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Abstract

In the framework of Type-2 Theory of Effectivity, representations of continuous spaces affect computabil-
ity and computational complexity of problems drastically. We propose “quantitative admissibility” as a
criterion for sensible representations. Quantitative admissibility is a refinement of classical admissibility
notion by Kreitz and Weihrauch, 1985. Classical setting of second-countable Ty spaces is concretized
to totally bounded metric spaces. We show that there is a close correspondence between modulus of
continuity of a function and that of its realizer when the representations are quantitatively admissible.

We formulate the represented spaces as categories and show that they have all finite products.

Keywords Computable Analysis, Type-2 Theory of Effectivity, Admissibility, Totally Bounded Metric
Space, Modulus of Continuity, Category Theory
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Mathematical Symbols

{0,1,2,---}

two-element alphabet set {0, 1}

the set of all strings of length n over X
the set of all finite-length strings over %

the Cantor space, consisting of all infinite-length strings over X equipped with metric

d(p, q) = 2~ minlilpi#a:}

the concatenation of v € ¥* and v € ¥* U X¢

{uv | v € ¥}

the ith character of u € ¥* U X¥; O-indexed

the embedding map uouy - - - tp—1 — 110ug0u10 - - - Ouy, 1011 0 3 — 3F
u € X* is a prefix of v € ¥* U X¢.

u € ¥* is a consecutive substring of v € ¥* U X%,

PoP1 -+ Pn—1, the prefix of p € ¥* U X of length n

PiPit1 - Pj—1

the bijective Cantor paring function (a,b) = % +b:NxN—=N
closed ball centered at z with radius €, {y | d(z,y) < €}

a partial map from set X to set Y

the identity map

the pseudoinverse p=L1(n) = min{i | u(i) > n}

Table 1: Mathematical Symbols Used Throughout Thesis



Chapter 1. Introduction

1.1 Motivation

Some problems are computable, while some not. A large number of problems are computable.
Examples include boolean satisfiability, sorting, finding the shortest path, primality testing, prime fac-
torization, string matching, etc. We already have our state-of-the-art modern digital technology being
able to implement Turing-complete computers. We can compute them all, and we are happy!

Or are we? It is certainly not the end of the story. Each of those computable problems has different
complexity: primarily the time and the space required to compute it. Those problems, while all being
computable, are not understood the same. They are magnified and examined more closely. They are
categorized into finer classes beyond just being computable; for example, from P, NP, EXPTIME,
PSPACE, NPSPACE, to EXPSPACE. Theory of computational complexity studies the differences
among already computable problems.

Kreitz and Weihrauch, in 1985, proved a classical result, so-called The Main Theorem of Computable
Analysis [Kreitz and Weihrauch, 1985, Weihrauch, 2000]: a function f : X — Y is continuous if and
only if f is computable with an oracle, where X and Y are second-countable and T topological spaces.
The theorem is about continuity and computability. These are qualitative properties: either f has the
properties, or not at all. There is no middle.

As in the case of the theory of computational complexity, we wish to look more closely into those
functions. Our work refines this classical result by Kreitz and Weihrauch [Kreitz and Weihrauch, 1985,
Weihrauch, 2000]. We develop a theory that could say something quantitative about functions f : X —
Y.

1.2 Outline

Chapter 1. Except for the table of contents and other miscellaneous things that precede, the thesis
starts with Chapter 1, which is what you are looking at now. As you see, needless to say, Chapter 1 tries
to introduce the whole thesis.

Chapter 2. Our interest lies in computation of functions X — Y, where X and Y are mathematical
spaces. Common examples of domain and codomain include N, Z, Q, R, and C. A Turing machine,
the most common model of computation, does not work on various mathematical objects directly; it
works only on strings. Mathematical objects have to be encoded into strings. Chapter 2 formalizes
the notion of encoding and defines computation of functions X — Y, where X and Y are abstract
mathematical spaces. The materials in this chapter are from literatures on computable analysis, such as
[Brattka et al., 2008] or [Weihrauch, 2000].

Chapter 3. Mathematical spaces cannot be encoded arbitrarily; there are proper ways of encoding.
One such proper encoding is constructed, called standard representations [Kreitz and Weihrauch, 1985].
A criterion of admissibility is introduced, which all sensible encodings have to satisfy. The main theorem
of computable analysis, that a function is continuous if and only if it admits a continuous realizer, is

described. The theorem depends heavily on the assumption of admissibility.



Chapter 4. This chapter is a quantitative analogue of Chapter 3. Chapter 3 is about second-
countable and Ty topological spaces. They are refined to totally bounded metric spaces. Modulus of conti-
nuity is introduced as a quantitative analogue of continuity; Kolmogorov entorpy [Kolmogorov and Tikhomirov, 1959]
is introduced as a quantitative analogue of second-countability. Standard representations for totally
bounded metric spaces are constructed. Quantitative admissibility for encodings of totally bounded met-
ric spaces is defined. The Quantitative Main Theorem is stated and proved, that asserts that there is a
close correspondence between a function and its realizer in terms of modulus of continuity.

Chapter 5. This chapter puts the theory developed in previous chapters into the framework
of category theory. Specific formulations are different from common approaches from the literature
[Pauly, 2015, Pauly and Brecht, 2015]. Two categories are introduced. Ome is a category RTop of
represented second-countable T spaces. The other is a category RMet of represented totally bounded
metric spaces. Objects are pairs (X, d) of a space X and an admissible representation §. Arrows are
pairs (f, F) of a function f and its realizer F. We show that RTop and RMet have all finite products.

Chapter 6. This chapter concludes the thesis with a discussion on limitations and future work.



Chapter 2. Type-2 Computation

2.1 Infinite Streams of Input and Output

11110001 10111011110101101 ......

Type 1 Type 2
Turing Turing
Maohlne Maohlne

10010 110101011100101 ......

Figure 2.1: Type-1 and Type-2 Turing Machines

Type-1 computation refers to the usual Turing machine model of computation with finite control
unit and unbounded memory. Many equivalent models have been discovered [Arora and Barak, 2009,
Fernédndez, 2009], but we will confine ourselves to Turing machines. However, we will not be concerned
about detailed formalism of Turing machines; they are treated informally.

Both the input and the output of a Turing machine consist of finite strings over a finite alphabet set.
A computation is considered complete only when the machine eventually halts, however long it takes,
and the string written on the output tape at the time of termination is considered as the output for a
given input. If the machine never halts for a given input, then the output is undefined. A type-1 Turing
machine M computes a partial function Fj; :C 3% — ¥*.

Type-2 computation refers to basically the same notion as Type-1 computation, with the same finite
control unit and unbounded memory, except that the input and the output are infinite in length (but still
over a finite alphabet set). The machine works on to write out symbols one by one, which, once written,
never be altered. Only when the machine writes out infinitely many sympols is the input considered to
have a valid output. Otherwise, in case the machine halts or stops writing output symbols, the output

for the given input is undefined.

Definition 1 (Type-2 Computability [Brattka et al., 2008]). A type-2 Turing machine M computes a
partial function F:C X% — %¢ if for all p € dom(F'), M, when started with p on its input tape, produces
output F(p). A partial function F:C X% — X% is computable if there exists a type-2 Turing machine
that computes F'.

Observation 2 (Composition of Computable Functions [Brattka et al., 2008]). If F:C ¥¥ — ¥“ and
G:C ¥¥ — X% are both computable, then so is G o F.

Definition 1 does not require anything on strings outside of dom(F'). If p € ¥¢ \ dom(F'), then
M (p) may or may not write infinitely many symbols. If F' is computable, then any restriction of F on
its domain is computable. The other option is to prohibit M from printing infinitely many symbols on

input p € 3¢ \ dom(F'). The difference is whether one’s interest lies solely in machanical input-output



translation itself, or in both the input-output translation and characterization of domain. One weakness
of the other option is that even the parial identity functions id| 4:C ¢ — £¢, with their domain restricted
to some subsets A C 3¢, are rendered uncomputable. There are only countably many turing machines,
while there are 22”-many subsets A of £*. One condition under which the two possible definitions
coincide is dom(F’) being clopen, which is equivalent to dom(F) = WX for some finite subset W C ¥*,
which is again equivalent to decidability of dom(F') [Weihrauch, 2000].

We would like more partial functions to be computable, and are interested more in computation itself
than characterization of domain, hence the choice of ignoreing input p € £ \ dom(F'). Our definition is
in accordance with [Brattka et al., 2008]. However, two distinct definitions will make little difference to
our main contribution, the quantitative main theorem, as the result is concerned about continuity rather
than computability.

In case of type-1 computation, time cost of an algorithm is formalized as a partial functiont :C N — N
mapping n to the maximum number of steps until termination among all input strings of length n on
which the machine halts. The same formalization cannot be applied for type-2 case as the machine never
halts. Instead, the concept of time cost is defined as a partial function ¢ :C N — N U {oo}, mapping n
to the maximum number of steps until nth output symbol among all input strings on which the machine
writes out infinitely many symbols. Note that ¢ may be oo as shown by the the following algorithm
implemented by a type-2 Turing machine M:

for i =0 to oo do

if ith input symbol is 1 then
| print(1)
end

end

Note that for w = 0"1%, M (w) takes ©(n) steps until the Oth output. Also note that
dom(fyr) = {w € ¥ | w has infinitely many number of 1’s}

is not compact. In fact, t(n) is always finite when the domain is compact.

2.2 Representations

The usual discrete theory of computation and computational complexity are concerned with com-
putational problems such as: (1) Given a natural number n, what is the nth prime number? (2) Given
a graph, does it have a Hamiltonian path? (3) Given a proportional logic formula, how many satisfying
assignments are there? (4) Given a description of a program, does it halt or loop forever? These prob-
lems involve mathematical objects such as numbers, graphs, formulas, and programs. Turing machines,
however, do not directly work on a variety of mathematical objects. They work only on strings. Here
is where the idea of encodings comes in: giving names by strings over a finite alphabet set X. Let X
be a set of objects of our interest. X could be encoded using a partial map dx :C X* — X. It is
surjective in that every object has at least one name and partial in that some names may be invalid. A
mathematical object is now represented as a string of finite length. Let Y be another set of objects of
interest, having another encoding dy :C ¥* — Y. All previously mentioned problems can be modeled as

a partial function f :C X — Y, and its computation as a type-1 Turing machine M computing a partial



function F); :C ¥* — ¥*, so that the following diagram commutes:

x .y

W e

PILEIIGS o

This method of encoding by strings of finite length, however, has a critical limitation: X* is a
countable set and there is no surjective map from X* to any set of continuum cardinality. Computation
on R, the set of real numbers, cannot be defined with this type-1 way of encoding. This issue can be
handled by replacing ¥* with ¥, which contains infinitely many elements. We introduce a formal term

notation /representation for encodings of sets of countable/continuum cardinality.

