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초 록

적분을 보렐 확률 측도 (µ) 들에 대해 어떤 함수를 전체 공간 위의 보렐 확률 측도에 대한 적분값에 대응시키

는 범함수 (f 7→
∫
X
fdµ) 로 정의하자. 그러면 [0,1] 위의 리만적분은 [0,1] 위의 실직선의 보렐 확률 측도에

대한적분이된다. 이 [0,1]위의적분은계산가능함이알려져있으며,계산복잡도마저분석되어있다. 이후의

연구에서, 더 일반적으로 특정 공간들에서는 적분의 계산가능성과 대응하는 측도의 계산가능성이 동치임이

알려졌다. 따라서공간들에서실제로어떤자연스러운적분들을계산하려면, 해당하는자연스러운측도들을

계산해야한다. 하측도는자연스러운측도라고볼수있는데,이는하정리가하측도는평행변환불변인정칙

확률 측도이며, 모든 옹골찬 위상군에 유일하게 존재함을 의미하기 때문이다. 따라서 자연스러운 적분들을

계산하기 위해 우리는 하 측도들을 자연스러운 측도들로 고려하고 이 측도들이 계산가능함을 증명한다. 하

측도의 계산가능성을 증명하려는 또 다른 동기는, 하 측도의 계산가능성을 증명하는 것이 하 정리의 계산적

인 형태를 증명하는 것으로도 해석될 수 있기 때문이다. 이 논문에서 우리는 하 적분들 (하 측도들에 대한

적분들) 이 하 정리의 가정의 계산적인 형태를 가정하면 계산가능함을 보인다. 또한, 우리는 가장 중요한 옹

골찬위상군이라할수있는 3차원특수직교군의하적분의계산가능성을증명하고,계산복잡도를분석하며,

알고리즘을 구현한다.

핵 심 낱 말 정확한 실수 연산, 계산해석학, 하 측도, 하 적분, 하 정리, 3차원 특수직교군, 옹골찬 거리군

Abstract

Define integral : C(X)→ R to be a functional f 7→
∫
X
fdµ with a Borel probability measure µ. Then, the

usual Riemann integral on [0,1] is an integral on [0,1] with the Borel probability measure on the real line.

This integral on [0,1] is known to be computable, and its complexity was analyzed. After that, more

generally it is known that, on some spaces, an integral is computable if and only if its corresponding

measure is computable. Consequently, to actually compute natural integrals on spaces, one should

compute natural measures. Arguably, Haar measures can be seen as natural measures. This is because

Haar’s theorem states that for any compact topological group, there exists a unique Haar probability

measure which is translation-invariant and regular. Thus, to compute natural integrals, we consider Haar

measures to be natural and prove that these measures are computable. Another motivation to prove

computability of Haar measures is that proving that Haar measures are computable can be interpreted

as proving a computable version of Haar’s theorem. In this paper, we prove that Haar integrals (integrals

with their Haar measures) are computable under computable version of assumptions of Haar’s theorem.

Moreover, we prove computability, analyze complexity, and implement the Haar integral on arguably the

most important compact topological group SO(3).

Keywords Exact Real Computation, Computable Analysis, Haar measure, Haar integral, Haar’s theo-

rem, 3D Rotation group, compact metric group
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Chapter 1. Introduction

1.1 Motivation

Define integral : C(X) → R to be the functional f 7→
∫
X
fdµ with a Borel probability measure µ.

Then, the usual Riemann integral on [0,1] is an integral on [0,1] with the Borel probability measure on

the real line. In [6, Theorem 5.32], this integral is known to be computable, and in #P1.

Since this integral is already well-known, the next natural question would be the generalization of it. Not

surprisingly, there are several relevant studies. In particular, [12] provides a way to represent measures

on some topological spaces and to compute integrals with corresponding measures. In later works,

computability of integrals is even claimed to be an elementary result [3, Proposition 7]. These works say

that an integral is computable if and only if its corresponding measure is computable.

Consequently, on an arbitrary space, to actually compute the natural integral on the space, we should

compute the natural measure. For natural measures of spaces, Haar measures are arguably the most

suitable. Recall that Haar’s theorem states that on any compact topological group, there uniquely exists

a Borel probability measure (call it a Haar measure) which is translation-invariant and regular. Thus,

to compute natural integrals, we consider Haar measures to be natural and prove that these measures

are computable.

Since computing Haar integrals is computably equivalent to computing Haar measures, our result can be

also interpreted as a proof of a computable version of Haar’s theorem. Studying a computable version

of a pure mathematical theorem is not a new topic. There are such studies for Brouwer’s Fixed Point

Theorem [8, 1] and Peano’s Theorem [11].

1.2 Result

The result is a co-work of Arno Pauly, Dongseong Seon (the author), and Martin Ziegler. We proved

computability of Haar integrals on a large subset of computable metric groups. We have two proofs:

a proof by giving an explicit algorithm (explicit proof), and a proof by synthetic approach (synthetic

proof). However, since only explicit proof is done by the author under supervision of Martin Ziegler,

synthetic proof will be only briefly discussed in chapter 2. On the other hand, explicit proof is fully

explained in chapter 3.

