Moreover, the running time of computing the sign of function value at a point depends on the

function value. Thus, it seems infeasible to analyze the previous three algorithms in terms of bit-cost.

On the other hand, bit-cost analysis of the new algorithm is feasible because the algorithm involves only

discrete computations although it is left as a future work.
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Chapter 2. Our Algorithm and its Analysis

In the view of the problem statement in Section 1.3, this section devises and analyzes an algorithm

that approximates the volume of the set of solutions x⃗ to d-variate polynomial inequalities with rational

coefficients in disjunctive normal form up to guaranteed absolute error 2−n.

The common basic idea underlying all of our algorithms including our previous algorithms is to

divide [0; 1]d into sub-cubes

Qc⃗,N ∶= [ c⃗
N

; c⃗+1⃗
N

) = ∏
d

i=1
[ ci
N

; ci+1
N

) for all c⃗ ∈ [N]d (2.1)

where [N] ∶= {0, . . . ,N − 1} and 1⃗ ∶= (1, . . . ,1); then determine the signs of the polynomials ps,t at the

center points of the sub-cubes Qc⃗,N ;

x⃗c⃗,N ∶= 2c⃗ + 1⃗

2N
∈ Qc⃗,N (2.2)

and count those, where the constraints ps,t(x⃗c⃗,N) > 0 are met, with uniform weight vol(Qc⃗,N) = N−d.

However, when a polynomial’s sign may vary within a sub-cube Qc⃗,N , the above approach can incur

an error. Here are two observations: only sub-cubes containing a root produce an error; and the total

error converges to zero as N increases. Therefore, with appropriate N , the above approach results an

approximation up to guaranteed absolute error 2−n. We show an appropriate N and prove its correctness

in Section 2.1 and we summarize our complete algorithm in pseudocode in Section 2.2.

2.1 Recap on Real Algebraic Geometry

Let k be the maximum degree of the product p of polynomials ps,t. Then, the union of the roots of

polynomials ps,t is exactly the roots of p.

p =
S

∏
s=1

Ts

∏
t=1

ps,t and k = maxdeg(p) (2.3)

1D case In the case of d = 1, a change of sign can occur in and affect at most k of the sub-intervals

Qc,N because p can have at most k roots. Hence, taking N > k ⋅ 2n guarantees the required error bound

2−n. A multivariate polynomial on the other hand may have infinitely many roots, which however can

form only a bounded number of connected components. This allows us to generalize the analysis of 1D

case as Lemma 12 and 14.

2D case By Lemma 12, taking N satisfying the following guarantees the required error bound 2−n:

(1 + (k − 1)(k − 2)
2

+ 2(N + 1) ⋅ k) ⋅N−2 < 2−n (2.4)

Lemma 12 (2D case). In case of d = 2 and for any fixed non-zero polynomial p ∈ R[x, y] of maximum

degree k, at most 1+ (k−1) ⋅ (k−2)/2+2(N +1) ⋅k of the N ×N sub-squares Qc⃗,N can contain roots of p.

Proof. By Fact 13 below, the roots of p can form at most c ≤ 1+(k−1) ⋅(k−2)/2 connected components in

R2. Of course, such a component may extend through more than one of the sub-squares Qc⃗,N ; however,
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in order to do so, it must cross one of the N +1 horizontal lines or one of the N +1 vertical lines forming

the sub-division of [0; 1]2. More precisely for component C to extend to MC ∈ N of the N2 sub-squares,

it must intersect at least MC − 1 of the 2(N + 1)2 segments of the 2(N + 1) aforementioned lines; and for

all c components to extend to a total of M of the N2 sub-squares, they have to intersect these lines in

at least M − c points, which are distinct since connected components do not meet. However, p restricted

to any of the 2(N + 1) lines boils down to a univariate polynomial either in x or in y of degree at most

k, and hence can have at most k roots on each such line: requiring M − c ≤ 2k ⋅ (N + 1).

Fact 13 (Harnack’s Curve Theorem). Let p ∈ R[x, y] denote a bivariate polynomial of maximum degree k.

Then the number of connected components of {(x, y) ∈ R2 ∣ p(x, y) = 0} is at most 1+(k−1)⋅(k−2)/2 [PP16,

Theorem 48.1].