Definition 3 (Notation [Weihrauch, 2000]). A notation of a set X is a partial surjective map v :C ¥* —
X.

Definition 4 (Representation [Weihrauch, 2000]). A representation of a set X is a partial surjective
map § :C X¥ — X.

Definition 5 (Realizer [Weihrauch, 2000]). Let dx :C ¥ — X and dy :C ¥ — Y be representations
of spaces X and Y, respectively. Let f :C X — Y be a partial function. F :C 3¢ — X% is a (dx, dy)-
realizer of f if fodx = dy o F. We sometimes just say realizer when the representations are obvious

from context.

The following diagram visually illustrates Definition 5 of realizer.

x 1,y

o] o]

De L 3w

Definition 6 (Computability [Weihrauch, 2000]). Let X be a space and dx be its representation. Let
Y be a space and dy be its representation. A partial function f :C X — Y is (dx,dy)-computable if

there exists a computable (Jx, dy )-realizer of f.

Observation 7 (Composition [Weihrauch, 2000]). Let dx, dy, and dz be representations of X, Y, and
Z, respectively. If f:C X — Y is (dx,dy )-computable and g :C Y — Z is (dy,dz)-computable, then
go fis (dx,dz)-computable.

There are some subtleties worth reviewing. f, F, dx, and dy are all partial functions. Their
compositions fodx and dy o F' are understood as compositions of relations. Their equality fodx = dy oF
implies equality of domain and range as well.

Let p € . If p € 05" [dom(f)], then F(p) € &y ' [range(f)]. In higher-level words, F' must map a
valid name for an element in dom(f) to a valid name for an element in range(f). This is natural. On
the other hand, if p ¢ 65" [dom(f)], then F(p) must be either undefined or located outside of dom(Jy ).
This technicality of partial function composition, however, raises no problem on computability of F. We
can always take F' to be undefined on %% \ §y'[dom(f)]. According to Definition 1, the machine M
computing F' need not care when p ¢ 5;(1 [dom(f)] for input p. This convenience justifies the choice
made in Definition 1.

Computability of a partial function f :C X — Y is defined with respect to two representations,
0x :C€ ¥¥ — X for domain and dy :C ¥“ — Y for codomain. In type-1 theory of computation,



the method of encoding mathematical objects mostly does not matter or is trivial. One can mostly
convert back and forth between an adjacency matrix encoding and an adjacency list encoding of a graph,
in asymptotically negligible amount of time. Nobody considers unary encoding of natural numbers
to be a sensible one except a few special cases. In type-2 theory of computation, however, choice of

representations matters in a critical way, as shown by Turing in 1937 [Turing, 1937].

Example 8 (Incomputability of Multiplication by Three [Turing, 1937]). Consider a binary representa-
tion dyg 1) : £« — [0, 1] defined by

oo
w E 27wy,
i=0

and another binary representation djg 4] : 3¢ — [0,4] defined by

)
w —r 22—z+1 s Wy
=0

Then the map f : [0,1] — [0,4] given by
f(z) =3

is not (0,1], dj0,4))-computable.

Proof. Aiming for a contradiction, suppose that f is (J(9,1], d[0,4])-computable, by a type-2 Turing machine
M. Feed M with
w = 0101010101 - - - .

Note that dj 1j(w) = 5. Then M must output either
u' =001111111111 - -

or

u” = 010000000000 - - - .

Note that djg 4 (u') = dpp,4)(u”) = 1. Let us first examine the case where M outputs u. After finitely
many number of steps, M prints out uj = 0. Until this time, M has seen only finitely many digits of
w, say, until nth digit. Then M would behave exactly the same until its 1st (not Oth) output symbol if
the input to M coincided with w until nth digit. In particular, M would output 00 as its Oth and 1st

output symbols, given input
w’ = 0101010101 ---01010101111111111111 ---

that coincides with w until nth digit and repeats 1 after that. M, however, must output some v’ €
¥ satisfying dp.4(v') = 3 - 0pp,1j(w’) > 1. Then the first two digits of v' cannot be 00, reaching a
contradiction. Now we examine the other case. Suppose that M (w) outputs u”, whose first two digits

are 01. The reasoning is the same as in the previous case. This time we consider
w’” = 0101010101 - --0101010100000000000 - - -

that coincides with w for enough number of digits and repeats 0 after that. Then M (w”) must output
some v" € ¢ satisfying djg.4)(v") = 3 - dp,1j(w”) < 1. The first two digits of v" cannot be 01, reaching

a contradiction again. O



The argument for Example 8 could be understood intuitive and natural. Suppose that a machine
is reading an input 0.33333333 - - -, trying to compute its multiplication by 3. To determine the symbol
for an output digit, the machine has to know whether the input is less than or greater than % This is
impossible since the machine always knows only finitely many digits of the input.

Addition of two real numbers is not computable either, with respect to binary representations. An
informal proof of this fact is like this: Multiplication by two is trivially computable by simple shifting.
Combining addition and multiplication by two, one can compute mulplication by three, if addition is
computable.

A theory of computation on real numbers will not be so fruitful if it excludes such simple functions

as addition or multiplication. We could overcome this problem by adopting different representations.

Definition 9 (bin : N — ¥* [Kawamura et al., 2018]). Let us define a bijective map N — ¥* assigning
a finite word over X for each natural number. We can give a total order on X*, first by length of the

words, and then by the dictionary order on X" for each n. Let bin : N — ¥* be the order isomorphism.

Definition 9 is utilized to construct the dyadic representation in Definition 10. There is slight
ambiguity regarding which digit (leftmost or rightmost) has more weight then the others. This ambiguity

will make little difference for our purpose. Note that the map n +— |bin(n)| grows logarithmically.

Definition 10 (Dyadic Representation [Kawamura et al., 2018]). The dyadic representation is a partial
surjective map §:C X —[0, 1] defined by

t(bin(ag))e(bin(aq))e(bin(az)) - - - e(bin(ay,)) - - - — li§n a; /2’
where
dom(d) = {¢(bin(ag)) - - - ¢(bin(ay)) - - € BV | 0 < ap, < 27, |an /2" — @ /2™ < 27" 4277

Informally, the dyadic representation is a sequence of dyadic rationals between 0 and 1, with the
precision increasing term by term, eventually converging to a single point in R. Notice the additional
condition |a, /2™ —a,, /2™ < 27" 427" imposed on dom(¢). This is justified by the fact that a sequence

(aj/27); of dyadic rationals converges to a point r € R so that
la; /29 —r| <279 forall j €N
if and only if (a;/27); satisfies
|an /2" — ap, /2™ <277 427 for all n,m € N.

Definition 11 (Signed Binary Representation [Kawamura et al., 2018]). The signed binary representa-
tion is a partial surjective map 0:C 3% —[0, 1] defined by

1 — —m—2
bl—>§+22 - (2b2m + bamg1 — 1)
m>0
where

dom(o) = {00,01,10}* C ¥*.

In Definition 10 and 11, the target set encoded is the unit interval [0, 1]. Any closed interval of R can

be encode similarly. We have chosen the unit interval for simplicity. It is possible to encode the whole



R using similar scheme, in dyadic way or signed binary way, by somehow handling the radix point. The
representation for R, however, has problems with computational complexity, rather than computability.
There is no guarantee of precision however many digits have read by the machine. Note that R is not
compact, which might be the cause of the problem.

Dyadic representation and signed binary representation do not suffer from the previous problem of
binary representation. Addition, subtraction, multiplication and division are all computable with respect
to both dyadic representation and signed binary representation [Brattka et al., 2008].

So, which representation to choose between dyadic representation and signed binary representation?
In fact, they are equivalent in computability. Let us establish and formalize the notion of equivalence in

computability by going through the idea of reduction.

Definition 12 (Computable Reduction [Weihrauch, 2000]). Let v:C ¥ —X and §:C ¥ =X be two
partial functions. v computably reduces to J, or, put another way, v is computably reducible to 9§, if there

exists a computable partial function F:C 3% — 3¢ such that v =§ o F.

X
]
e L mw
When ~ reduces to §, it is denoted simply as v < §. If both v < 4 and § <+, than « and § are said to

be computably equivalent and denoted v = 4.

Observation 13 (Computable Reduction as a Relation [Weihrauch, 2000]). Computable reduction <

is reflexive and transitive. Computable equivalence = forms an equivalence relation.

Theorem 14 (Computable Reduction and Computability [Weihrauch, 2000]). Let f :C X — Y be
a partial function. Let vx and dx be representations of X such that yx =< dx. Let vy and dy be
representations of Y such that §x < vy. If [ is (0x,dy)-computable, then f is (yx,7yy)-computable.

Proof. Consider the following commutative diagram and reason about it.

x 1 .y

IR NN
Dt yw Yy yw

O

Corollary 15 (Computable Equivalence and Computability [Weihrauch, 2000]). Let f :C X — Y
be a partial function. Let vx and dx be representations of X such that yx = d0x. Let vy and §y be

representations of Y such that §x = vy . [ is (dx, 0y )-computable if and only if f is (yx, vy )-computable.

Example 16 (Computable Equivalence of Dyadic and Signed Binary Representations). Dyadic repre-

sentation and signed binary representation are computably equivalent.

2.3 Computability and Continuity

Theorem 17 clearly shows the close relationship between computability and continuity. Simply put,
every computable (with or without an oracle) partial function ¥ — 3% is continuous since any finite
prefix of an output depends solely on a finite prefix of the input. On the other hand, any continuous
partial function X* — 3 can be approximated by a monotone unbounded map ¥* — ¥*, which we can

take as an oracle.