After proving computability, the next question was complexity of the problem. However, on such broad

domain of functionals, standard complexity definitions are not established yet. For instance, even the

complexity definitions of functionals on functions on Euclidean spaces are not so obvious, so that the

definition of polynomial-time computable involves modulus of continuity (see [6, Definition 2.37]). Thus,

we proved computability, analyze complexity, implement, and experiment an algorithm computing the

Haar integral on SO(3), instead of doing these on general groups. This is because complexity definitions

of SO(3) are unproblematic, since it is a subset of a Euclidean space, R3×3. Also, SO(3) is the simplest

and arguably the most important among such spaces other than U(1). Our algorithm on SO(3) is

different from our general algorithm, since we adapted a standard method of calculating Haar integral

on SO(3) in pure mathematics. Since this is done by the author and Martin Ziegler, it is fully explained

in chapter 4.
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To elaborate, let us state the computability theorem we proved. This theorem is proved by giving an

explicit algorithm:

Theorem 1.2.1. Let (X, d, ◦) be a computable metric space and a compact topological group. Suppose

that the metric d is bi-invariant (That is, d(a◦ c, b◦ c) = d(a, b) = d(c◦a, c◦ b)) and the sizes of maximal

packings κX are computable. Then the Haar measure is computable.

Seemingly, Theorem 1.2.1 partially fails to be a computable version of Haar’s theorem. The failing

point is that it requires bi-invariance of the metric and computability of sizes of maximal packings.

Without some work, these are not a computable version of hypothesis of Haar’s theorem. Instead, more

natural computable version of Haar’s theorem is the following:

Theorem 1.2.2. Let (X, d, ◦) be a computably compact computable metric space. Suppose that the

group operation ◦ is computable. Then the Haar measure is computable (note that ◦ being computable is

a computable version of X being a topological group).

In fact, Arno Pauly proved the equivalence of Theorem 1.2.1 and Theorem 1.2.2, and the proof is

presented in [10]. This fact implies that our explicit algorithm is computing Haar measures with natural

assumptions (that is, assumptions of Theorem 1.2.2).

Arno Pauly proved Theorem 1.2.2 using the synthetic approach, and our two proofs (explicit proof

and synthetic proof) have their own pros and cons. In short, explicit proof is easy to implement, and

synthetic proof is elegant but hard to implement and includes unbounded search. Especially, because of

this unbounded search, synthetic approach is not designed to aim for complexity in its nature, whereas

the explicit proof has possibilities. In this paper, we only present the explicit proof. For the synthetic

proof, the sketch is given in chapter 2. For more details of the synthetic proof, see [10]. From now on, we

will informally explain why each assumption of Theorem 1.2.1 corresponds to an assumption of Theorem

1.2.2. First, one of these assumptions is knowing the sizes of maximal packings. This is a notion very

similar to the separation bound from [15, Definition 6.2] and the capacity from [5, Definition 12]. In

these papers, separation bound and capacity are known to quantitatively capture the compactness of

the space, in being closely related to a modulus of total boundedness [7, Def 17.106]. Consequently, the

sizes of maximal packings being computable can be interpreted as the space being computably compact

in Theorem 1.2.2.

Second is bi-invariance of the metric. Only this property makes a dependency with the group structure of

the space. If the assumption does not include this property, then there is no algorithmic way to compute

anything about the group structure under the assumption. In this informal sense, bi-invariance of the

metric combined with the space being a computable metric space corresponds to the group operation

being computable.

The next is a complexity result on SO(3):

Theorem 1.2.3. If f ∈ C(SO(3)) is polynomial-time computable, then
∫
f dµ ∈ R is #P1-computable.

If for all f ∈ C(SO(3)), (f is polynomial-time computable implies
∫
f dµ ∈ R is polynomial-time com-

putable), then (FP1 = #P1).

We prove this theorem by giving an algorithm. The algorithm on SO(3) is implemented and exper-

imented with. With the experiment result, we claim that our algorithm on SO(3) asymptotically runs

in exponential time.

2



1.3 Background

In this section, we give brief explanations for the background. The followings are explained: The

theory of computation of reals, computable versions of definitions in mathematical analysis for chapter 2,

unary complexity classes FP1,#P1 and consequences of FP1 = #P1 for chapter 4.

On Turing machines, natural numbers are represented as finite binary strings by the binary representa-

tion. Rational numbers can be represented similarly, since they can be represented as pairs of natural

numbers. However, reals cannot be represented as finite strings, since they are uncountably many,

whereas finite strings are only countably many. Thus, the representation of reals is defined using infinite

strings:

Definition 1.3.1. The representation of reals δ :⊆ Σω → R is a partial surjective function that maps

an encoding of d1d2 . . . to r, where di ∈ Q and |r − di| ≤ 2−i. If δ(s) = r, s is said to represent r.

With this definition, we can define computability notions involving reals.

Definition 1.3.2. A real number r is called computable iff there exists an algorithm computing a

representation of r. A real function f : R → R is called computable iff there exists an algorithm

computing a representation of f(r) from a representation of r.

Here, the algorithm is assumed to input and output infinite strings. The expansion from finite

strings to infinite strings is straightforward. For the input, we assume an infinite length input tape. For

the output, the algorithm recieves an additional index input n and outputs the n-th word of the infinite

output string. In other words,

Definition 1.3.3. A real number r is called computable iff there exists an algorithm that recieves n and

outputs dn ∈ Q where |r − dn| ≤ 2−n.

Intuitively speaking, a representation of a real is its sequence of approximations, and the real is

computable iff the sequence is computable. For example, if a ∈ R and b ∈ R are computable, then a+ b

is also computable because there is an algorithm that generates sequences of approximations of a, b, reads

index n, and outputs an n-th approximation of a + b by summing (n + 1)-th approximations of a and

b. However, even if for all n, rn ∈ R is computable, limn→∞ rn could be not computable, because the

algorithm can only inspect finite amount of the real sequence {rn}∞n=1, and with that information the

algorithm can never be sure how close the approximation to the limit is.