General case By Lemma 14, taking N satisfying the following guarantees the required error bound

2−n,

(kd + kd−1 ⋅ d ⋅ (N + 1)) ⋅N−d < 2−n (2.5)

namely by Lemma 16:

N > 3 max(k, d) ⋅ 2n/(d−1) (2.6)

Lemma 14 (general case). For d ≥ 3 and any fixed non-zero polynomial p ∈ R[x1, . . . , xd] of maximum

degree k, at most kd + kd−1 ⋅ d ⋅ (N + 1) of the Nd sub-(hyper)cubes Qc⃗,N can contain roots of p.

Proof. Similarly to the proof of Lemma 12, the roots of p can form at most cd ≤ kd connected components

according to Fact 15. For any such component C to extend to MC ∈ N of the Nd sub-(hyper)cubes, it

must intersect at least MC −1 of the d ⋅(N +1)d facets of the overall subdivision induced by the d ⋅(N +1)
hyperplanes; and for all cd components to extend to a total of M of the Nd sub-cubes, they have to

intersect these hyperplanes in at least M − cd different components. However, p restricted to any of the

d⋅(N+1) hyperplanes boils down to a (d−1)-variate polynomial of maximum degree at most k, whose roots

can form at most cd−1 ≤ kd−1 connected components according to Fact 15: M − cd ≤ cd−1 ⋅ d ⋅ (N + 1).

Fact 15 (generalization of Harnack’s Curve Theorem due to Milnor and Thom). If ∆ ⊆ Rd is the zero

set of one polynomial of maximum degree k, then it has at most kd connected components; if it is the

conjunction of (any number of) such sets, then it has at most k ⋅(2k−1)d connected components [HRR90,

Theorem 9].

Lemma 16. It holds kd + kd−1 ⋅ d ⋅ (N + 1) ≤ Nd ⋅ 2−n for all N ≥ 3k ⋅ 2n/(d−1) and k ≥ d ≥ 3.

Proof. Apply inequality ∣x∣d + ∣y∣d ≤ (∣x∣ + ∣y∣)d to xd ∶= 2n ⋅ (kd + d ⋅ kd−1) ≤ 2kd ⋅ 2n⋅d/(d−1) and yd ∶=
N ⋅ d ⋅ kd−1 ⋅ 2n, taking into account d

√
2 + d−1

√
d ≤ 3 for all d ≥ 3.

2.2 Our Algorithm and Pseudocode

In order to guarantee absolute error bound 2−n, our algorithm uses binary search to find the least

N ∈ N satisfying Equation (2.4) or (2.5) rather than apply the concise but asymptotic bound in Equation

(2.6). In summary, our complete algorithm in pseudocode is in Figure 2.1. From Equation (2.6), the

running time of our algorithm in unit-cost is O(Nd) = O(kd ⋅ 2nd), exponential to n and d, but only

polynomial to k.
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Algorithm BOOL IsEnoughN(INTEGER n, INTEGER d, INTEGER N)

1: if d == 1 then

2: return N > k ⋅ 2n

3: else if d == 2 then

4: return 1 + (k − 1) ⋅ (k − 2)/2 + 2(N + 1) ⋅ k < N2 ⋅ 2−n

5: else

6: return kd + kd−1 ⋅ d ⋅ (N + 1) < Nd ⋅ 2−n

7: end if

Algorithm RATIONAL Period(INTEGER n, INTEGER d, POLYNOMIAL ps,t . . .)

1: INTEGER S ∶= the number of conjunctions

2: INTEGER Ts ∶= the number of polynomial inequalities in j-th conjunction for each 1 ≤ s ≤ S
3: POLYNOMIAL p ∶=∏S

s=1∏
Ts

t=1 ps,t

4: INTEGER k ∶= maxdeg(p)
5: REAL l ∶= 0; REAL r ∶= 1

6: while ¬IsEnoughN(n + 1, d, r) do

7: r ∶= 2r

8: end while

9: while l ≤ r do

10: INTEGER N ∶= (l + r)/2
11: if IsEnoughN(n + 1, d, N) then

12: r ∶= N − 1

13: else

14: l ∶= N + 1

15: end if

16: end while

17: INTEGER N ∶= l
18: INTEGER C ∶= 0

19: while INTEGER c⃗ ∈ [N]d do

20: RATIONAL x⃗ = (2c⃗ + 1⃗)/(2N)
21: if ∃1 ≤ s ≤ S. ∀1 ≤ t ≤ Ts. ps,t(x⃗) > 0 then

22: C ∶= C + 1

23: end if

24: end while

25: RATIONAL a ∶= C/Nd rounded off to n-th binary place.

