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Abstract
Randomization is a very powerful tool which can reduce the complexity of a lot of algorithms in prac-
tice. However, to implement a randomized algorithm, sampling procedure from the fixed probability
distribution is essential. In this paper, we formalized the sampling procedure from continuous probabil-
ity distribution in the sense of Type-2 Theory of Effectivity which is theoretical framework to handle
the computation over continuous data. We first show that every Borel probability measure on second
countable Ty spaces is just a push-forward measure of Canonical probability measure on Cantor Space.
This is the extension of the result by Simpson and Schréder, 2006.

Second result is concerned with Brownian motion as the probability measure on the space of con-
tinuous function f : [0,1] — R with f(0) = 0. We figure out the condition when such a measure can
be sampled. This measure can be sampled if and only if its family of modulus of continuity can be

sampled.

Keywords Computable Analysis, Type-2 Theory of Effectivity, Random Sampling, Probability Theory,

Random Variable, Wiener Process, Brownian motion



Contents

Contents . . . . . i i e e e e e e e e e e e e e e e e e e e e e e e
List of Tables . . . . . . @ o i v i i e e e e e e e e e e e e e
List of Figures . . . . . . . . . . @ ittt

Chapter 1. Introduction

1.1 Overview . . . v v v v v e e e e e e e e e e e e e e e e e e e

1.2 Preliminaries . . . . . v v v v v v v e e e e e e e e e e e

Chapter 2. Probability Measure and Samplability

2.1 Sampling and Pushforward Measure ... ... ... ..
2.2 Realizer of Measureon Reals . .. ... .........
2.3 Realizer of Measure on Topological Spaces . . ... ..

2.4 Samplability via Realizer . . .. ... ... ... .....

Chapter 3. Convergence and Computability of Random Variable

3.1 Classic Definition of Convergence of Random Variable

3.2 Computability of Random Variable and Convergence .
3.3 Computability of Random Variable and Samplability .

Chapter 4. Samplability of Brownian motion

4.1 Algorithm to Sample the Brownian motion .. ... ..
4.2 Parameterized Modulus of Continuity . ... ... ...

4.3 Sequence Converging to Brownian motion . . . . . . . .

Chapter 5. Conclusion and Future Work
Bibliography

Acknowledgments in Korean

.....

ooooo

.....

.....

ooooo

[N

(S I B N

© oo o

10
10
12
13

15

16

17



List of Tables

ii



List of Figures

2.1 Example cumulative distribution function with upper/lower semi-inverse . . . . . . . . ..

4.1 Unbounded value of function on non-dyadic point

4.2 Bound of valid sampled value with w . . . . . ..

iii



Chapter 1. Introduction

In mathematics, especially in real analysis or measure theory, 'measure’ on the space S is mapping
from its o-algebra to positive reals. If the measure of whole space S equals to 1, we call such measure
a probability measure or just probability. And we can define two different types of computability of
measure. Think about the case of rolling a dice. The probability distribution of each face of dice can
be regarded as a (uniform) probability measure on {1,2,3,4,5,6}. It is so trivial that there exists a
computable function that can give the probability of a given subset of {1,2,3,4,5,6}. In other words, we
can say that this program computes the measure as the function from its o- algebra to R. Traditionally,
computability of measure is defined as the computability of such function [3]. It is known that these
kinds of computability of measure are equivalent to the computability of integration over such measure.
However, building the algorithm, or making a program which generates the number from 1 to 6 with given
probability distribution is a completely different problem. This procedure is also known as sampling.
We will call measure is samplable if such a program exists.

So far, several authors have already researched about the computational aspect of measure or prob-
ability. Weihrauch suggested the standard representation of set of every measures on real interval [0, 1]
in [14]. Miiller extended this result to the standard representation of Random Variable [9]. In [11],
Schréder found the Admissible representation for probability measure.