Next is the definition of computable metric space:

Definition 1.3.4. (X, d,A, α) is called a computable metric space if (X, d) is a metric space, A ⊆ X

is a dense subset, α :⊆ Σ∗ → A is surjective, dom(α) is recursively enumerable, and (a, b) 7→ d(a, b) :

A × A → R is computable (α is the representation of A). The representation of X, δ : Σω → R, is a

function that maps an encoding of a1a2 . . . to x, where ∀i ai ∈ A and d(x, ai) ≤ 2−i.

Intuitively speaking, a space is a computable metric space iff there is a dense subset which is recur-

sively enumerable, and the distance between two points is computable. Note that (R, dR,Q, encoding of Q)

is a computable metric space. That is, the dense subset A works as Q in R. The representation is a

rapidly converging sequence of elements of A.

To define computability of functionals from C(X) to R, we need a representation of real continuous func-

tions C(X). Intuitively, an algorithm computing a real function can be a representation of the function.

However, since not every continuous functions are computable, this intuition cannot work. Thus, to

3



be precise, we should define the representation of f ∈ C(X) as the enumeration of representation of

f(A) ∈ RN. However, in computability sense, recieving an enumeration of f(A) is equivalent to having

a subroutine that returns f(a) when we input a ∈ A. Thus, if X is a computable metric space, one can

simply think that we have a (possibly uncomputable) subroutine computing the real function. To sum

up, if X is a computable metric space, a functional F : C(X)→ R is computable iff there is an algorithm

that outputs F (f) ∈ R by having a subroutine that computes f ∈ C(X).

Recall that FP and #P are complexity classes of function problems. FP is, as you can guess, a class of

polynomial-time function problems. However, #P is more tricky:

Definition 1.3.5. A function problem f : N→ N is in #P iff there exists an non-deterministic Turing

machine s.t. for input n ∈ N, the number of accepting path of the machine is f(n).

The class #P is also called the class of counting problems. FP1 and #P1 are similar to FP and #P .

The difference is, in the former the problem is assumed to recieve an input n in unary, whereas in the

latter the input is in binary. One similar notion is pseudo-polynomial time, which means the algorithm

runs in polynomial of the numeric value of the input. Another relevant keyword that might help your

search is tally sets, which are subsets of unary encodings {0∗}.
Our complexity result depends on whether FP1 = #P1. Since function problems are harder than decision

problems, it is easy to see that FP1 = #P1 ⇒ P1 = NP1. The fact that P1 = NP1 ⇔ EXP = NEXP

is well-known in textbooks such as [6, Proposition 1.33]. Also, it is known that P = NP ⇒ EXP =

NEXP , but the other way around is not known. Of course, whether EXP = NEXP is not known. To

sum up, FP1 = #P1 ⇒ EXP = NEXP .

Here, we only briefly explained the concepts. For details, see the following references: For the com-

putable metric space, see [14, Definition 8.1.2]. For the complexity/computability of reals/real func-

tions/functionals, see [6, Section 2]. For unary complexity classes such as #P1 and FP1, see [6, Sec-

tion 5]. For the synthetic approach, see [9]. For computable versions of definitions in measure theory,

see [3].

4



Chapter 2. The Synthetic Approach

In this chapter, we give a sketch of the synthetic proof that proves theorem 1.2.2. The synthetic

proof is from [10], which is our another presentation of the results. To do that, we first briefly explain

what synthetic approach means and how it differs from an explicit approach. Moreover, we discuss about

its benefits and limitations.

By synthetic approach, we mean the way of proving theorems or establishing definitions presented in

[9]. However, majority of this chapter is devoted to explain the way of proving theorems, instead of

establishing definitions. Our synthetic proof follows the synthetic approach. Also, the definitions in

Theorem 1.2.2 are from the synthetic approach.

2.1 Overview on the synthetic approach

The synthetic approach differs from classical ways of proving computability. The difference is that

we prove computability results by composing computable operations on represented spaces (mathemat-

ical spaces with their representations), rather than directly using representations. This way of using

represented space is similar to using abstract data type (ADT) in programming. There is an implemen-

tation of ADT, but programmers using the ADT do not directly work with its implementation. Rather,

programmers only use exposed operations on the ADT. For example, the space of open sets of X, de-

noted as O(X), can be studied only with its permitted operations (see [9, Proposition 6]). Also, the

representation of O(X) is not directly used. Instead, the standard way to generate representations of

continuous function spaces (denoted as C(X,Y )) and Sierpinski space (denoted as S) is given once, and

the representation of O(X) is assumed to be made by those ways, from noting that O(X) = C(X,S).

Permitted operations of O(X) is essentially that of semi-decidable sets. That is, the membership to U is

semi-decidable with the representation of U ∈ O(X). Similarly, the membership to an element of A(X)

(closed sets) is co-semi-decidable with its representation. Thus, for S ∈ A(X), the membership to S is

co-semi-decidable iff the representation of S is computable. Representation of S being computable is

also said that S is computably closed. In this way, we say a predicate on X is computably open/closed

iff the predicate viewed as a set is computably open/closed.

Permitted operations of K(X) (compact sets) is similar to that of compact sets in mathematics. That

is, a finite subcover is semi-decidable from any cover with its representation. Consequently, whether

an open set is the full space is semi-dedicable on computably compact spaces. This means a universal

quantification of a computably open predicate on a computably compact space is also computably open.

Similarly, by noting the dual relationships, an existential quantification of a computably closed predi-

cate on a computably compact space is computably closed. V(X) (called overt sets) is a dual notion of

compactness, so a universal quantification of a computably closed predicate is computably closed on a

computably overt spaces.