Theorem 17 (Oracle Computability and Continuity [Weihrauch, 2000]). Let F:C ¢ — 3¢ be a partial

function. F is computable with an oracle ¥* — ¥* if and only if F is continuous.

Proof. (=) Let F be computable by an oracle machine M. Let F(x) =y. Consider an open neighborhood
uX® of y, where u € ¥* is a finite prefix of y. At the time M (z) writes u on its output tape, it has seen
only until a finite prefix w of x. Then, F(wX*¥) C uX.

(«=) Let F be continuous. Define an oracle Q2 : ¥* — ¥* by
A if F(wX¥) =10

Qw) =
(w) { the longest prefix of F(wX*) of length at most |w| otherwise

For any p € dom(F'), the sequence (2(p<n))neny C X* is monotone and unbounded, that is,
i < j implies Q(p<;) C Qp<;)

and
|Qp<n)| = 00 as n — oo.
Note that unboundedness is from continuity of F': for any proper prefix u € ¥* of p, there exists w € %*

such that F(wX?) C uX¥. Q(p<y,) is always a prefix of F(p) by definition of f. Thus,

lim Q(p<n) = F(p).

n— oo

A machine can utilize  to produce output F(p) on input p € dom(F). O

From now on we will be mainly concerned about continuity rather than computability. Theorem 17

works as a justification for this deviation to a seemingly unrelated concept.
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Chapter 3. Qualitative Main Theorem

This chapter describes a classical result, so-called The Main Theorem of Computable Analysis,
proved by Kreitz and Weirauch in 1985 [Kreitz and Weihrauch, 1985]. They showed that there is a close
correspondence between a partial function f :C X — Y and its type-2 realizer F:C ¢ — ¥¢: f is
continuous if and only if there exists a continuous realizer F' of f. The assumptions of the theorem are
weak, hence the generality. X and Y are assumed to be second-countable T spaces, and each of the
representations of X and Y must meet a criterion, called admissibility. We have seen from Example 8 that
certain representations are bad. Admissibility constitutes a criterion to distinguish good representations

from bad ones.

3.1 Continuous Reduction

The following definitions and theorems in this section, stated in terms of continuity but not com-

putability, are analogous to those in Chapter 2.

Definition 18 (Continuous Reduction [Weihrauch, 2000]). Let 7:C ¥ —X and 6:C 3* —X be two
partial functions of X. v continuously reduces to §, or, put another way, v is continuously reducible to

4, if there exists a continuous partial function F:C 3¢ — 3 such that y =d o F.

X
]
se L mw
When ~ reduces to ¢, it is denoted simply as v <; §. If both v <; § and v >; §, than v and J are said

to be continuously equivalent and denoted v =; 6.

Computational complexity theory also has the concept of reduction, a way of transforming instances
of a problem to another problem, playing a crucial role in the development of the theory. In computational
complexity theory, one’s interest lies not just on a single problem, but rather a class of problems. For
a class of C of problems, there are C-complete problems, the problems to which any problem in C can
be reduced. They form an equivalence class and are considered the most difficult problems contained
in C. Reduction between representations plays an analogous role for the development of the theory
or representations. Representations that are maximal with respect to <; have good mathematical and

computational properties, as shown in this chapter.

Observation 19 (Continuous Reduction as a Relation [Weihrauch, 2000]). Continuous reduction. =

is reflexive and transitive. Continuous equivalence =; forms an equivalence relation.

Observation 20 (Continuous Reduction and Final Topology [Weihrauch, 2000]). Let X be a space
without topology. Let v:C ¥ —X and §:C X“ —X be representations of X such that v <; 4. Then

(the final topology on X with respect to ) D (the final topology on X with respect to ).

Observation 21 (Continuous Equivalence and Final Topology [Weihrauch, 2000]). Let X be a space
without topology. Let v:C ¥* —X and §:C ¥“ —X be representations of X such that v =; 6. Then

(the final topology on X with respect to ) = (the final topology on X with respect to ).

11



Theorem 22 (Continuous Reduction and Realizer [Weihrauch, 2000]). Let f :C X — Y be a partial
function. Let vx and dx be representations of X such that yx =<¢ dx. Let vy and dy be representations
of Y such that 0x =t vy. If f admits a coutinuous (0x,dy )-realizer, then f also admits a continuous

(vx,7y)-realizer.

Proof. Analogous to the proof of Theorem 14. O

Corollary 23 (Continuous Equivalence and Realizer [Weihrauch, 2000]). Let f :C X — Y be a partial
function. Let vx and dx be representations of X such that yx =¢ dx. Let vy and dy be representations
of Y such that 6x =; vy. Then f admits a continuous (0x,dy)-realizer if and only if f admits a

continuous (vx,7y )-realizer.

3.2 Standard Representations

Definition 24 (Standard Representation [Kreitz and Weihrauch, 1985] [Weihrauch, 2000]). Let X be a
second-countable Ty space. Let v :C ¥* — B be a notation for a countable base B of X. The standard

representation 6:C ¥ —X with respect to v is a representation of X such that §(p) = x if and only if
{BeB|xzeB}={v(w)|wedom(r)Ai(w)<p}
where dom(d) is all those p € ¢ that are mapped to an appropriate € X by the above equation.

Informally, standard representation is defined so that, an enumeration of all base elements containing
x € X constitutes a name for z. The order of enumeration does not matter and repetition is allowed.
Separation axiom Tj is assumed so that every point x € X has a different collection of base elements
from all others. Second countability is assumed so that each base element has a finite-length name.

Every second-countable T space has a standard representation. Note that we said a standard repre-
sentation. There are infinitely many standard representations, since there are infinitely many notations
3* — B of base B.

Lemma 25 (Properties of Standard Representation [Weihrauch, 2000]). Let 6:C 3% —X be a standard

representation of X. Then,
1. 6 is continuous.
2. § is an open map.
3. the topology of X is final with respect to §.
Proof. Denote by v :C ¥* — B the notation of a base B from which ¢ is built.

1. Let B € B. Then,

5 HB] = {p € dom(d) | +(w) <1 p for some w with v(w) = B}

= U ue(w) B¢

uweX*, wv(w)=B

which is a union of open sets.
2. Let uw € ¥*. Then,
S[ux¥] = [ {v(w) | w € dom(v), u(w) < u}

which is a finite intersection of open sets.

12



3. It follows from item 1 and 2.
O

Lemma 26 (Properties of Standard Representation [Weihrauch, 2000]). Let 0:C X% —X be a standard
representation of X. Then ( =; 6 for every continuous partial map (:C X% —X.

X
Pl
e L 3w
Proof. Let v :C ¥* — B be the notation of the countable base B from that ¢ is built. Fix an enumeration

(w;)ien of dom(v). Let p € dom(¢). By continuity of ¢, {(p) € B if and only if {[p<,X*] C B for some
n € N, where B € B. Define h, : N — X* by

hn, i) = v(w) if ([penX®] C v(w;)
’ 1 otherwise )

Define F' : dom({) — X“ by
F(p) = hp(0)hp(1)Rp(2) - - -

Let p € dom(¢). F(p) is a list of all and only w; with ((p) € v(w;), hence ( = o F. F is continuous
since every finite prefix of F(p) depends on a finite prefix of p. O

3.3 Admissibility

Definition 27 (Admissibility [Kreitz and Weihrauch, 1985] [Weihrauch, 2000]). Let X be a second-

countable Ty space. A representation ¢ of X is admissible if
e § is continuous and

e ( =<; ¢ for every continuous partial map (:C 3¢ —X.

X
bl
se L 5w

Admissibility is just another way of characterizing the class of representations continuously equiva-

lent to a standard representation.

Theorem 28 (Equivalent Condition of Admissibility [Weihrauch, 2000]). Let X be a second-countable
Ty space. Let 6 be a representation of X. Then § is admissible if and only if § is continuously equivalent

to a standard representation of X.

Proof. (=) Apply Definition 27, Lemma 25, and Lemma 26.
(<) Apply the fact that composition of two continuous partial functions is continuous, Lemma 26,
and Observation 19. O

Lemma 29 (Admissible Representation and Final Topology [Weihrauch, 2000]). Let 6:C ¥ —X be an
admissible representation of second-countable Ty space X. Then the topology on X is final with respect
to 6.

13



Proof. Apply Observation 21 and Theorem 28. O

Lemma 30 (Final Topology and Continuity). Let A, X, Y be topological spaces. Let o :C A — X and
f:C X =Y be partial functions. Let the topology on X be final with respect to . If foa is continuous,
then so is f.

x Jy
‘“T%a
A

Proof. Assume that f o« is continuous. Let U C Y be open. If f~1[U] is not open, then, a=1[f~1[U]]
is not open as well since X has the final topology with respect to «, contradicting continuity of f o §.

f7U] is open, hence f is continuous. O

Theorem 31 (Qualitative Main Theorem [Kreitz and Weihrauch, 1985]). Let X and Y be second-
countable Ty spaces. Let dx and dy be admissible representations of X and Y, respectively. Let
f:C X =Y be a partial function. Then f is continuous if and only if f admits a continuous (dx,dy)-
realizer F:C X% — 3¢,

x 1,y

54 54
2
Proof. (=) Suppose that f is continuous. Then f o dx is continuous. By reduction property of dy,
we have f odx =<; dy. In other words, there exists a continuous partial map F:C ¥* — 3¢ such that
fodx =dbyoF.
(<) Suppose that there exists a continuous partial map F:C X% — ¢ such that fodx = dy o F.
Note that §y o F' is continuous, hence f o dx is continuous. Lemma 29 and Lemma 30 proves that f is

continuous. 0

There are two ways to go about the proof of Theorem 31. One approach is by exploiting Corollary
23. By virtue of Corollary 23 and Theorem 28, if we succeed in proving the theorem only for standard
representations dx and Jy, then the theorem automatically holds for admissible representations dx and
dy. The other approach is to prove that admissible representations fit into the topology of target space
as final topology, and then prove Theorem 31 directly without help of standard representations. The

two approaches are not so different, but we took the latter approach.