In the above papers, computability of measure is commonly treated as the first type of computability.
However, we want to focus on the second type of computability, i.e. samplability of probability measure.
In many probabilistic algorithms such as Random Knapsack [1] or Monte Carlo integration [5], the
sampling procedure is implicitly or explicitly included. Several authors already studied the sampling
procedure over discrete data [13]. However, even though sampling procedure on more general spaces
is very widely used in the numerical algorithm such as Walk on Sphere methods [2], there is only few
research about sampling over continuous data in the sense of computable analysis. So, in this paper, we

try to formalize the concept and notion of sampling procedure.

1.1 Overview

In Chapter 2, we’re considering the question of how to represent Borel probability measures. It
is known that on the spaces with a very weak condition, every Borel probability distribution can be
represented by the distribution of an infinite sequence of coin flips with adaptively biased coins. We
extend this result by theorem 2.3.2 and show that every Borel probability distribution on such space
can be represented by fair coin flips. Also, based on such representation, we suggest the definition 2.4.1
which can formalize the random sampling in a highly rigorous sense.

Chapter 3 approaches the notion of probabilistic computation using the concept of a random vari-
able. Unlike function, a random variable has a bit different concept of computability and convergence.
Definition 3.1.1 and 3.1.2 shows it. We figure out that there exists a relationship between them of a
random variable which is very similar to the usual function and function sequence.

Finally, we discuss the question of whether we can sample the Brownian motion, which is a well-
known probability distribution on space of continuous function, in Chapter 4. We provide the algorithm

to sample the Brownian motion. And based on this algorithm, characterize the samplability of Brownian



motion. At last, we show why some well-known sequence which converges to Brownian motion doesn’t

imply the samplability of Brownian motion.

1.2 Preliminaries

In this section, we will give a brief introduction about computation over continuous data. In the
traditional theory of computation, a natural number is represented as a finite binary string. Similarly,
it is not difficult to show that we can represent rationals as a finite binary string. However, if the set we
want to represent is bigger than the set of natural numbers, i.e. uncountable, then finite binary string
is not enough. Because there are only countably many finite binary strings. That’s why we use infinite
binary string to handle continuous data such as reals.

Cantor space C is set of every infinite binary string. For any fixed finite binary string w, wC is the
wel0,1}n wC = C holds. And if

w # w' and |w| = |w'|, wCNw'C = . So, it is very natural that we give the probability measure v on C

set of every infinite binary string which starts with w. For any n € N, |

s.t. y(wC) = 1/21*l. Such ~ is often called Canonical probability measure.

The type-2 Turing machine is a variant of the Turing machine which allows infinite input and output.
So, unlike ordinary one, type-2 TM may not halt. The theory of computation with type-2 TM is often
called TTE(Type-2 theory of Effectivity).

Definition 1.2.1. 1. An infinite binary string w € C is computable if there exists type-2 TM which

produce w without any input.

2. An partial function F :C C — C is computable if there exists type-2 TM which produce F(p) for
every input string p € dom(F).

If we want to handle the mathematical object more than just string, we need to represent them by

a string.
Definition 1.2.2. [15, §23]
1. A notation of countable set A is partial surjective mapping o : {0,1}* — A.

2. A representation of set X is partial surjective mapping § : C — X. For x € X, 6 *(x) is said to

be name of x w.r.t. §.

Definition 1.2.3. [15, §3] Let 6x and dy be representation of set X andY , respectively. Let f :C X =Y
be partial function. F :C C — C is said to be (0x,0y) — realizer if fodx = dy o F.

%Y

X
5)(1\ 6y1\
C C

F
_

So, the realizer is string function F' which makes above diagram commutes. We say partial function
f:CX =Y is (dx,dy) — computable if there exists computable (0x,dy ) — realizer. We can also apply
this definition when one of X or Y is countable set and one of dx or dy is notation.

Consider separable metric space S with dense subset A. For every element s € S, there exists
Cauchy sequence consists of an element of A which converges to s. And this fact yields the natural

representation of metric space.



Definition 1.2.4. [15, §8.1]

1. A tuple (S,d, A, «) is computable metric space if (S,d) is separable metric space and A is dense

subset of S and a is notation of A, where dom(«) is computably enumerable and d|axa is (o, @, p)-
computable.