Since the synthetic approach ignores actual representation, it gives more clear and elegant proof of

computability of the theorem. Moreover, using category theory, the approach gives more natural com-

putability definitions of mathematical definitions. On the other hand, the synthetic approach only gives

implicit algorithms opposed to the explicit, imperative algorithms that can be obtained in classical ways.

5



Moreover, since definitions of the synthetic approach such as computably compact involves unbounded

search, it cannot aim for complexity. The complexity issue of the synthetic approach is not surprising,

since to establish right complexity definitions, more cares are needed than to establish computability

definitions such as the case of reals in [6, Section 2.2]

2.2 Sketch of the synthetic proof

In the synthetic proof, the strategy is the following:

1. Prove that the set of Haar measures is computably closed.

2. Prove that the set of probability measures including the set of Haar measures is computably

compact. Combine item 1 and 2 to get the fact that the set of Haar measures is computably

compact.

3. Use Haar’s theorem to prove the set of Haar measures is a singleton set

4. Use admissibility to compute an element from its computably compact singleton set

This actually follows the general strategy to use admissibility outlined in [9] as “How to use admissi-

bility”. Relatively the hardest part following this strategy is to prove that the set of Haar measures is

computably closed. This is because it is not straightforward to prove ∀U ∈ O(X).∀x ∈ X.µ(U) = µ(xU)

is computably closed, because representations of measures only output lower reals, so we cannot even

refute equality. To remedy this issue, we instead consider a predicate ∀(U, V ) ∈ DPO(X).∀x ∈
X.µ(U) + µ(xV ) ≤ 1 where DPO(X) := {(U, V ) ∈ O(X) × O(X) | U ∩ V = ∅}, and prove that

the predicate is equivalent to the first predicate. In this case, the fact that µ(U) + µ(xV ) ≤ 1 is

computably closed is straightforward from noting that representations of measures output lower reals,

and computable overtness of DPO(X) and X preserves the predicate being computably closed under

universal quantifications.

6



Chapter 3. Explicit Algorithm for General Haar Integrals

Recall the goal of this chapter:

Theorem 3.0.1. Let (X, d, ◦) be a computable metric space and a compact topological group. Suppose

that the metric d is bi-invariant (That is, d(a◦ c, b◦ c) = d(a, b) = d(c◦a, c◦ b)) and the sizes of maximal

packings κX is computable. Then the Haar measure is computable.

Here is the definition of maximal packings:

Definition 3.0.2. For any compact metric space (X, d) and its subset U ⊆ X,

1. T ⊆ U is called an n-packing of U if ∀x, y ∈ T.(x 6= y)→ (d(x, y) > 2−n).

2. κU : N→ N is called the sizes of maximal packings of U if

κU (n) := max
T is an n-packing of U

|T |

3. T is called a maximal n-packing of U if it is a n-packing of U and |T | = κU (n).

4. {Tm}∞m=1 is called a sequence of maximal packings if each Tm is a maximal m-packing.

If U = X, the term ‘of U ’ is omitted.

In this chapter, we give the explicit algorithm that computes Haar integrals. The key lemma is

lemma 3.1.5. With this lemma, by computing µTn (lemma 3.2.4), the algorithm is able to compute

Haar measures for particular sets. Thus, by partitioning the space with those particular sets that their

measures are computable (findNicePartition), the algorithm can compute Haar integrals (section 3.3).

3.1 Mathematical lemma to compute Haar measures

To compute measures, the idea is that Haar measures and maximal packings are, in a sense, both

evenly distributed in their spaces. This similarity lets the counting measure of a maximal packing to

approximate the corresponding Haar measure. Intuitively speaking, Haar measures are evenly distributed

because of its translation-invariance. The translations (applying group operation with various elements)

only change the locations and preserve the shapes and sizes of sets, because of the bi-invariance of the

metric. Thus Haar measures are evenly distributed, since they are independent of the locations of sets.

Similar to that Haar measures are evenly distributed because of left-invariance, maximal packings are

evenly distributed because of maximality. Intuitively speaking, if there exists a region in the space that

points of a maximal packing are not located enough compare to other congruent regions, there is a

contradiction since another packing that has one more element can be made by adding one more point

at that region. The below lemma formalizes this informal argument about maximal packings both in its

statement and proof. In its statement |Tn ∩ U | and |Tn ∩ xU | are both bounded in some interval. In its

proof it heavily relies on maximality.

Definition 3.1.1. For a metric space (X, d) and its subset U ⊆ X, the outer generalized closed ball is

denoted as Br(U) and defined as
⋃
x∈U Br(x). Similarly, the inner generalized closed ball is denoted as

B−r(U) and defined as Br(U
c)
c

= {x ∈ U : Br(x) ⊆ U}.
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Figure 3.1: Demonstration of lemma 3.1.5. A blue rectangle represents the space. Blue points

represent the maximal n-packing. A black shape represents U . Blue colored shapes represent outer and

inner generalized balls. Counting cross-marked points and dividing it by the number of (any) points

gives µTn .

Lemma 3.1.2. Let (X, d, ◦) be a compact topological group with a bi-invariant metric d. If Tn is a

maximal n-packing, then for any x ∈ X and U ⊆ X:

κB−2−n (U)(n) ≤ |Tn ∩ xU | ≤ κB2−n (U)(n)

Proof. |Tn ∩ xU | ≤ κxU (n) since Tn ∩ xU is an n-packing of xU . Because of bi-invariance, κU (n) =

κxU (n). So |Tn ∩ xU | ≤ κU (n) ≤ κB2−n (U)(n) since U ⊆ B2−n(U).