26: return a

Figure 2.1: Pseudocode of our algorithm
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Chapter 3. Implementation and Evaluation

The aforementioned algorithm was implemented without multithreading in C++ with GMP, the

GNU Multiprecision Arithmetic Library, involving only discrete computations. Meanwhile, the three

algorithms introduced in [CPZ18] were implemented in Exact Real Computation based on the iRRAM

C++ library [Mül01, MZ14]. The randomized and transcendental algorithms had the best performance

among the three algorithms. In this chapter, we discuss the result of the new algorithm from this thesis

on the same experiment in [CPZ18]. For convenience and to avoid confusion, we refer the new algorithm

as Thesis algorithm and the randomized algorithm as CPZ18 algorithm. Note that both Thesis and

CPZ18 algorithms have the same unit-cost.

However, this analysis only counts the number of operations, that is, referring to an algebraic or

unit-cost measure as opposed to the more realistic bit-cost measure taking into account aspects of internal

or working precision. For the CPZ18 algorithm, the latter seem hard to estimate, though, since they

depend not only on the output precision n and the polynomial degree k, but also on the coefficients of

the polynomial constraints p under consideration: which in the worst-case may give rise to unbounded

running times. On the other hand, for the Thesis algorithm, the bit-cost analysis is now feasible because

it involves only discrete computations although it is left as a future work. For a more realistic assessment

we have thus implemented, empirically evaluated and compared the practical performance of the both

algorithms on the following kinds of benchmark polynomials:

The bivariate polynomials representing the transcendental periods π and ln(2); recall Equation

(1.10); and for d = 2 and d ≥ 3, the multivariate scaled Wilkinson-type Polynomials I:

pn,d ∶=
d

∏
i=1

k

∏
j=1

(xi − j
k
) (3.1)

deliberately placing roots at points on a grid that the deterministic algorithm will try to determine their

signs in and Wilkinson-type Polynomials II:

pn,d ∶=
k

∏
j=1

(
d

∏
i=1

xi − j
k
) (3.2)

3.1 Computing Environment

Their source codes and the experiment results are available for download from the urls https:

//github.com/junheecho/period and https://github.com/junheecho/iRRAM. We have executed and

timed them on a computer with Intel® Core™ i7-6950X processor with 10 cores, 20 threads running at

3.00 GHz and 64 GB of RAM. Less than 20 processes ran at the same time so that they do not impede

each other. The source code is compiled with g++ 5.4.0 on Ubuntu 16.04.3 LTS. Also, GMP 6.1.0 is

used. We focus on CPU time; memory was never a problem.

3.2 Performance Results

We have measured, for each of the two algorithms and each of the above benchmark polynomials

as input, the CPU time in dependence on n; for the Wilkinson-type Polynomials also on k. We have
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Input Algorithm Regression R2 score

π
CPZ18 exp(1.31n − 9.51) 0.99

Thesis exp(1.27n − 8.40) 0.95

(the ratio of Thesis over CPZ18) exp(0.07n − 0.14) 0.12

ln(2)
CPZ18 exp(1.38n − 11.74) 1.00

Thesis exp(1.19n − 8.81) 0.93

(the ratio of Thesis over CPZ18) exp(0.00n − 0.68) 0.01

Wilkinson-type Polynomials I

CPZ18
exp(1.38n − 12.32) ⋅ k3.33 0.89

exp(1.01k + 1.37n − 11.95) 0.49

Thesis
exp(1.32n − 11.49) ⋅ k3.39 0.99

exp(1.02k + 1.31n − 11.12) 0.94

(the ratio of Thesis over CPZ18)
exp(0.02n − 0.11) ⋅ k0.19 0.01

exp(0.04k + 0.02n + 0.04) -0.02

Wilkinson-type Polynomials II

CPZ18
exp(1.25n − 10.39) ⋅ k2.80 0.98

exp(0.73k + 1.24n − 9.82) 0.76

Thesis
exp(1.29n − 10.70) ⋅ k3.05 0.98

exp(0.75k + 1.26n − 9.62) 0.91

(the ratio of Thesis over CPZ18)
exp(0.05n − 0.34) ⋅ k0.21 0.24

exp(0.04k + 0.04n − 0.19) 0.18

Table 3.1: Parameter Regression of CPU time

then fitted the results to the model or ansatz exp(n ⋅ β − α) — for the Wilkinson-type Polynomials to

exp(n ⋅β −α) ⋅kγ — and plotted both. We have also fitted the result for the Wilkinson-type Polynomials

to exp(k ⋅ γ + n ⋅ β − α) but the R2 scores show the former model is more suitable; see Table 3.1. We

have also plotted and fitted the ratios of the algorithms’ respective performances to the aforementioned

models; see Figure 3.1.