2. A Cauchy representation § of S is defined as belows

alw;) = s;

d(o(w;), a(w;)) < 2° for i <k

d(p) = s <= Jwy,wz,- - € dom(a) s.t.
lim; o0 5 =5

p is computable concatenation of w;



Chapter 2. Probability Measure and Samplability

2.1 Sampling and Pushforward Measure

Definition 2.1.1. Let (X,.A) and (Y, B) be measure space with measure p and v, and F C: X — Y
be measurable partial mapping. v is pushforward measure of u w.r.t. F if u(F~1[V]) = v(V) for every

v € B. In this case, we call F realizes v on u and write v < .

Think about the case of rolling dice as in Chapter 1. Suppose that we roll 12-sided dice. This
situation can be modelled as uniform probability measure p on {1,2,---,11,12}. And define function
F:{1,2,---,11,12} — {1,2,3,4,5,6} as I'(z) = [5]|. Let v be an uniform measure on {1,2,3,4,5,6}.
One can check that F' realizes v on p.

Intuitionally, the above situation means that we can simulate the situation of rolling 6-sided dice
using 12-sided dice and function F. Generally speaking, if we can simulate the random sampling from
the set X with p and v < pu, we also can simulate the random sampling from Y with v.

Note that realizability of measure is transitive, i.e. if A is realized on p and p is realized on v, then

A is realized on v.

Example 2.1.2. a) Let A be Lebesgues measure on [0,1]. Then binary representation py = b —

> >0 b;27"=1 realizes X on Canonical probability measure.

b) Consider the standard Gaussian probability distribution p. G : (0,1) > t — ®~1(t) € R realizes p

on A\, where ® is cumulative distribution function of Gaussian probability measure.

¢) Consider the Dirac delta measure §, for somer € (0,1). Constant function H : [0,1] — {r} realizes
O, on A.

d) The Cantor measure on [0,1] is realized on ([0,1],X) by inverse of Cantor-Vitali function.

The realizer of measure is commonly considered as a (6, p<)-realizer. However, note that our notion

of the realizer of measure is quite different from the traditional one.

2.2 Realizer of Measure on Reals

We know that a modern computer can generate a single bit with fair probability. It means we can
simulate the sampling from C with a canonical probability measure. So, if the measure p on set X can be
realized on 7, it’s reasonable to say we can simulate the sampling from X with p. So, the next question
will be this. ”Which kinds of measure can be realized on v7”.

Let’s start with a simple case, X = R. For the probability measure x4 on R, we can naturally define
the cumulative distribution function F : R — [0, 1] defined as R 3 s — pu((—00, s]) € [0, 1]. This function
is known to be upper semi-continuous function. But it does not need to be bijective unless it’s strictly

increasing. So there exist some subtle points to define its inverse.
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Figure 2.1: Example cumulative distribution function with upper/lower semi-inverse

Look at the leftmost graph in the above figure. If we want to define the inverse of such function,
what will be the value of its inverse at tg? There will be multiple inverses. And we pick 2 of them as

followings.

Definition 2.2.1. Let p be Borel probability measure. The function defined below is said to be upper

and lower semi-inverse of the cumulative distribution function of .

FL:(0,1) 2 ¢t = inf{s e R| p((—o00,s)) >t} = min{s|p((—o0,s]) >t}
— sup {s € R | u{(—o0,s]) <1}

FE:(0,1) > t = max{s € R|pu((-o0,s)) <t} = sup{s|pu((—oc,s]) <t}
— sup {5 n{(5.00) > 1- )

Why do we need to define such a concept? Because it is deeply related to the realizer of measure

on the real line by the following fact.

Fact 2.2.2. [10, §2.5] FY and FY both realizes 1 on X\, where \ is lebesgue measure on [0, 1].

2.3 Realizer of Measure on Topological Spaces

But what if our target space X is not R? For the topological spaces equipped with Borel o-algebra

and Borel probability measure, Simpson and Shroder establishes the following.

Fact 2.3.1. [12, Proposition 13.] Let X be second countable Ty space with Borel probability measure p.

Then there exists Borel probability measure 4 on C s.t. p has continuous partial realizer over 7.

Note that the measure 4 in the above theorem is not Canonical probability measure. However, we
show that measure p on the above theorem can be realized by canonical ’fair’ one. This is our first main

result.