Let Sn to be a maximal n-packing of B−2−n(xU). Then Sn ∪ (Tn ∩ (xU)c) is an n-packing for the whole

space X. Since Tn is maximal, |Sn| + |Tn ∩ (xU)c| = |Sn ∪ (Tn ∩ (xU)c)| ≤ |Tn|. Thus |Tn ∩ xU | ≥
|Sn| = κB−2−n (U)(n) = κB−2−n (xU)(n).

This makes the ratio of points of maximal packings in a set to give an approximation of the Haar

measure of the set. The below lemma formalizes this property.

Reminder 3.1.3. δp is called a Dirac measure if δp(S) =

0 if p /∈ S

1 if p ∈ S

Definition 3.1.4. µT := 1
|T |

∑
p∈T δp where δp denotes a Dirac measure.

Lemma 3.1.5. Let (X, d, ◦) be a compact topological group with a bi-invariant metric d. If Tn is a

maximal n-packing and µ is the Haar measure of X, then for any U ⊆ X:

µ(B−2−n+2(U)) ≤ µTn(B−2−n+1(U)) ≤ µ(U) ≤ µTn(B2−n+1(U)) ≤ µ(B2−n+2(U))

Proof. Let Tn = {p1, . . . , pN} (note that |Tn| = N). Then µ(U)N =
∑N
i=1

∫
X
χpiUdµ =

∫
X

∑N
i=1 χpiUdµ.

Let f :=
∑N
i=1 χpiU then f(x) = |{i : x ∈ piU}| = |{i : pi ∈ xU−1}| = |Tn ∩ xU−1|. By lemma 3.1.2,

f(x) ≤ κB2−n (U
−1) ≤ |Tn∩B2−n+1(U−1)|. Dividing sides of µ(U)N =

∫
X
fdµ ≤ |Tn∩B2−n+1(U−1)| with

N gives µ(U) ≤ µTn(B2−n+1(U−1)). Additionally, µ(U) = µ(U−1) because if we let λ(U) := µ(U−1) then

λ is the Haar measure (note that Haar measures are both left and right invariant on compact topological

groups), which should coincide with µ. This completes the proof of third inequality and the others can

be similarly obtained.
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3.2 Algorithm to compute Haar measures of particular sets

The measure µT is in general not computable, but it can be approximated for closed sets that their

distances with arbitrary points are computable (by the procedure pseudoCount below). Let us define

this property of sets to be computably located (there is a similar notion called Turing located [4]):

Definition 3.2.1. A closed subset S of a computable metric space is called computably located if

p 7→ d(p, S) is computable.

Computably located sets are sometimes called computably closed sets, but being computably located

is different from being a computable element of A(X).

Thus if U is computably located, in order to use lemma 3.1.5 to compute µ(U), it is sufficient to

have limr→0 µ(Br(U)) = µ(U). Note that limr→0 µ(Br(U)) = µ(U)⇔ µ(∂U) = 0.

Definition 3.2.2. On a topological space (X, τ) with a measure µ, a measurable set U is called co-inner

regular iff µ(U) = sup{µ(G) | G ⊆ U,G is open and measurable}. The number r ∈ R is called co-inner

regular radius iff Br(p) is co-inner regular.

This is well defined since bi-invariance of the metric implies ∀p, q, r µ(Br(p)) = µ(Br(q)).

Remark 3.2.3. Note that a closed set S is co-inner regular iff µ(S) = sup{µ(G) | G ⊆ S,G is open and

measurable} = µ(S◦). Furthermore, µ(S) = µ(S◦) iff µ(∂S) = 0.

Lemma 3.2.4. Let (X, d, ◦) be a compact topological group with a bi-invariant metric d. If U has

a computably located, co-inner regular closure, then its measure is computable by the below procedure

computeMeasure.

Data: U is a co-inner regular, computably located set. {Tm}∞m=1 is a sequence of maximal

packings. n is a target precision.

Result: A rational number q s.t. |q − µ(S)| ≤ 2−n.

error ← ∞;

n← 0;

while error > 2−n do

r ← 2−n+1;

interval ← (pseudoCount(B−r(U), Tn, n), pseudoCount(Br(U), Tn, n+ 1));

error ← length(interval);

n← n+ 1;

end

return any p ∈ interval;

Procedure computeMeasure(U , {Tm}∞m=1, n)

Proof. In computeMeasure, for each while loop, the interval is a subinterval of [µTn(B−2−n(U)), µTn(B2−n(U))]

because of the postcondition of pseudoCount. This interval converges to µ(U) because of lemma 3.1.5

and that limr→0 µ(Br(U)) = µ(U) = µ(U) (from U being co-inner regular). The postcondition of pseu-

doCount is satisfied, because for any p ∈ T , every p ∈ S is counted and every p /∈ B2−n(S) is not

counted.
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Data: S is a computably located closed set. T is a set of points. n is an error precision.

dist(p, S, n) computes distance between a point p and a closed set S with precision n.

Result: A rational q where µT (S) ≤ q ≤ µT (B2−n(S))

count← 0;

foreach p ∈ T do

if dist(p,S,n+ 2) < 2−n−1 then

count← count + 1;

end

end

return count
|T | ;

Procedure pseudoCount(S, T , n)

Not every closures of sets are co-inner regular, but they are sufficiently many. In fact, co-inner

regular radii can be effectively found to compute Haar measures in the form of Haar integral with

findCoInnerRegularRadius.

3.3 Algorithm to compute Haar integrals

Explicit algorithm for theorem 1.2.1. The below procedure computeIntegral computes the Haar inte-

gral functional of X. The procedure can be a proof even though it recieves a sequence of maximal

packings, not the sizes of maximal packings. This is because it is known and not hard to see that on

computable metric spaces, there is an algorithm computing a sequence of maximal packings if the sizes

of maximal packings is computable (fact 3.4.1). For correctness of the procedures, see section 3.4.