Example 32 ([Kawamura et al., 2018]). Dyadic representation and signed binary representation are

admissible
Proof. The proof is similar in spirit to the proof of Lemma 61. O
Example 33. Binary representation is not admissible

Proof. Try to reduce dyadic representation to binary representation and reach a contradiction. The proof

is similar in spirit to the proof of Example 8. O
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Chapter 4. Quantitative Main Theorem

This chapter describes our main contribution, which we termed Quantitative Main Theorem of com-
putable analysis. We need a few quantitative notions such as modulus of continuity of a partial function
and Kolmogorov entropy [Kolmogorov and Tikhomirov, 1959] of a space before stating our quantitative

main theorem.

4.1 Modulus of Continuity

A problem may or may not be computable. When it is computable, we are interested in its com-
putational complexity: how difficult to compute it? In a similar manner, a function may or may not be

continuous. When it is continuous, we are interested in its modulus of continuity: how discontinuous is

ST

Figure 4.1: Two functions on the rightmost side are discontinuous. All others are continuous. However,
these functions have some difference in how much discontinuous they are. Functions on the left are more

continuous. Functions on the right are more discontinuous.

Definition 34 (Modulus of Continuity [Steinberg, 2016]). Let (X, dx) and (Y,dy) be metric spaces.
Let f:C X — Y be a partial function. A map p: N — N forms a modulus of continuity of f if

dx(a,b) < 277 implies dy (f(a), f(b)) < 27"
for every a,b € dom(f). Sometimes we simply say modulus instead of modulus of continuous.

Different from usual mathematical analysis, modulus of continuity is defined in terms of exponent
of 2. This is for convenience of development of the theory.

Given f, its modulus of continuity is not unique; if pu(n) < wp(n) for all n € N and p forms a
modulus of continuity of f, then so does p’. Generally, we are interested in whether or not f has a
modulus of continuity smaller than the given bound. Without loss of generality, we could always assume
that modulus of continuity p of f is nondecreasing; for any modulus pu, there exists a monotone increasing

modulus g’ such that p' < p.
Definition 35 (Minimum Modulus of Continuity). w is the minimum modulus of continuity of f if

v
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for every modulus v of f.

If f has a modulus, then it has the minimum modulus u. Explicitly, for each n € N,
p(n) = min{k € N |Va,b € X : dx(a,b) <27% = dy(f(a), f(b)) <27"}.

A more curvy or fluctuating map f corresponds to a larger or fast-growing minimum modulus of

continuity and vice versa.

Observation 36 ([Kawamura et al., 2018]). Let X and Y be metric spaces. Let f :C X — Y be a

partial function.
1. Any p forms a modulus of continuity for a constant function.
2. f is uniformly continuous if and only if f has a modulus of continuity.

3. Assume dom(f) to be bounded or connected. f is Lipschitz continuous if and only if f has modulus
p(n) =n+O(1).

4. Assume dom(f) to be bounded or connected. f is Holder continuous if and only if f has modulus
u(n) = O(n).

The next lemma states that two moduli compose the reverse way the functions compose. The proof

is by direct application of the definition of modulus of continuity.

Lemma 37 (Modulus of Continuity of Composition). Let f :C X — Y have a modulus of continuity
py. Let g :CY — Z have a modulus of continuity ug. Then their composition g o f has a modulus of
continuity fif o fig.

Proof. Let a,b € X. Suppose dx(a,b) < 27#ss(m)  Then dy (f(a), f(b)) < 27#s(™) Tt follows that
dz(g(f(a)),g(f(b))) <27 O

Note that Lemma 37 does not say that py o yg is the minimum modulus of continuity for go f even
when py and pg are the minimum moduli of continuity of f and g, respectively. For example, let f be
a severely fluctuating map and g be constant on range(f) while severely fluctuating on the other areas
of dom(g). Then g o f forms a constant map, whose the modulus of continuity ps o pg is rather crude.

More concretely, consider f(z) = sin(10'°z) and

{ 0 (-1<y<1)

g\y) =
) sin(10%%)  otherwise

The following theorem states the relationship between time complexity and modulus of continuity. It
provides us a justification for our main concerns being modulus of continuity, rather than computational
complexity. The statement and the proof is the same in spirit as in Theorem 17, which is about qualitative

properties: relationship between computability and continuity.

Theorem 38 (Composition and Modulus of Continuity). Let F:C X% — 3¢ be a partial function. Let
t: N — N be a total function. F is computable with an oracle ¥* — X* in time O(t(n)) if and only if F
has modulus of continuity O(t(n)).

Proof. The reasoning and construction of the oracle is the same as the proof of Theorem 17. Only a
little more analysis on the length of finite strings is needed to complete the proof of time complexity and

modulus of continuity. O
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Definition 18 is about continuous reduction. The Definition 39 is a quantitative refinement of
Definition 18.

Definition 39 (Quantitative Reduction). Let v:C ¥ —X and §:C X% —X be two partial functions.
Let p : N — N be a map. 7 reduces to 0 in pu, or, put another way, v p-reduces to ¢, if there exists a
continuous partial function F:C X¥ — ¥ such that vy = d o F' and p is a modulus of F.

P

v e Pl
When ~ p-reduces to 6, it is denoted by v <, 4.

Care must be taken that continuous reduction =<; is not to be misinterpreted as quantitative ¢-
reduction in an unbounded monotone increasing ¢ : N — N. The context will clarify the intended
interpretation.

Suppose that v:C ¥“ —X and §:C ¥ —X have the minimum moduli p, and pus, respectively.
Suppose that v =, 0 by a realizer F. By Lemma 37, p o us forms a modulus of v, hence we have
ty < pro ps. On the other hand, if o s < py o (id + ¢) holds for a constant ¢ € N, then we could say

that F' reduces 7 to § in an optimal manner, in terms of its modulus of continuity.

Definition 40 (Optimal Reduction). Let v:C ¥ —X and §:C ¥ —X be two uniformly continuous
partial functions, having the minimum moduli 4, and pus, respectively. v optimally reduces to 0 if v <, &
for some i : N — N such that

o ps < py o (id + ¢)

for some ¢ € N. Optimal reduction is symbolically denoted by v =<t 6.
~ and § are optimally equivalent if v <,p: 6 and § =<, 7. Optimal equivalence is symbolically
denoted by v =qp¢ 0.

There is another equivalent formulation of Definition 40 that avoids saying minimum modulus.

Observation 41 (Optimal Reduction Equivalent Formulation). Let v:C 3% —X and §:C X¢ —X be
two uniformly continuous partial functions. v =<,y 0 holds if and only if for each modulus t, of v, there

exists a modulus ys of 6 and a map i : N — N such that v <, 0 and
o ps < py o (id + ¢)
for some ¢ € N.

Observation 42 (Optimal Reduction as a Relation). Optimal reduction <, is reflexive and transitive.

Optimal equivalence =,,+ forms an equivalence relation.
Note that transitivity breaks down if optimal reduction =,,; were defined by a weaker condition
pops < (id+c)opyo(id+c)

in which ¢ appears in two different places.
One can measure modulus of continuity of a representation §x:C X“ — X for a metric space X. Let
u: N — N be a Kolmogorov entropy of dx. For p,q € ¥“, p and ¢ coincide for the first k£ digits if and

only if d(p,q) < 27%. That means, one has to know the name at least u(n) digits to achieve precision
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of 27" in X. In a sense, u somehow signifies “efficiency of encoding”, or “density of information” of
representation dx. It would be very desirable to be able to identify each element of X up to error 2=
using possibly a small number p(n) of digits.

Let us exclude the trivial case of bounded modulus.

Observation 43 (Bounded Modulus of Continuity). Let §:C ¥“ —X be a representation of a metric
space X. If § has a bounded modulus of continuity, then X is finite.

There are a variety of spaces of our interest, which we want to encode by representations. Examples
include: unit interval [0, 1], unit square [0, 1], unit cube [0,1]3, unit hypercube [0, 1]", Hilbert cube
[1;50l0, 277], and space of 1-Lipschitz functions Lip; ([0, 1], [0, 1]) with domain and codomain being unit
interval. These spaces seem to be different in their internal “structural complexity”. Some of them seem
to require more bits to achieve the same error bound than the others. Lip;([0,1],[0,1]), for example,
may not admit a representation having a modulus of continuity as small as that of the dyadic/signed

binary representation of unit interval. Corollary 50 confirms this intuitive expectation formally.

4.2 Kolmogorov Entropy

Just like modulus of continuity is a quantitative measure about representations, Kolmogorov entropy

[Kolmogorov and Tikhomirov, 1959] captures some quantitative properties of spaces.

Figure 4.2: Kolomogorov Entropy

Definition 44 (Kolmogorov Entropy [Kolmogorov and Tikhomirov, 1959]). Let (X,dx) be a metric
space. The Kolmogorov entropy (or simply entropy) n : N — N is a total function, so that X can be
covered by 27" closed balls of radius 2=", but not by 27(™~1 closed balls of radius 2. A closed ball
B(z, €) refers to {y | dx(z,y) < €}.

As in the case of Definition 34 of modulus of continuity, Kolmogorov entropy is defined in terms of
exponent of 2. This is for convenience of development of the theory. Equivalently, Kolmogorov entropy
n(n) may be defined as [logy M|, where M is the minimum number of 27 "-closed balls needed to cover
X.

A metric space admits at most one Kolmogorov entropy. Kolmogorov entropy is always monotone

increasing. A metric space admits a Kolmogorov entropy if and only if the space is totally bounded.

Observation 45. Let X be a metric space and 7 be its entropy. n is unbounded if and only if X has

infinitely many elements.
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Figure 4.3: Kolomogorov Entropy of the Unit Interval; Half the radius, twice more balls.
Example 46 (Spaces and Their Entropy [Kawamura et al., 2018]). One can sort out spaces according
to their Kolmogorov entropy.

1. Unit hypercube [0, 1]* has Kolmogorov entropy n(n) = kn — 1.

2. Hilbert cube [];,[0, 277], with metric (z,y) — sup,<q|z; — y;|, has Kolmogorov entropy 7(n) =
O(n?).

3. The space Lip;([0, 1], [0, 1]) of non-expansive functions has Kolmogorov entropy 7 such that

273 < n(n) < O(2"2).