Theorem 2.3.2. FEwvery Borel probability measure 7 on Cantor space C admits a continuous partial
realizer over the ‘fair’ measure (C,v). The realizer is defined on C with the exception of at most countably

many points.

Before starting the proof, let’s consider following approach. Consider Borel measure i on R and

realizer F' : (R, i) — (C,7%). Then by Fact 2.2.2, fi can be realized on A. By inverse of py,, A can be



realized on 7. So, 4 can be realized on y. However, construction of such realizer F' is not an easy

problem. Instead, we use more direct approach to construct realizer.

Proof. For each open interval I = (a,b) C [0, 1] consider the set C; = p;, '[I] C C of measure v(C;) = A\(I).
Note that C;yy = CrUCy and Crny = C;NCy. Fix n € N and equip {0, 1}™ with the total lexicographical

order; and consider the disjoint open intervals
Iy = (0,5(000) aswellas Iy = (Y F(FoC)Y. _ 3(@00))

of lengths A\(I) = (@ o C) for each @ € {0,1}"\ 0. Since 7 is a Borel probability measure on C,
these lengths add up to > (@ o C) = 1. Also note that Iz0,l51 C Iz are disjoint with lengths
AIgo) + AIg1) = A(Ig); and that Iz may be empty in case J(w o C) = 0. Finally abbreviate

Cz:=Cr, and F,:CC—{0,1}", Fn|

w

Ca =w

so that F, is defined except for at finitely many arguments (namely the binary encodings of the real
interval endpoints) with F,,; (&) = Cg of measure v (F, ! (@)) = 7(Cg). Since F,41(u) € F,(a) o {0,1},
F(u) := lim,, F,(a) € C is well-defined (except for at countably many arguments) and continuous with
F~Hw (] = Cyz for every & € {0,1}*. Hence o F~! coincides with 4 on the basic clopen subsets of C

and, being Borel measures, also on all Borel subsets. O

Fact 2.3.1 said that arbitrary Borel probability measure p is realized on 74, and theorem 2.3.2 said

that 4 can be realized on ~y. By transitivity of realizer, u can be realized on ~y.

Corollary 2.3.2.1. Let X be second countable Ty space with Borel probability measure . Then p has

continuous partial realizer over v defined everywhere except countably many points.

This is more powerful result than Lemma 2.2.2.

2.4 Samplability via Realizer

Now we know that some kinds of measure always can be realized on . But to simulate the random
sampling, we need one more thing. The computability of such realizer. With computability notion, we

can finally define the samplability of some measure.

Definition 2.4.1. Fiz a Borel probability measure u on X and a representation £ :C C — X. A &-
realizer of u is a mapping G :C C — dom(&) such that £ o G :C C — X is a realizer of p (over the ‘fair’

measure) in the above sense. Call u &-samplable if it has a computable &-realizer.

Note that the realizer we defined above is different from the traditional meaning of the realizer of
measure. (The realizer of measure as the function from o-algebra to reals.) Here are some examples and

properties of samplable measures.
Example 2.4.2. o) Lebesgue measure on [0,1] is I-samplable. Where I is identity function.
b) If p is &-samplable and if £ < &' holds, then p is also &'-samplable.

¢) In particular the Lebesques measure on [0, 1] is p-samplable for the admissible representation p [15,
Theorem 4.1.13.7].

d) The Dirac distribution 0, is p-samplable iff r is p-computable.



According to Theorem 2.2.2, semi-inverse of cumulative distribution function realizes the corre-

sponding probability measure on Lebesgue measure. Now, we can move on to the next phase.