Data: f : X → R is a real function. {Tm}∞m=1 is a sequence of maximal packings. n is a target

precision.

Result: A rational number q s.t. |q −
∫
X
fdµ| ≤ 2−n

mf ← modulus(f , n+ 1) ; // modulus is from [6, Definition 2.12]

{Ui}Ni=1 ← findNicePartition({Tm}∞m=1, mf);

M ← bound(|f |);

foreach Ui in {Ui}Ni=1 do

pi ← center(Ui);

mi ←computeMeasure(Ui, {Tm}∞m=1, n+ 1 + i+ logM);

end

return
∑N
i=1mif(pi) ;

Procedure computeIntegral(f , {Tm}∞m=1, n)

10



Data: {Tm}∞m=1 is a sequence of maximal packings. n is a target precision.

Result: A partition P = {Ui}Ni=1 s.t. each Ui is a co-inner regular, computably located closed

set and contained in a closed ball with radius 2−n. Representation of each Ui is

{R, p1, . . . , pi} and it is interpreted as BR(pi) \
⋃

1≤j≤i−1BR(pj). This representation

immediately gives an algorithm computing p 7→ d(p, Ui).

P ← {};
R← (m 7→ findCoInnerRegularRadius((2−n−1, 2−n), {Tm}∞m=1,m));

foreach pi in Tn+1 do

Ui ← BR(pi) \
⋃
U∈P U ;

P ← P ∪ {Ui};
end

return P ;

Procedure findNicePartition({Tm}∞m=1, n)

Data: I is an interval which should include the output (a co-inner regular radius). {Tm}∞m=1 is

a sequence of maximal packings. n is a target precision.

Result: A rational interval In := [an, bn] s.t.

(len(In) ≤ 2−n) ∧ (In ⊆ In−1) ∧ |µ(Ban(p))− µ(Bbn(p))| ≤ 2−n.

In−1 := [an−1, bn−1]← findCoInnerRegularRadius(I, {Tm}∞m=1, n− 1);

foreach i in {0, . . . , 10} do ri ← ian−1+(10−i)bn−1

10 ;

Pick sufficiently large N s.t. 2−N+2 ≤ bn−1−an−1

10 ;

foreach i in {0, . . . , 4} do m2i+1 ← pseudoCount(Br2i+1(p), TN , N) ;

if |m5 −m1| ≤ |m9 −m1| then (i, j)← (1, 5) else (i, j)← (5, 9);

return any subinterval in [ri+1, rj−1] with length smaller than 2−n ;

Procedure findCoInnerRegularRadius(I, {Tm}∞m=1, n)
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3.4 Rigorous correctness proof of the explicit algorithm

Fact 3.4.1. For any computable metric space (M,d,A, α), if the sizes of maximal packings κX is com-

putable, then for any n, we can compute an encoding of a maximal n-packing Tn in A. In other words,

we can compute S ⊆ Σ∗ s.t. α(S) is a maximal n-packing.

Proof. First, let’s show that A includes a maximal n-packing as a subset. Fix a maximal n-packing

Tn and let Tn := {p1, . . . , pN}. Since ∀i, j.(i 6= j) ⇒ d(pi, pj) > 2−n, if we let R := mini 6=j d(pi, pj)

then R > 2−n. Let δ = R − 2−n. Then ∀pi ∈ Tn ∃pi′ ∈ A s.t. pi
′ ∈ B δ

2
(pi) since A is dense. Thus,

{p′1, . . . , p′N} ⊆ A and ∀i, j.(i 6= j) ⇒ d(p′i, p
′
j) > d(pi, pj) − d(pi, p

′
i) − d(pj , p

′
j) > R − δ ≥ 2−n, which

means {p′1, . . . , p′N} is a maximal n-packing.

Second, let’s show that there is an algorithm that outputs a maximal n-packing in A if there is one. The

algorithm is to dovetail the test of distance between κX(n) element subsets of A. since the test does not

includes equality, it is semidecidable. Thus, the algorithm will output a maximal n-packing if there is

one.

Combining the first and the second step gives the computability of a maximal n-packing.

Lemma 3.4.2. Procedure computeIntegral is correct.

Proof. mf is a modulus of continuity [6, Definition 2.12] of f with precision n+ 1. This means d(x, y) ≤
2−mf ⇒ |f(x) − f(y)| ≤ 2−n−1. The partition P = {Ui}Ni=1 satisfies that every Ui has radius smaller

than 2−mf . So

|q −
∫
X

fdµ| = |
N∑
i=1

mif(pi)−
∫
X

fdµ|

≤
N∑
i=1

2−n−1−i−logMf(pi) + |
N∑
i=1

µ(Ui)f(pi)−
∫
X

fdµ|

≤
N∑
i=1

2−n−1−i−logMM +

N∑
i=1

µ(Ui)2
−n−1

≤ 2−n−12− logMM + 2−n−1
N∑
i=1

µ(Ui) ≤ 2−n

Lemma 3.4.3. Procedure findNicePartition is correct.

Proof. The followings are proofs of postconditions in the same order in the pseudocode.

1. {Ui}Ni=1 is a partition because they are disjoint, and they covers the whole space since X =⋃
p∈Tn+1

B2−n−1(p) ⊆
⋃
U∈P U .

2. Ui are clearly closed. They are computably located because
⋃
U∈P U =

⋃
BR(pi) ⇒ Ui is of the

form BR(p) \
⋃
BR(pi) and every R, pi are computable.