4. The Cantor space X* has Kolmogorov entropy 7n(n) = n.
5. The compact subspace {0} U {1 | k € Z*} in R has Kolmogorov entropy n(n) = [log, n].

Example 47 (Change of Metric [Kawamura et al., 2018]). Kolmogorov entropy is heavily affected by

change of metric to topologically equivalent one.

1. Let X be a metric space with metric d < 1 and entropy 7. Then

1
Dlay) = o oy

constitutes a topologically equivalent metric yet inducing entropy H(n) = n(2™ — 1).
2. Fix a nondecreasing unbounded map ¢ : N — N. Reconsider Cantor space X“, now equipped with

dy(p, q) == 2~ @tmin{ilplil#ali})

d constitutes a topologically equivalent metric to diq but with entropy n = ¢=L.

Example 48 (Connected Spaces [Kawamura et al., 2018]). Every connected totally bounded metric
space has entropy at least n(n) = n + Q(1).

19



Proof. Let X be a connected metric space having entropy 7. Let n € N. Consider x1, - Z;,) € X such
that

X =JB(z;,27™).

J

Consider the finite undirected graph G = (V, E) with vertices V = {1,--- ,n(n)} and edges E such that
{i,j}€E < Bz, 27" N Bz, 27" ) £ 0.

This graph is connected: If I,J C V were distinct connected components, then [J;c; B(x;,27 ")
and Uie 1 Bz, 277*1) would form two disjoint open sets covering X. Therefore any two vertices are

connected via 27" — 1 edges; and for every edge {i,j}, it holds d(z;,x;) < 272 by definition of the

edge set E. Hence x; and x; have metric distance d(x;,z;) < (27 —1)-27"*2; and for any a,b € X

with a # b have d(a,b) < (27(™) . 27"%2 requiring

d(a,b) - 272 < 20"

There is a close connection between modulus of continuity and Kolmogorov entropy.

Observation 49 (Modulus and Entropy [Steinberg, 2016]). Let X and Y be metric spaces having
entropy nx and 7y, respectively. Let p be a modulus of continuity of a surjective partial function
f: € X =Y. Then we have

Ny < Nx O .

Proof. Fix n € N. It suffices to show that Y can be covered by nx (11(n)) closed balls of radius 27". Let
T1,%9, , T, € X be centers of closed balls of radius 27#(™) that cover X, satisfying m < nx (u(n)).
Then,

f(zl)’f(zQ)a"' af(xm) ey

form centers of closed balls of radius 2~ that cover Y. O

Corollary 50 (Lower Bound of Moduli of Representations). Let X be a metric space having entropy 1.
Let §:C X% —X be a representation of X. Let u be a modulus of continuity of 6. Then, n < p.

Informally, Corollary 50 may be interpreted that spaces with complicated internal structures cannot
have efficient (or short) representations. The unit interval [0, 1] has Kolmogorov entropy n(n) = n — 1.

Various representations of [0, 1] presented so far form examples of Corollary 50.
Example 51 (Representations and Their Modulus [Kawamura et al., 2018]).
1. The binary representation of [0, 1], as in Example 8, has a modulus of continuity p(n) = n.
2. The dyadic representation of [0, 1], as in Definition 10, has a modulus of continuity u(n) = ©(n?).

3. The signed binary representation of [0, 1], as in Definition 11, has a modulus of continuity p(n) =

O(n).
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4.3 Pseuodoinverse

A total function f : N — N may or may not have the inverse. However, when f is monotone
increasing, f admits something like the inverse. The notion of pseudoinverse is needed for succinct

description of definitions than theorems that follow.

Definition 52 (Pseudoinverse [Kawamura et al., 2018]). Let g : N — N be an unbounded monotone

increasing map. The pseudoinverse u==: N — N of yu is given by

p=L(n) = min{a | n < u(a)}.

Lemma 53 (Composition with Pseudoinverse [Kawamura et al., 2018]). Let 4 : N — N be an unbounded

monotone increasing map and p=L be its inverse. Then,

p=top < idy < pop=t

4.4 Standard Representations

In this section we design standard representations of totally bounded metric spaces [Kawamura et al., 2016].
The basic idea is to generalization dyadic representation. Note that the unit interval, the target space
of dyadic representation, is both totally bounded and metric.

Recall that total boundedness is the condition that the space can be convered by finitly many balls,

however small the radius is; Definition 54 illustrates the need for total boundedness;

Definition 54 (Radiuswise Enumeration). Let (X, d) be a totally bounded metric space having entropy
n. A Radiuswise enumeration of X is a sequence (&, :C L7+t — X)), o of partial functions such that
range(&, ) form centers of closed balls having radius 27"~! covering X. More precisely, in mathematical

expression,

X= |J Bw),2"") (neN).
wedom(&,,)

Note that in Definition 54, the ball radius for &, is 277!, not 2~". This deliberation is cleverly

exploited in proofs of Lemma 59 and Lemma 61.
Definition 55 (Rapidness). A sequence (2,)ncx in a metric space (X, d) is rapid if
d(zp, ) <27"4+27™ (n,m € N).

Definition 56 (Rapid Convergence). A sequence (z,)nex in a metric space (X, d) converges rapidly if

lim,, z,, = x for some x € X such that
d(z,x,) <27 (n€N).

Lemma 57 (Rapid Convergence). A sequence (x,)nex in a metric space (X,d) converges rapidly if and

only if it is rapid and converges.
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Figure 4.4: Standard Representation

Definition 58 (Standard Representation of Totally Bounded Metric Space [Kawamura et al., 2016]).
Let (X,d) be a totally bounded metric space with unbounded Kolmogorov entropy 1. Let (&,)nen be
a radiuswise enumeration of X. The standard representation §:C ¥ —X with respect to a radiuswise

enumeration (&,) is the partial map given by
Wowy « - Wy« - = m &y (wy,)
n

where

dom(9) = {wowy - - wy -+ - | w; € dom(§;) and (& (w;))ien converges rapidly}.

For each « € X, we can take a sequence (z,,) in X converging rapidly to = such that z,, € range(&,,),
by Definition 54 of radiuswise enumeration. This ensures surjectivity of 4.

A metric space is compact if and only if it is both complete and totally bounded. One alternative
formulation is to assume the target space X to be compact. Then can we better characterize the domain

since

dom(d) = {wowy - - wy - -+ | w; € dom(&;) and (&;(w;))sen converges rapidly}

= {wowy - wy, -+ | w; € dom(§;) and (& (w;))ien is rapid}.

Given a sequence, its rapidness is much easier to check than rapid convergence. However, we will not
concern ourselves with characterizations of domain. We will develop the theory without completeness.
Standard representation of totally bounded metric spaces has many analogous properties as standard

representation of T second-countable spaces in Definition 24.

Lemma 59 (Properties of Standard Representation of Totally Bounded Metric Spaces [Kawamura et al., 2018]).
Let (X,d) be a metric space with entropy n. Let §:C ¥ —X be the standard representation of X with

respect to a radiuswise enumeration (£,). Then,

1. ¢ has a modulus p(n) = Z?:Ol n(i+1).

2. Letn € N. Let x,2' € X with d(z,2') <27 "2, Then there exists p,p’ € dom(d) with ds.(p,p’) <
271" such that 6(p) = = and 6(p') = x'.

3. Let (Y,e) be a totally bounded metric space. Let f:C X —'Y be a partial map. If f 06:C 2% =Y

has a modulus pov, then f has a modulus v + 2.



Proof.

1. Let p,p’ € dom(8) with dse (p,p’) < 27#(") . Then p and p’ have a common prefix wow; - - - Wy Wy 41
Then we have d(§(p),&nv1(wny1)) < 27771 and d(5(p'), Enyr(wna1)) < 27771 By triangular

inequality, we have
d(é(p),0(p")) <27

2. There exists (w;);en such that
d(x, & (w;)) < 91 (i €N).
Then we have
d(@’, & (wy)) < d(a', @) +d(z, &(w;)) <2772 42771 <270 (i<n+1),
Similarly, there exists (w});>n+1 such that
d(@',&(wh) <270 (i >n+1).

Take

p = wowy - -

and

/ !/
P = Wowy -+ WpWn41Wpqo - -

3. Suppose that f o § has modulus pov. Let z,2’ € dom(f) C X with d(z,2’) < 27%("~2, By item
2, we have p,p’ € dom(d) with dse(p,p’) < 27##()) such that §(p) = = and 6(p') = #’. Then,

e(f(x), f(2") = e(f(6(p)), F(6(p))) <277

O

Lemma 60 (Subset Containment). Let (X,d) be a metric space. Let € > 0. Let A C X be such that

sup d(z,y) <e.

z,ycA
Let x1,x9, -+ ,x; € X be such that
X = U B(z, ).
i=1,.m
Then for some 1,
A C B(wy, 2¢).

Lemma 61 (Properties of Standard Representation of Totally Bounded Metric Spaces [Kawamura et al., 2018]).

Let (X,d) be a metric space with entropy n. Let 6:C X% —X be a standard representation of X. Let

wuin) = Z::_ol n(i+1). Let :C X¥ =X be a uniformly continuous partial map. Then

C jopt J.

P

I
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Proof. Let p¢ be the minimum modulus of ¢. Let (&, :C yintl) 5 X )nen be the radiuswise enumeration
of X from which ¢ is built. Fix p € dom((). For each n € N, by Lemma 60, there exists w,, € dom(&,)
so that
C(P<pent1)B¥) © B(6n(wn),277).
Define F:C ¥¥ — 3¢ by
F(p) = wowiwsg - - .

The prefix wow; -+ - wy41 of F(p) of length p(n) = Z?jol n(i + 1) is completely determined by

P<pc(nt2)- F has a modulus m — pu¢(p=t(m) + 2). By Lemma 53 we have

ne (=) +2) < pen+2) (neN).

Compare Lemma 59 with Lemma 25; compare Lemma 61 with Lemma 26.

4.5 Quantitative Admissibility

This section is a quantitative analogue of Section 3.3.