Lemma 2.4.3. Fix a Borel probability measure pu on R with cumulative distribution function F and

lower and upper semi-inverse F¥ and FL. Then u is p<-samplable (resp, ps-samplable) if FX is (py, p<)-
computable(resp, FL is (py, p=)-computable).

dom(p<) —=— (R, )

Proof. GT FZT

c—"2——(0,1)
If F¥ is (pp, p<)-computable, then there exists computable function G which makes above diagram
commutes. It means p- oG = F¥ o p,. Because py, realizes A on y and F¥ realizes 1 on A, by transitivity

of realizer, F¥ o py, realizes p over . It means p< o G realizes u over 7. So, G is computable realizer of

w and then g is samplable. O



Chapter 3. Convergence and Computability of Random
Variable

3.1 Classic Definition of Convergence of Random Variable

Let (S, d) be metric space and §2 be measure space with Borel probability measure P. Let X : Q — S

be a random variable. The following is a classic definition of almost sure convergence of random variable.

Definition 3.1.1. The sequence of random variable X, converges to X almost surely if
JACOQVwe AVm eN,INeN,(n> N = (X, (w),X(w)) <2™™) & P(A)=1

However, in the above definition, one can check that N depends on each single element w in A. In
some sense, we can say that it’s not uniform convergence. The definition below is the uniform version of

almost sure convergence.

Definition 3.1.2. The sequence of random wvariable X,, converges to X uniformly almost surely if
JACOQVmeNINeNVYwe A (n>N = d(X,(w),X(w)) <2™™) & P(A)=1

In this definition, N only depends on m. We can define the function which maps m to the smallest

such N. It’s called modulus of uniform almost sure convergence.

3.2 Computability of Random Variable and Convergence

Bosselhoff presents various kinds of notions about probabilistic computability in his paper[4]. In
this section, we’ll show the relationship between such a concept of computability and convergence.
Let (S, d, @) be computable metric space with Cauchy representation dg. Let Q be measure space

equipped with probability measure P and representation §.

Definition 3.2.1. [/] The random variable X : Q — S is almost surely computable if
JACOQ,P(A) =1 & X|ais (0|%, ds)-computable.

And we prove that this concept is deeply related to uniform almost sure convergence explained

above.
Theorem 3.2.2. The followings are equivalent
1. The random variable X : © — S is almost surely computable.

2. There exists the computable sequence of almost surely computable random variable X; : Q — S s.t.

X; uniformly almost surely converges to X with computable modulus of convergence.

Proof. (1 = 2) Define sequence (X;) as X; = X for every 4 € N. Then it trivially holds.
(2 = 1) Let A; be measure 1 set which makes X; be computable, and A’ be measure 1 set which
makes X; be uniformly almost surely converges to X. Let A = (N2, A4;) N A’. Then X, is computable

on A, and X; converges to X on A.



However, A is also measure 1 set. For all i € N, P(4;) = 0 and P(A’) = 0. By countable
subadditivity of measure, P(UA; U A') < > P(4;) + P(4) = 0. So P(UA; UA’) = P(A) = 0 and
P(A) =1.

Now we’ll show that if a computable sequence of computable function Y; : A — S uniformly converges
to Y with a computable modulus of convergence, then Y is also computable. Note that this implies our
original claim.

Let p be modulus of convergence. For any « € A and n € N, because {Y;} is computable sequence,
we can compute Y),(,). By definition of modulus of convergence, sup;c 4 d(Y,n)(t), Y (t)) < 27". So,
d(Y,my(2),Y (2)) < 27". It means we can construct the computable Cauchy sequence which converges
to Y(z), i.e. we can compute the ds-name of Y'(z). For any z, it’s possible to construct such sequence,

and it’s the algorithm which computes the function Y with respect to § and dg. O

3.3 Computability of Random Variable and Samplability

Let’s recall the definition of the realizer of measure. Because it is measurable mapping, we can
view realizer as a random variable and realized measure as an induced measure. Also, we can define the

samplability of the random variable itself instead of measure.

Definition 3.3.1. Let X be random variable with support set S and i is measure on S induced by X .
If 1 is samplable, we call X is samplable.

Think about Random Variable whose sample space is Cantor space. One can check that such

Random Variable is exactly the realizer of measure induced by itself. Then the following very naturally
holds.

Lemma 3.3.2. Let X be random variable whose sample space is C. Then X is samplable iff X is almost

surely computable.