3.3 Interpretation

Our measurements confirm the predicted running times polynomial in k and exponential in n. The

CPZ18 algorithm runs faster than the Thesis algorithm even though we did not capture that with the

regression models. Therefore, we conclude their performance only vary by a constant factor. However,

the CPZ18 implementation has a limitation on capability due to iRRAM’s nature.

The practical advantage of the CPZ18 algorithm comes from intermediate interval computations,

i.e., iRRAM does not compute the exact value of rationals, but compute approximations by an interval

with multiprecision floating points. When the precision of floating points is not sufficient, it increases

the precision and reiterate the program: a bottom-up approach. Hence, when the absolute value of the

function value of a polynomial is large, it is possible to decide the sign with low precision floating points.

On the other hand, the Thesis algorithm should compute the exact value; thus, running slow.

iRRAM’s bottom-up approach together with parallel disjunction, namely choose function, causes a

limitation on space complexity. Even though iRRAM takes a bottom-up approach, one of its primary

goal is to hide reiterations from users. When it comes to parallel disjunction at choose function call,
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Figure 3.1: CPU time (sec.) of computing periods via Wilkinson-type Polynomials I

it has to return the same value from the function call for all reiterations. Due to different timing in

multithreading or randomization, iRRAM caches which branch it took at each choose call and follows the

same branch afterwards. This makes the space complexity linearly depend on the time complexity.

In our case, the space complexity does not depend on the number of sub-cubes. However, iRRAM’s

cache for choose calls makes the space complexity depend on the number of sub-cubes. Although we did

not run out of physical memory during the experiment, the program crashed; for example, the CPZ18

implementation crashed when computing π up to error 2−13. Perhaps, iRRAM has its own limit on the

cache size. From this perspective, we suggest the following principle:

Principle 17. Avoid real computations whenever possible.
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Chapter 4. NP-hardness

In this chapter, we show the general problem of computing periods from Definition 10 is NP-hard by

a polynomial reduction from 3-satisfiability problem (3-SAT). 3-SAT is a decision problem to decide the

satisfiability of a Boolean formula in conjunctive normal form where each clause has at most 3 literals.

Let xi be a Boolean variable for 1 ≤ i ≤ N . Then, a literal l is xi or ¬xi for some 1 ≤ i ≤ N , a clause Cj

is a disjunction of Nj ≤ 3 literals: Cj = ∨
Nj

k=1lj,k for 1 ≤ j ≤M . Formally, 3-SAT is a set of ∧Mj=1Cj which

is satisfiable. Without loss of generality, we assume each clause has exactly three literals by duplicating

a literal. For a polynomial-time many-one reduction, we identify a decision problem (n,q)-PERIOD:

(n,q)-PERIOD ∶= {∆ ∣ vol(∆) > q + 2 ⋅ 2−n} (4.1)

Given an instance of 3-SAT, we construct an instance of (n,q)-PERIOD as follows:

1. Construct a real variable yi ∈ [0; 1/6] ∪ [5/6; 1] for each Boolean variable xi so that

xi = true ⇔ yi ∈ [5/6; 1] (4.2)

xi = false ⇔ yi ∈ [0; 1/6] (4.3)

2. Construct l for each literal l:

l = xi ↦ l = yi (4.4)

l = ¬xi ↦ l = 1 − yi (4.5)

so that

l = true ⇔ l ∈ [5/6; 1] (4.6)

l = false ⇔ l ∈ [0; 1/6] (4.7)

3. Construct pj = lj,1 + lj,2 + lj,3 − 2/3 for each clause Cj = lj,1 ∨ lj,2 ∨ lj,3 so that Cj(x⃗) = true if and

only if pj(y⃗) > 0 for y⃗ corresponding to x⃗. If both literals xi and ¬xi for some 1 ≤ i ≤ N appear in

Cj , we do not construct Cj because Cj is always satisfied.

4. Finally, construct a system of polynomial inequalities P and the set of its solutions ∆:

P ∶= (∧Mj=1pj(y⃗) > 0) ∧ (∧Nj=10 < yj < 1) ∧ (∧Nj=1(yj − 1/2)2 − 1/9 > 0) (4.8)

∆ ∶= {y⃗ ∈ RN ∣ P (y⃗)} (4.9)

for the Boolean formula ∧Mj Cj .