Definition 62 (Quantitative Admissibility [Kawamura et al., 2018]). Let (X, d) be a totally bounded

metric space. A representation § of X is admissible if
e § is uniformly continuous and

® ( =opt 0 for every uniformly continuous partial map ¢:C ¥« —X

X
Pl
2
We use the same term admissibility for both the qualitative notion (Definition 27) and quantitative
one (Definition 62). In case context cannot clarify the intended meaning, more wordy sentences are
given.
Admissibility is just another way of characterizing the class of representations optimally equivalent

to a standard representation.

Theorem 63 (Equivalent Condition of Admissibility). Let (X, d) be a totally bounded metric space. Let
0 be a representation of X. Then § is admissible if and only if § is optimally equivalent to a standard

representation of X.

Proof. (=) Apply Definition 62, Lemma 59, and Lemma 61.
(<) Apply the fact that composition of two uniformly continuous partial functions is uniformly

continuous, Lemma 61, and Observation 42. O

We propose quantitative admissibility as a refinement of qualitative admissibility. Put the other
way around, qualitative admissibility must be a generalization of quantitative admissibility. Observation
64 and 65 establishes this.

Observation 64 (Refinement of Spaces). Every totally bounded metric space is Ty and second-countable.
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Observation 65 (Refinement of Admissibility). Every quantitatively admissible representation is qual-

itatively admissible.

Proof. Let (X,d) be a totally bounded metric space. Let 0:C X* —X be a quantitative standard rep-

resentation as in Definition 58, build from radiuswise enumeration (£,) of X. Let (:C X% —X be a

continuous map. It suffices to show ¢ <; 0. The proof is a simpler version of the proof of Lemma 61.
Fix p € dom({). For each n € N, by continuity of {, there exists m € N so that {(p<,,X*) has

diameter at most 27"~1. Then, by Lemma 60, there exists w,, € dom(¢,) so that
((P<mB®) C B(&n(wn),27").
Note that w, depends only on a finite prefix of p. Define F:C ¥* — ¥ by
F(p) = wowyws - - .
Then F' is continuous with § o F' = (. O

Lemma 66 (Recovering Modulus of Function). Let X and Y be totally bounded metric spaces. Let
f € X — Y be a partial function. Let §:C X —X be an admissible representation and ugs be its
minimum modulus. Consider an unbounded nondecreasing map py : N — N. If f o6 has a modulus

is o pif, then f has a modulus puy + ¢ for some constant ¢ € N.

X—>Y

],

Proof.
x L.y

2 A

yo £y

Assume that f o4 has a modulus ps o p1y. Consider a standard representation 0:C ¥* —X and its

(not necessarily minimum) modulus p,(n) = ZZH_Ol n(i + 1), where 7 is the entropy of X. By Definition

62, there exists a realizer F:C ¥“ — 3¢ with § o F' = ¢ admitting a modulus pp such that
pE o ps < po o (id + ¢)

for some constant ¢ € N.

Note that foo = fodo F has a modulus pp o ps o piy. By Lemma 53 we have
[4F © s © fif < flo © Ho— O [ O [1§ O fuf.
The right side of the inequality above forms another modulus of f o o. Lemma 59 tells us that
[io=0 [Lp © fis © fif + 2
forms a modulus of f. Observe the following two inequalities:

fo=0 fip © 1150 fif +2 < fg=10 i 0 (id +€) 0 g 42
<pptc+2

The first inequality holds by choice of jir. The second holds by Lemma 53. pf 4 ¢+ 2 forms a modulus
of f, as desired. O
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In Lemma 66 and its proof, some moduli are minimum moduli while some are not minimum. Care
should be taken regarding whether a modulus of continuity is the minimum one or not necessarily.

Finally, we state and prove the most important theorem in the thesis. Compare Theorem 67 with
Theorem 31.

Theorem 67 (Quantitative Main Theorem [Kawamura et al., 2018]). Let X and Y be totally bounded
metric spaces. Let 6x and dy be admissible representations of X and Y, respectively. Let ux and py be

the minimum moduli of §x and Jy, respectively. Let f :C X — Y be a partial function.

x5y

x| [

Y —— B
1. If f has a modulus piy, then there exists a realizer F:C X% — X% of f admitting a modulus
px o iy o (id+c) o py ==
for a constant ¢ € N.
2. If f has a realizer F:C X% — ¥ having a modulus pp, then f admits a modulus
(id+c) o ux=Lo ppopy
for a constant ¢ € N.

Proof.

x 1 .y
6X / 5Y
F

b 3

€

1. Assume that f has a modulus py. Then the partial map fodx:C X“ —Y has a modulus px o puy.

Since Jdy is admissible, there exists a realizer F:C ¥* — Y% having a modulus pp satisfying
pr o py < px o pup o (idy +c¢)
for some ¢ € N. Observe the following inequalities:

pip < pp o fy © py =+
< px o pg o (idy + c¢) o py=L.
The last term forms a modulus of F.

2. Assume that f has a realizer F:C ¥¥ — ¥ having a modulus pg. The map fodx = dy o F has

a modulus pp o py. By the following inequality
fup o pry < fix © px =t o pup o py

lx O ptx—Lo g oy forms a modulus of fodx. By Lemma 66, px —Lopp oy +c forms a modulus

of f, for some constant ¢ € N.
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px and py are assumed to be the minimum moduli of continuity; this assumption plays a crucial

role in the proof. Starting from p and applying item 1 first and then 2 recovers
(id 4+ ¢) o py o (id + ¢).
On the other hand, starting from pr and applying item 2 first and then 1 only yields

pix o (id + ¢) o px= o pp o py o (id + ¢) o py =L,

4.6 Quantitative Product Representation

Let X and Y be totally bounded metric space, having admissible representations dx:C ¥* —X and
dy:C 3¢ =Y, respectively. The Cartesian product X x Y equipped with maximum metric is still totally
bounded. One way to get an admissible representation for X x Y is to build a standard representation
from scratch. There is, however, another way to construct a representation for X x Y. We can combine
already given representations dx and dy into one. Usefulness of the constructions given in this section

is illustrated in Chapter 5.

Definition 68 (Code Splitter). Let a, 8 : N — N be monotone increasing and unbounded. Define the
total map code splitter S, 5 : X% — L% x X“ with respect to o and 3 by

S(p) = (g,7)
where N N
q=pl0---a(0)) -~-p[Z(a(i)+ﬁ(i))-~'2(a(i)+ﬁ(i))+a(n+1))
and - . - -
r = pla(0) - a(0) + 5(0)) ~'~p[z;(a(i) + B(i)) +a(n+1)'~-z;(0é(i) +B(@)) -

Observation 69 (Bijectivity of Code Splitters). Every code splitter is bijective.

Definition 70 (Quantitative Product Representation). Let X and Y be totally bounded metric spaces.
Let 0x:C X% — and dy:C X% —Y be admissible representations of X and Y, having minimum moduli

sy and us, , respectively. Define the quantitative product representation dx x 0y:C X¥ -X X Y by

dx x 0y (p) = (0x(px), oy (py))

where
(anpY) = S,uéx sy (p)

dom(dx x dy) is defined canonically.

Theorem 71 (Admissibility of Product Representation). The quantitative product representation, as in

Definition 70, is quantitatively admissible.

Proof.
X+—— XxY -5 Y

5xT dx XJYT 5yT

DI 3«

N
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Consider a uniformly continuous map ¢:C ¥* —X x Y having minimum modulus p¢. By quantita-
tive admissibility of dx, there exists Fx:C ¥* — ¥“ with minimum modulus pur, so that the diagram

commutes and

PEy © fox < pe o (id +ex)
for some constant cx. Similarly, there exists Fy:C ¥“ — ¥ with minimum modulus g, such that
Ry © poy < pic o (id +cy)
for some constant cy. Combining the two inequalities above, we have
max(fipy © Uy s fiFy © Hoy ) < ¢ o (id + max(cx, cy))

where maximum operation on the left is pointwise. Now our goal is to construct F:C 3¢ — X“ with

minimum modulus pg so that the diagram commutes and

HE O Hoy x5y < max(:uFX O lsxs hFy © /LL5Y)'

So let us define F' by
F(p) = S5 (Fx(0), Fy (p))-

Observe that

uF(lLLéX Xy (Tl)) = HF (/1’5)( (Tl) + Hsy (n))
= maX(ILLFX (:LL(SX (Tl)), HFy (:LL(SY (’I’L)))
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Chapter 5. Categories of Represented Spaces

One common definition of a represented space in the literature is a pair (X, 0) of a space X and a
representation ¢ :C N¥ — X [Pauly and Brecht, 2015] [Pauly, 2015]. Baire space NV is more commonly
used as a ground set than Cantor space X“. X is assumed to have the final topology with respect to §.
Arrows of a category of represented spaces are functions that have computable or continuous realizers.
Realizers themselves are not part of an arrow.

This chapter formulates represented spaces as categories. One main difference of our approach from
previous research is that arrows of a category are pairs (f, F') of a functions and its realizer.

Consider two represented spaces (X,dx) and (Y, dy), and a represented function space (Y X, 8y x).
Assume that the ground set for representations is the Cantor space X“. Consider a representation
v:C ¥¥ X x YX, given by

v(p) = (dx (pop3pe - - - ), Sy x (p1papr - -+ )),
where
dom(y) = {p € =¥ |popsps - - - € dom(dx),

p1pap7 - -+ € dom(dyx),
p2psps - - - € dom(dy ), and

Sy x (p1papr -+ )(0x (Popspe - -+ )) = Sy (Papsps -+ )}
Have a careful look that the domain. Simply put, for p € dom(vy),
® pop3pe - -+ corresponds to x € X;
e pip4p7--- corresponds to f € YX;
® popsps -+ corresponds to f(x) €Y.

The information contained 1/3 of the bit sequence is redundant as an encoding for X x YX. However,
consider the evaluation map eval : X x YX — Y. If we were to use v as the representation for X x Y X,
then the evaluation map would have a trivial realizer. This is a weird observation.

We want to illegalize such a representation y. The representation for Cartesian product X x Y
should be constructed from representations of X and Y. One way out is to define arrows of a category

of represented spaces by pairs (f, F') of a function f and its realizer F', as will be shown in this chapter.