Chapter 4. Samplability of Brownian motion

1-dimensional Brownian Motion, or Wiener Process, or Wiener measure is a probability measure on

the space X := C[0, 1] of continuous functions W : [0, 1] — R, which satisfies followings.
i) W(0) = 0 almost surely.
ii) For every 0 <r < s <t <1W(t) — W(s) is independent of W (r).
iti) W (t) — W(s) is Gaussian normally distributed with mean 0 and variance |t — s|.

Our question is, whether this probability measure is [p — p]-samplable in the sense of Definition
2.4.1. As in [15, §6.1], the [p — p]-name of function f € C[0, 1] contains two kinds of information, (I) its

values f(a/2™) on dyadic rationals and (II) a binary modulus of continuity moc of f.

4.1 Algorithm to Sample the Brownian motion

Definition 4.1.1. For a uniform continuous function f : (A,d) — (B,e), where (A,d) and (B,e) are
both metric space, a binary modulus of continuity moc : N — N of f is a function which satisfies the
followings.

da,y) < 2770 = o(f(2), f(y) <27

Similarly, modulus of continuity w : R>¢o = Rx>¢ is a function which satisfies the followings.

e(f(z), f(y)) < wld(z,y))

Note that a function has a (computable) modulus of continuity iff it has (computable) binary

modulus of continuity.

Remark 4.1.2. o) The standard Gaussian cumulative distribution function is increasing, so its in-
verse is well defined. And also, it’s (p, p)-computable. By lemma 2.4.3, Gaussian measure is

p-samplable.

b) Combining property i) and i) of Brownian motion, we can sample the value of the function W €
C[0,1] on every dyadic rational. However, by this method, we cannot determine moc with finite
time. For any modulus of continuity function, there must be a small but positive probability that

the value of W on non-dyadic number violates the moc. See figure 4.1.

¢) Conversely, guessing modulus of continuity w at first. If we fix the w, we can distinguish whether
the sampled value violates it or not. If the sampled value violates, drop it and sample the value

again until sampled value doesn’t violate sampled modulus. See figure 4.2.

Algorithm 1 and 2 show the pseudo-code of the above algorithm. Because it’s algorithm on the
type-2 machine, it includes infinite loops. Algorithm 2 includes undecidable real inequality. However,
we don’t need to care about it. Because it fails only when rdif = w(1/2") or ldif = w(1/2"™). But for
fixed w, such events occurs with probability 0. So we can sample Brownian motion with probability 1

with this algorithm.

10
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Figure 4.2: Bound of valid sampled value with w

Algorithm 1 Sample the Brownian motion

Sample the modulus of continuity w
n<+0
Set W(0) as 0
loop
k+1
while k < 2™ do
x + GAUSSITAN(0,k/2™)
while VIOLATE(w,x,n,k,W) do
x <+ GAUSSIAN(0,k/2™)
end while
Set W (k/2™) as x
k< k+2
end while
n—n+1
end loop

11



Algorithm 2 Check Whether sampled value violates moc
procedure VIOLATE (w,z,n,k, W)

Idif < [W((k—1)/2") — W (k/2™)]
rdif « [W((k+1)/2") — W (k/2")|
if Idif > w(1/2") or rdif > w(1/2") then

return True

else
return False
end if

end procedure

4.2 Parameterized Modulus of Continuity

Algorithm 1 and 2 imply that the distribution of modulus of continuity of Brownian motion takes
an important role. Indeed, there are some known results about its distribution.
Fact 4.2.1 (Lévy’s modulus of Continuity theorem). With probability 1, following holds.
(W(s) —W(t)]

lim sup ——* =

h=0|s—yj<n  +/2hIn1/h
In other words, the sample paths of Brownian Motion have modulus of continuity
w(h) = \/2hIn1/h
for small h > 0.
From above fact, following can be derived.

Lemma 4.2.2. For every W € C[0,1] (except for a subset of measure 0), there exists smallest ¢ > 1
which makes

w(h ) m { 2chIn(1/h) : h<1/ec
’ 2Inec/e + (h —1/ec) - c-In(c)/y/2Inec/e : h>1/ec

be modulus of continuity of W. We denote such function w parameterized modulus of continuity.