This construction is a one-to-one correspondence between Boolean value assignments and sub-cubes

at vertices in n-dimensional unit cube. Each sub-cube corresponds to a false assignment is excluded

by some polynomial inequality pj(y⃗) > 0, but each sub-cube corresponds to a true assignment is not.

Given a NO instance of 3-SAT, all sub-cubes are excluded; thus,

vol(∆NO) = 0 (4.10)
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Likewise, given a YES instance of 3-SAT, a sub-cube is included; thus,

vol(∆YES) ≥ 1/6N (4.11)

Let q = 6−N /2 and n ∈ N be the smallest satisfying 2−n < 6−N /2.

vol(∆NO) = 0 < q − 2 ⋅ 2−n < q < q + 2 ⋅ 2−n < 6−N ≤ vol(∆YES) (4.12)

Therefore, this construction is a polynomial-time many-one reduction from 3-SAT to (n,q)-PERIOD.

∧Mj=1Cj ∈ 3-SAT⇔ P ∈ (n,q)-PERIOD (4.13)

3-SAT ≤p (n,q)-PERIOD (4.14)

Indeed, some fixed periods have efficient algorithms; for example, π can be efficiently computed by

arithmetic-geometric mean; and ln(x) can also be efficiently computed. We leave whether every fixed

period can be computed in time polynomial in n as a future work. Furthermore, given a polynomial

inequalities in a disjunctive normal form, can we compute the period in time polynomial in n?
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Chapter 5. Conclusion and Perspectives

We have present an algorithm rigorously computing periods up to guaranteed error 2−n which in-

volves only discrete computations given polynomial inequalities with rational coefficients in disjunctive

normal form. It takes time exponential in the output precision n and the dimension d, but only polyno-

mial in the maximum degree of the product of the polynomials k. It performs almost identical to our

previous algorithms, but it is more concise. Furthermore, its bit-cost analysis is feasible while bit-cost

analyses of our previous algorithms seem infeasible.

For now we have focused on the case of two (and three) variables. Future work will extend in that,

and the following directions:

1. We will try to analyze the time and space complexity of the algorithm in bit-cost in terms of the

bit length of input.

2. Picking up on the first paragraph of Chapter 3, we will try to identify reasonable parameters of

the polynomials p ∈ Q[x1,⋯, xd] under consideration, in addition to their maximal degree bound

k, to devise a refined rigorous parameterized bit-cost analysis.

3. The question remains open as of whether every fixed period can be computed in time polynomial

in n although we have seen the general problem of computing periods is NP-hard.

4. In the spirit of Experimental Mathematics, we plan to algorithmically search for new (candidate,

linear or algebraic) relations among periods.

17



Bibliography

[Bai17] David H. Bailey. Jonathan borwein: Experimental mathematician. Experimental Mathematics,

26(2):125–129, 2017.

[BDC01] Verónica Becher, Sergio Daicz, and Gregory Chaitin. A highly random number. In Combinatorics,

computability and logic, Springer Ser. Discrete Math. Theor. Comput. Sci., pages 55–68, London, 2001.

Springer.

[Can74] Georg Cantor. Ueber eine eigenschaft des inbegriffs aller reellen algebraischen zahlen. Journal für die

reine und angewandte Mathematik (Crelle's Journal), 1874(77), 1874.

[CPZ18] Junhee Cho, Sewon Park, and Martin Ziegler. Computing periods . . . . In M. Sohel Rahman, Wing-

Kin Sung, and Ryuhei Uehara, editors, WALCOM: Algorithms and Computation - 12th International

Conference, WALCOM 2018, Dhaka, Bangladesh, March 3-5, 2018, Proceedings, volume 10755 of

Lecture Notes in Computer Science, pages 132–143. Springer, 2018.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer

Science. An EATCS Series. Springer, 2006.

[HRR90] Joos Heintz, Tomás Recio, and Marie-Françoise Roy. Algorithms in real algebraic geometry and applica-

tions to computational geometry. In Jacob E. Goodman, Richard Pollack, and William Steiger, editors,

Discrete and Computational Geometry: Papers from the DIMACS Special Year, volume 6 of DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, pages 137–164. DIMACS/AMS,

1990.

[Ifr00] Georges Ifrah. The Universal History of Numbers: From Prehistory to the Invention of the Computer.

John Wiley & Sons, 2000.

[Kan03] Yasumasa Kanada. . J. Mathematical Culture, 1(1):72–83, 2003.

[KF10] Dieter Kratsch and Fedor V. Fomin. Exact Exponential Algorithms. EATCS. Springer, 2010.

[Ko91] Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser,
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