3. Ui are co-inner regular because BR(pi) are co-inner regular and it is preserved under intersection,

union, complement, and closure. BR(pi) are co-inner regular because the postcondition of the

procedure findInterval ensures that R is a co-inner regular radius.

4. Ui ⊆ BR(pi) ⊆ B2−n(pi)⇒ Ui is contained in a closed ball with radius 2−n.
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Lemma 3.4.4. Procedure findCoInnerRegularRadius is correct.

Proof. Because of lemma 3.1.5 and the fact that N is sufficiently large, µ(Br2i(p)) ≤ µTN (Br2i+1
(p)) ≤

m2i+1 ≤ µTN (Br2i+1+2−N (p)) ≤ µ(Br2i+2(p)). Then since 2−n+1 ≥ |µ(Ban−1(p)) − µ(Bbn−1(p))| ≥
|m9 − m1| ≥ |m9 − m5| + |m5 − m1|, WLOG |m5 − m1| ≤ 2−n. Then |µ(Br4(p)) − µ(Br2(p))| ≤
|m5 −m1| ≤ 2−n.

Remark 3.4.5. If ◦ and ◦′ are both bi-invariant for compact separable (X, d), then ◦ and ◦′ induce the

same Haar measure. In fact, this irrelevance is originated from lemma 3.1.5. Note that the approximation

of the measure, µTn , is independent of the given group operation.
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Chapter 4. Computing the Haar Integral on SO(3)

In this chapter, we present an algorithm computing Haar integrals on SO(3) and prove that it is in

the same complexity class with computing the Haar integrals on U(1) (note that the Haar integral on

U(1) is equivalent to the usual integral on [0,1]). The key observations are fact 4.2.1 and that integral on

R3 is well-known. The argument also holds true for SU(2),O(3), and U(2) with only small adjustments.

Recall the goal of this chapter:

Theorem 4.0.1. If f ∈ C(SO(3)) is polynomial-time computable, then
∫
f dµ ∈ R is #P1-computable.

If for all f ∈ C(SO(3)), (f is polynomial-time computable implies
∫
f dµ ∈ R is polynomial-time com-

putable), then (FP1 = #P1).

4.1 Algorithm

The algorithm has two differences from the algorithm of the previous chapter. First, since now

the domain of the functions that algorithm recieves is fixed to SO(3) ⊆ R3×3, it is unproblematic to

analyze its complexity. Second, it can be easily implemented in the framework iRRAM that realizes

paradigm ERC’[2], and actually an implementation will be presented in chapter 5. Implementation of

Haar integrals that maps functions on compact metric groups to reals is not easy to implement in this

framework, since it does not support a data structure for the computable metric space yet.

The idea of the algorithm is to exploit the canonical surjective mapping g :⊆ R3 → SO(3) that arises

from the unit Fraternisation representation of SU(2). With this canonical mapping, it is sufficient to

transform f : SO(3)→ R to f ◦ g :⊆ R3 → R, compute
∫
f ◦ g on R3, and prove that what this process

actually computes is the Haar integral on SO(3). The proof is known in pure mathematics, so we will

only give a sketch of the proof.

First, recall that quaternions are an extension of complex numbers that has i, j, k for fundamental

quaternion units. Unit quaternions are quaternions of norm 1, denoted by H1. H1 has a trivial bijection

to S3. That is, G = (a, b, c, d) 7→ a + bi + cj + dk : S3 → H1. SU(2) is a group isomorphic to H1 with

the map

a+ bi+ cj + dk = α+ βj 7→

[
α −β
β α

]
(4.1)

where α := a+bi, β := c+di. Let this isomorphism to be FSU(2). The isomorphism gives a representation

of SU(2) with H1, since H1 can be represented with S3, and then S3 can be represented as a subset of R4.

To elaborate, if we let δ : Σω → S3 to denote a representation of S3, then FSU(2) ◦G ◦ δ : Σω → SU(2)

is a representation of SU(2).

Similarly, SO(3) has a 2-to-1 and onto homomorphism from H1 (here, 2-to-1 means exactly two elements

of the domain are mapped to one element in the codomain). To define this homomorphism, first note

that v := (x, y, z) ∈ R3 with ‖v‖ = 1 can be identified with xi + yj + zk ∈ H1. Using this embedding

and the fact that SO(3) represents the rotations in R3,

q ∈ H1 7→ (v ∈ R3 7→ qvq−1 ∈ R3) ∈ SO(3) (4.2)

is well defined and gives the desired homomorphism. Let this homomorphism to be FSO(3). This also

gives a representation of SO(3), since if δ is a representation of H1 then FSO(3) ◦G◦ δ is a representation
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of SO(3).

Now we present the algorithm and the fact that our algorithm is based on.

Theorem 4.1.1. The below procedure computeIntegralSO3 computes the Haar integral on SO(3).

Data: f : SO(3)→ R where SO(3) is represented with H1 and H1 is represented with S3.

Result:
∫
SO(3)

fdµ where µ is the Haar measure of SO(3).

const g ← unitCubeToH1 ; // unitCubeToH1 is essentially FSO(3) ◦G ◦Ψ in fact 4.2.1

f ◦ g ← composition(f , g);

return integralOnUnitCube(f ◦ g);

Function unitCubeToH1(x : R, y : R, z : R): SO(3) is

η, ϑ, ϕ← πx, πy, 2πz;

return (cos η, sin η cosϑ, sin η sinϑ cosϕ, sin η sinϑ sinϕ);

end

Procedure computeIntegralSO3(f)

Proof. It is immediate from fact 4.2.1.