5.1 Category of Represented Topological Spaces

Definition 72 (Category of Represented Topological Spaces). The category of represented topological
spaces, denoted by RTop, is described below.

Objects pairs (X,0) of a second-countable Ty topological space X and an admissible representation
0:C X% =X

Arrows pairs (f, F) : (X,dx) — (Y,dy) of a total continuous function f : X — Y and a continuous
realizer F:C 3¢ — ¥¢ satisfying dom(F') = dom(dx) and range(F') C dom(dy )
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Composition (g,G)o (f,F)=(go f,GoF)

RTop forms a category. It is closed under composition. The identity arrow of object (X,4d) is
(idx,idgom(s))- Note that the restriction of range(F') C dom(dy) is redundant since F is a realizer and
must satisfy fody = dy o F.

In previous development outside the framework of category theory, f need not be total and dom(F') =
dom(dx) need not hold. We need these additional restrictions to prove categorical properties of RTop.

For any two objects (X,0x), (Y,dy) and a continuous total map f : X — Y, Theorem 31 ensures
that there is a realizer F such that (f, F): (X,dx) — (Y, dy) forms an arrow.

Observation 73 (Isomorphic Objects). If (X,dx) and (Y,dy) are isomorphic. then X and Y are

homeomorphic; dom(dx ) and dom(dy) are homeomorphic. The other way around is not true.

Observation 74 (Final Objects). RTop has final objects. An object (X, d) is final if | X| = |dom(d)| = 1.

Note that 0 is trivially admissible in that case.

The product space of finitely or countably many second-countable T, spaces is again second-
countable and Tj, under product topology. These facts suggest that RTop may have categorical products.
This is true indeed as shown by Theorem 75 and 76. The construction of canonical representations is
from [Weihrauch, 2000].

Theorem 75 (Binary Product). RTop has binary products.

Proof. Let (X,dx) and (Y, dy) be two objects of RTop. Define a representation dxxy:C ¥ -X x Y

constructed from dx and dy by

dxxy(p) = (0x(pop2pa-..), 0y (P1p3ps - +)),
where
dom(dxxy) ={p € % | popaps - - - € dom(dx) and p1psps - - - € dom(dy)}.

Let mx : X XY — X and 1y : X XY — Y be set projections. Define a realizer ITx : dom(dxxy) —
¥ of wx by
x (p) = popaps - - - -

Similarly, define a realizer Iy : dom(dx «y) — X% of my by

Iy (p) = p1paps - - - -

Then (X x Y, dx«y) with projections (7wx,IIx) and (7y,Ily) forms a categorical binary product. Con-

sider the commutative diagram below.
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Theorem 76 (Countable Product). RTop has countable products.
Proof. Let (X;,d;) be an object of RTop for every i € N. Denote the set product [[, X; by X. Define a
representation 6:C 3¢ —X constructed from &;’s by
5(p) = (0s(Pii,0yP,1yPG2) - ))ieN,
where
dom(d) = {p € | pi,0)P(i,1)P(i,2) - - - € dom(;) for every i € N}.

Everything else is almost the same as proof of Theorem 75. O

Second-countability and Ty are closed under disjoint sums, finite or countable. RTop has binary
and countable sums as well. The construction of canonical representations is from [Weihrauch, 2000].

Theorem 77 (Binary Sum). RTop has binary sums.

Proof. This proof is analogous to the proof of Theorem 75. Let (X,dx) and (Y,dy) be two objects of
RTop. Define a representation dxy:C X% —X + Y constructed from dx and dy by

Sxsy (p) = dx(p1peps--+) po=0
N -
Oy (pipap3---) po=1

where
dom(dx4y) = {0p € B | p1pap3--- € dom(dx)} U{1p € B | p1paps - - - € dom(dy)}.
Let ix : X > X+ Y and iy : Y — X +Y be set injections. Define a realizer Iy : dom(dx) — X%
of ix by
Ix(p) = Op.
Similarly, define a realizer Iy : dom(dy) — X% of iy by

Iy (p) = 1p.

Then (X +Y,0x+y) with injections (ix,Ix) and (iy,Iy) forms a categorical binary product. Consider

the commutative diagram below.

A B

Theorem 78 (Countable Sum). RTop has countable sums

Proof. The proof is analogous to the proof of Theorem 76. Let (X;, ;) be an object of RTop for every
i € N. Denote the set disjoint union ), X; by X. Define a representation 6:C ¥“ —X constructed from
d;’s by

6(p) = 6n(Pnt+1Pnt2Pn+3 ),
where n € N is the largest number such that p.,, = 1™ and dom(d) is defined canonically

Everything else is almost the same as proof of Theorem 77. O
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5.2 Category of Represented Metric Spaces

This section is an analogue of Section 5.1. We take totally bounded metric spaces as objects; pairs

of a 1-Lipschitz map and its uniformly continuous realizer as arrows.

Definition 79 (Category of Represented Metric Spaces). The category of represented metric spaces,
denoted by RMet, is described below.

Objects pairs (X, 0) of a totally bounded topological space X and an admissible representation 6:C 3% —X

Arrows pairs (f,F) : (X,0x) — (Y,dy) of a total 1-Lipschitz function f : X — Y and a uniformly
continuous realizer F:C ¥ — X¢ satisfying dom(F') = dom(dx) and range(F) C dom(dy)

Composition (g,G)o (f,F)=(go f,GoF)

RTop forms a category. It is closed under composition. The identity arrow of object (X,4d) is
(idx,idgom(s)). Note that, as in the case of Definition 72, the restriction of range(F) C dom(dy) is
redundant since F' is a realizer and must satisfy fodx = dy o F.

f is restricted to 1-Lipschitz maps to ensure that categorically isomorphic objects have isometric
metric spaces, as in Observation 80.

For any two objects (X,dx), (Y,dy) and a 1-Lipschitz total map f : X — Y, Theorem 67 ensures
that there is a realizer F such that (f, F): (X,dx) — (Y, dy) forms an arrow.

Observation 80 (Isomorphic Objects). If (X,dx) and (Y,dy) are isomorphic. then X and Y are

isometric; dom(dx) and dom(dy ) are homeomorphic. The other way around is not true.

Observation 81 (Final Objects). RMet has final objects. An object (X, 0) is final if | X| = |dom(d)| =
1. Note that ¢ is trivially admissible in that case.

Consider two totally bounded metric spaces X and Y. The Cartesian product X X Y equipped with
maximum metric is again totally bounded. This X x Y, with an appropriate representation constructed
from representations of X and Y, forms a categorical binary product. Contrary to Section 5.1, there is

no appropriate countable product for totally bounded metric spaces.
Theorem 82 (Binary Product). RMet has binary products.

Proof. Similar to the proof of Theorem 75. Quantitative product representation, as in Definition 70, is

used instead of the naive product representation. O

The category RMet has all finite products. Could we aim for Cartesian closure of RMet? We
need exponentials. The Observation 83 suggests at least a possibility. Its proof is a simpler version of
the proof of Arzela-Ascoli theorem [Munkres, 2000].

Observation 83 (Closure of Total Boundedness by Exponential). Let (X,dx) and (Y, dy) be totally
bounded metric spaces. Consider an arbitrary constant ¢ € RT. Lip.(X,Y), equipped with supremum

metric, is totally bounded.

Proof. A metric space is totally bounded if and only if every infinite subspace has arbitrarily close pairs
of points. Consider an infinite subset F C Lip.(X,Y). It suffices to prove that there exists arbitrary
close f,g € F.
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Let € > 0. Let y1,%2, - ,ym € Y be such that.

Y= J Bo.

1<i<m

Similarly, let z1, 22, -+, 2, € X be such that

X = U E(Z‘i,é).

1<i<m

For every arbitrary z € X, there exists y; such that

Fo={f€F|f(z) € By, o)}

is infinite. Apply this procedure iteratively to F for x1,x2,: -, one by one. We end up with an

infinite subset G C F such that for each f,g € G we have, foralli=1,--- ,m,
dy (f(xi), g(x;)) < 2€
Let f,g € G. Let x € X be arbitrary. There exists x; with d(z,z;) < e. We further have

dy (f(x), f(z;)) < c-dx(z,2;) < cg
dy (f(xi), g9(xi)) < 26

Triangular inequality yields
dy (f(x),g(x)) < 2e(1 + ).
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Chapter 6. Limitations and Future Work

We proposed quantitative admissibility (Definition 62) as a criterion for representations of totally
bounded metric spaces. One limitation of its definition is that it does not impose any restriction on
the modulus of continuity For example, consider an admissible representation 6:C 3“ — X of a totally
bounded metric space X. Consider a possibly very fast-growing map ¢ : N — N. We can define another
representation 7:C ¥“ —X by

Y(P) = 0(Pyp(0)Pp(1)Pp(2) * -+ )-

The representation «y ignores possibly too many bits. The ignored bits contain no information at all. The
modulus of v, which may be considered efficiency of a representation, is possibly extremely fast-growing.
Yet, v still fulfills the criteria of admissibility. 7y is certainly not a good representation. There must be
a way to exclude « from the class of admissible representations.

The category RMet has as arrows 1-Lipschitz functions with their realizers. Perhaps it does not
include a very large class of functions of general interest. The possibility of Cartesian closure of RMet
is open, as suggested by Observation 83. Representations of functions spaces may be designed out of
already existing representations to form an exponential object, as in the case of categorical product.
Other category-theoretic properties should be investigated further.

The current work is only about continuity, rather than computability. For concreteness of the theory,
computability of realizers should be investigated. Imposing computability conditions on radiuswise

enumerations (Definition 54) seems a good starting point.
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This work was presented at WAAC 2018, which stands for japan-korea joint Workshop on Algorithms
And Computation. Do you see? In the acronym WAAC, W stands for workshop, A stands for algorithms,
A stands for and, and C stands for computation. Even the conjunction and occupies a character, while
there is no place for Japan and Korea, the names of host nations. What is behind the scene—which I
believe is true even though I do not have any evidence—is that they had no choice since the contemporary
writing system of English (nor Japanese, nor Korean, for that matter) does not have any method to write
two characters simultaneously. One party would have been unhappy if it were JKWAAC'; the other
party would have been unhappy if it were KJWAAC. They made a compromise and decided to alternate
between two slightly different full names Japan-Korea Joint Workshop on Algorithms and Computation
and Korea-Japan Joint Workshop on Algorithms and Computation, while keeping the acronym WAAC

for consistency.