Remark 4.1.2. This algorithm can be used to get Haar integral on SU(2), by simply inputting the function

on SU(2) (the algorithm still can be executed since SU(2) also can be represented with H1). Additionally,

note that simply O(3) ∼= SO(3)×{±1} and U(2) ∼= SU(2)×U(1). Consequently, O(3) can be represented

by (p, sign) ∈ H1 × {±1} and U(2) can be represented by (p, z) ∈ H1 × U(1). If f : O(3) → R then

simply computeIntegralSO3(q 7→ f(q,+1))+computeIntegralSO3(q 7→ f(q,−1)) gives 2
∫
O(3)

fdµ.

Similarly, if f : U(2)→ R then simply computeIntegralSO3(q 7→
∫
U(1) f(q, z)dz) gives

∫
U(2) fdµ.

4.2 Correctness

Fact 4.2.1. Let f : SO(3) → R be continuous, G : S3 → H1 be the trivial bijection, FSO(3) be the

2-to-1 surjective group homomorphism, and Ψ : [0, π)× [0, π)× [0, 2π)→ S3 be the generalized spherical

coordinates. Then the following equation holds:∫
fdµSO(3) =

∫
f ◦ FSO(3)dµH1

=

∫
f ◦ FSO(3) ◦GdV =

∫ π

0

∫ π

0

∫ 2π

0

f ◦ FSO(3) ◦G ◦Ψdet|Ψ′|dηdθdφ

(4.3)

Proof. The first equality comes from the fact that µSO(3)(U) = µH1(F−1SO(3)(U)), since FSO(3) is a group

homomorphism, and the measures are translation-invariant. The second equality similarly comes since

V (G−1(U)) = µH1
(U) because of the invariance of V (·) under rigid motion and the fact that the group

operation in H1 is a rigid motion in S3. The last equality comes from the change of coordinate.

Although it is proven here, it is stated as a fact because a similar way to calculate Haar integral on

compact Lie groups is already known as Weyl’s integration formula.

4.3 Complexity

Complexity of our algorithm is equivalent to that of R3, since the change of coordinate is done in

polynomial-time. It is not hard to see that integration on R3 is in the same complexity class with R (see

[13]). Recall the following complexity result on R:
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Fact 4.3.1. [6, Theorem 5.32] If f ∈ C([0, 1]) is polynomial-time computable, then
∫
f dµ ∈ R is #P1

computable. If for all f ∈ C([0, 1]), (f is polynomial-time computable implies
∫
f dµ ∈ R is polynomial-

time computable), then (FP1 = #P1).

Note that it is very same with theorem 4.0.1, and only SO(3) is changed to [0, 1].
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Chapter 5. Implementation and Experiment

In this chapter, we discuss implementation of the algorithm computing Haar integral on SO(3),

mentioned in chapter 4. We used the framework iRRAM that realizes the Exact Real Computation

paradigm [2]. The source code is available at https://github.com/instigation/HaarIntegral.

5.1 Implementation

The algorithm assumes that SO(3) is represented in S3. Alternatively, SO(3) can be represented as

a subspace of R3×3. This decision of representation has two reasons. The first is performance. As you can

see in section 5.4, the algorithm is already slow. If SO(3) is represented as a subspace of R3×3, there will

be additional performance drop due to the change of representation. Second is that S3 representation of

SO(3) is not rare. Representing SO(3) with H1 (and thus with S3) is famous in, for instance, Computer

Graphics.

5.2 Environment

The experiment was done on a virtual machine. The underlying computer has Intel(R) Core(TM)

i7-7700K CPU 4.20GHz and 16Gb RAM. The virtual machine was Ubuntu 64bit with 4 core and 8Gb

RAM by VMware Workstation 15 Player.

5.3 Results

The experiment is done on the function (w, x, y, z) 7→ |w|+ |x|+ |y|+ |z| : S3 → R.
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Figure 5.1: x-axis is the precision n. That is, the output is guaranteed to has error at most 2−n. y-axis

means the logarithm of the CPU time of execution. Execution time for each precision is the average

execution time of 5 executions.
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5.4 Discussion

The experiment shows that the execution time of the algorithm is asymptotically exponential time,

which is optimal unless FP1 = #P1. Note that the y-axis of figure 5.3 is logarithm of the execution time.

Precision n means the output is guaranteed to has error at most 2−n. That is, higher precision means

higher accuracy.

In the experiment, experimental correctness test is not done. It is infeasible to do so since the execution

time would be about 214 seconds (about 4.5 hours) even if the output of precision is ±2 (n = −1). Since

the Haar measure is probability measure, and the function we integrated is at most 2, it is straightforward

that the output is between 0 and 2. Thus the output with the precision ±2 gives no additional information

than the straightforward analysis. That means it will take couple of months to run even a few meaningful

test cases.

5.5 Experimental Technique

One technical issue to experiment exponential algorithm with iRRAM is that it computes a real

number with a precision of 50 first. That is, users cannot demand iRRAM to compute a real with

arbitrary precision that they want. Consequently, for instance, if the algorithm runs in 2n seconds, it

will take at least 250 seconds and it becomes infeasible.

However, one can workaround this big precision issue. Let an algorithm that computes r to be Ar. If

one wants to experiment Ar with precision n < 50, one can easily modify Ar and make A2n−50r (which

computes 2n−50r in a similar way with Ar). Then, if we experiment on A2n−50r, iRRAM will compute

an approximation of 2n−50r with precision 50. Let this approximation to be a. Then |a−2n−50r| ≤ 2−50,

which gives |250−na− r| ≤ 2n. Thus, one can get an approximation of r with precision n by computing

250−na.
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