2002
FIFA WORLD CUP

KOREAJAPAN

Figure 6.1: Official Logo of 2002 FIFA World Cup

One alternative is to conform to the alphabetical order. However, as it had been shown in the case
of 2002 FIFA World Cup, the problem is not so simple. FIFA (Fédération Internationale de Football
Association), the organizing body of World Cup, is originated from France in 1904. Korea is Corée in
French; Japan is Japon in French. C' comes before J in French alphabet, hence the order Korea Japan
in the official logo. Not to mention, the Japanese people were very unhappy.

Coordinated Universal Time is abbreviated as UTC, not CUT. Originally, French speakers proposed
TUC, for temps universel coordonné; English speakers proposed CUT, for Coordinated Universal Time.
They compromised to UT'C, an acronym of nothing.

Which writing system to use to decide the order? Certainly English system is not the only answer,
as shown by two examples above.

In North Korea, they say North-South relationship. In South Korea, they say South-North rela-
tionship. When it comes to the relationship between North Korea and the United States, South Korean
people mostly say North Korea-United States relationship. Some people argue that this practice is wrong,
considering the economic and military support by the United States as a guardian of liberal democracy,
in contrast to the infuriating mischief of North Korea, such as dictatorship, brinkmanship, and nuclear
weapons. This opinion is based on the assumption that “the better should literally precede the worse”.

What I find a bit puzzling is that the field of acknowledgement writing has an unwritten law: the
names of family, relatives, friends, significant other, cats, and dogs appear the last, in contrast to early
appearance of names of colleagues and editors, who made concrete contributions to the thesis or the

book. I have observed no exception. Is it because they are the least important? In my case, my family
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has no working knowledge of mathematics or computer science (no offense). They are unlikely to make a
meaningful scientific contribution (no offense). Is this the reason why they are placed the last? However,
I do not share my family with other scientists. Maybe some scientists have a member of their family
who knows science.

Do I have a great misunderstanding? It might be the case that they are placed the last, not because
they are the least important, but because they are the most important. Heroes always come at the last
moment. They are the source of emotional fulfillment, which is way more important in life than science.
One cannot do a good research while being emotionally unstable; stability is a matter of life and death.

They are placed last but not least; they are the best. Although they usually forbid in courses of
English writing the use of cliches such as this one. Even in the field of journal publication, at times the
most important contributor occupies the last place. He may be the last, but certainly not the least.

Order of names is of utmost importance to all of us. We cannot simply settle to an arbitrary order.
We are social animals. We are hardwired to pay attention to the matters of fame and reputation. Our
brains have evolved that way. We are always concerned who gets what and who deserves what. This is
the eternal theme of human narrative.

Organizers of WAAC decided to alternate the order annually. In principle, I could do the same
thing. I am planning to distribute this thesis to my acquaintances; for each of them, I could prepare a
different version, just the right thing for him, in which his name comes the first (or the last). Everybody
will be happy to read the acknowledgement and realize that his name comes the first (or the last), except
I myself. While you being just happy, I have to do the all the work of preparing different versions and
pay for additional printing fee.

I made a selfish decision. I will prepare only a single version. No name of my acquaintances will
appear in this acknowledgement. Organizers of WAAC did the same trick; nobody could blame me as
long as they can’t blame organizers of WAAC. 1 know it is the logically fallacy of tu quoque, appeal
to hypocrisy, to try to justify my wrongdoings by blaming others. I am just too much of a coward to
choose the order. I am very very sorry about this pathetic decision, to all those who are expecting their
names in this acknowledgement. I think I have given more than enough justification for my cowardice
throughout this rather long acknowledgement, which I wonder anybody would ever read until the end.

Yes, I am such a chicken; a chicken is what I am. (Unrelated, I was born in a year of chicken.
Certainly many people born in the same year (mod 12) are not chickens. A human cannot be a chicken
anyway. My brother loves fried chickens. He was born in a year of dog.) Please, please forgive me. What
I wanted is just not to make you angry by failing to put your name in the first place (or the last place).
I know good intentions do not necessarily lead to good results, but at least I had good intentions.

Thank you all for your patience and understanding. I sincerely appreciate. My excuse was way
longer than necessary. Now let me express my gratitude from now on.

Without all your (some of them dead) support, whether scientific or emotional, whether sincere or
not so sincere—not-so-good intentions may as well lead to good results, as in the case of Richard Feynman,
a Nobel-prize-winning scientist, who worked for his own fun of it, not for benefits of humanity; another
example is the selfishness of players participating in the market, with each player working toward benefits
of his own, eventually leading to growth of the whole economy by marvelous power of the invisible hand,
though being criticized by socialist economists—this work had never been possible. Put another way,
your wrongdoings led to production of such a pathetic work, barely counted as a scientific contribution
but rather regarded as a contribution to deluge of information.

Some authors—after finishing such a great piece of work—argue that if there is any virtue in their
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work, it is by the support of other people, while any vice is their own. This is a logical fallacy I think.
You can’t have your cake and eat it too.

I am now in a dilemma. I can attribute everything, virtue and vice, either to myself or to you (some
of them dead). The former choice, that I did all the work on my own without your (some of them dead)
support, can hardly constitute an acknowledgement. The latter choice, that all the work is by your (some

of them dead) support, can be interpreted in two ways:
e Your (some dead) support produced a great work.
e Your (some dead) support produced a pathetic work.

One professor of theoretical computer science—my adviser—told me, “my master thesis, it is an
embarrassment now”. Is it feasible for mine to be a great piece of work while his being an embarrassment?
As T told you, this work would barely be counted as a scientific contribution but rather as a contribution
to deluge of information. Nobody would read this thesis except the referees. The first interpretation is
ridiculous.

The effect of attribution depends strongly on the quality of the work. If you succeeded in creating
a masterpiece, then you can be assured that your attribution hardly signifies an insult. In my case, I
should be warned that the same conduct may result in inappropriate behavior.

I need to tell you one more thing. A tiny portion of my master thesis is original to myself. I was
hardly able to discover something that wasn’t there before. Ergo, the act of my undermining this work
may undermine the things that were already there before. It is not my intention. This consideration
complicates the situation even more that is way too much more complicated even now than I could ever
handle on my own. Complexity is something that I have never been able to deal with.

My plan was to express my gratitude. It is by my lack of social skill that I am struggling to come
up with an appropriate and effective method. Once again, can I just rely on good intentions that may
or may not lead to good results? I know that this is another logical fallacy of appeal to emotion, or
argumentum ad passiones. 1 Looked up Wikipedia for Latin. I don’t know Latin.

Thank you all (including but not limited to the dead). I am not sure whether I should say it is
by your (including but not limited to the dead) support that I made it until now as illustrated by the
dilemma above. Your (including but not limited to the dead) jokes—whether intended or not—made
me laugh. Your (including but not limited to the dead) encouragement made me finish this work that
I have never imagined possible—while actually not having finished the work at the moment of writing
this sentence. Thank you (including but not limited to the dead) for your (including but not limited to
the dead) care.
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Curriculum Vitae

Name : Donghyun LIM (453)
E-mail . klimdhn@kaist.ac.kr
Date of Birth : April , 20th Century

Birthplace D THoLoliiE A > 5%y P TF ) — FRIEZK, answering the question, M0 B
bl /3 1
Address . Earth, Solar System, Milky Way
Educations
21st Century Graduation from Elementary School
21st Century Graduation from Middle School
21st Century High School Diploma Qualification (11&H A 31A])
21st Century Graduation from Undergraduate Program
21st Century Hope to Graduate from Master Program (at the Moment)
21st Century Hope to Graduate from Doctoral Program (at the Moment)
Career
21st Century Got LG Optimus Q2 (Smartphone)
21st Century Got Samsung Galaxy S4 (Smartphone, Secondhand)
21st Century Got Samsung Galaxy S8 (Smartphone, Secondhand)
21st Century No Driver’s License Yet; Waiting for Autonomous Cars (at the Moment)
21st Century Death (Nobody Has Ever Avoided)
22nd Century Any Further?
Publications

1. Hope to publish a lot and get famous.

2. Martin told me dying my hair red and go singing would constitute a more feasible way for the

objective of achieving fame. Figure 6.3 illustrates.

3. One common misinterpretation of Figure 6.3 is that people in some profession do not deserve the

fame they have since they do not possess as much skill.
4. The correct interpretation is that you will not become famous by doing science.
5. At least my brother knows much more baseball players and YouTubers than scientists.

6. Why is the curve of athletes quadratic?
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Figure 6.3: Relationship between Fame and Skill

My opinion is that still there are many ways to get famous by doing science. Proving or disproving

P = NP is one guaranteed road. Refusing Turing award or Fields medal is worth trying as well.
Scientists work indoors, and get more than average salary as far as I know. Science is good.

Some scientists work outdoors. Some perform dangerous experiments. Fortunately I am not one of

them. I just stay in front of my computer for work. How easy. It tires my eyes and neck, though.

Many graduate students fail to earn minimum wage. Sewon argued that comfort of work cancels
out low salary. He said he would not work at a convenience store even though that way he could
earn minimum wage. He said it is because of the comfort of his current work in comparison to the

difficult work at convenience store.

I believe in P = N'P. The proof is simple and elementary. Canceling P on both sides yields
1=N.
1 is the identity with respect to multiplication. So we trivially have
P =NP.

Disclaimer: This proof is not original to me.
I know this proof is not rigorous. I am not sure whether I should call this a proof.

Calculus had been developed without rigorous foundation on real numbers or continuity. Interme-
diate value theorem, for example, was just believed to be true and invoked without justification.

Rigorous proofs came up much later.

In the same manner, I believe, the informal proof of P = NP can be turned into a formal one. I

hope someday I would be able to contribute to bridging the logical gaps in the proof.

One way of making contribution is to develop an artificial superintelligence capable of doing math-
ematics. Machine learning seems one promising way toward the goal. It also seems one promising

way toward a job, at least for the moment.
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