(4.1)

W)Wl 1 Therefore there exists a

\/2ChIn1/h

¢ =¢(C) < oo such that every h < 1/ce satisfies sup|,_y <y, W)WM - that is
- Sh /2Chinl/h ’ ’

[s—t|<h = |[W(s)—W(k)| < v/2Chlnl/h .
Without loss of generality h = 1/ec, ¢ = ¢(C) is increasing, and ¢ > C: settling the first case of
Equation (4.1).

Now we want to extend this result. If w is continuous convex function, then w satisfies subadditivity,

Proof. Fix C' > 1. By Fact 4.2.1 it holds limp,_,o sup|,_4 <,

ie. Vs, t w(s+1t) <w(s)+w(t). And if w has subadditivity, we can easily construct the bound of value
on larger domain. To make w be convex, we choose to use linear function after the point 1/ec. Let w,

be function w(-,¢). Then w, for h > 1/ec can be extended by followings.

1 dw. (1 1
ch = We| — — - h=—
we(h) w(ec)+ dh (ec) ( ec)

2Inec 1 c-lnec—1
Ve " e) T e
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Note that c¢ is determined by W, and W is determined by an element of sample space. So c is
determined by an element of sample space, i.e. ¢ is the random variable. We can now state our second
main result, which characterizes the samplability of the Wiener Process by the probability distribution

of parameterized modulus of continuity.
Theorem 4.2.3. The following are equivalent:
e The Wiener Process W is [p— p] - samplable
e The random variable ¢ in Lemma 4.2.2 is samplable.

Proof. As in algorithm 1, 2 and lemma 4.1, it is clear that if random variable ¢ is samplable, then
modulus of continuity is also samplable and Wiener process is also samplable.

Conversely, suppose that Wiener Process W is [p— p] - samplable with realizer F' : C — dom([p— p]).
Then, we can view ¢ as random variable whose sample space is also C. By lemma 3.3.2, it’s enough to
show that ¢ is almost surely computable. Fix C and i € dom([p— p]) and let W be [p— p](&). Because
w is computable, following mappings are also computable.

(C,W) = ¥(C, W) := max w(|s—t],C) — |[W(s) — W(t)|

0<s,t<1

One can check that ¥ is continuous and strictly increasing to C' and unbounded. By definition, ¢(W) =
min{C : U(C,W) > 0} = max{C : U(C,W) < 0}. This mapping is defined for almost every W since
U is strictly increasing and continuous. We also can check that ¢ is upper and lower computable on its

domain. So ¢ is almost surely computable. O

4.3 Sequence Converging to Brownian motion

There are various kinds of sequence or series which is known to be converging to Brownian motion.
In section 3.3, we show that the almost sure computability of the random variable implies its samplability.
And uniform almost sure convergence of computable sequence implies almost sure computability of its
limit. So, it seems that we can use those mathematical facts to build the algorithm to sample the
Brownian motion. Actually, some of them are very useful to informally simulate the Brownian motion.
However, in this section, we will show why those convergence doesn’t imply the samplability of Brownian
motion at all.

The first and most famous example is called Donsker’s theorem.
Fact 4.3.1 (Donsker’s theorem). Let (X;) be sequence of i.i.d random variable with mean 0 and variance

1. Let S, =Y i, X;. Then, following sequence converges to Brownian motion in distribution.

S LntJ
Jn

Although this is easy to compute and widely used in the informal simulation of Brownian motion,

W" =t~

it doesn’t give any hint about the formal samplability of Brownian motion. Because this convergence is
convergence in distribution. It is a much weaker condition than uniform almost convergence we need. So
it doesn’t imply and also gives no hint about samplability.

Here’s another example called levy’s representation.

13



Definition 4.3.2 (Schauder’s hat function). Let @o(t) =t and

—-1)/2 k—1 k—1 k
20D (¢ - AR ARl <t <o
Pnj(t) = Q2072 (BEL gk <p okl 0<k<2j, 1<j<2"!
0 otherwise

©n,; 15 called Schauder function or Schauder’s hat function.

Fact 4.3.3. [7, Thm 3.2] Let R,, ; be independent standard normally distributed random variables. Then
following sequence converges to the Wiener Process almost surely:

2n—1

N
WNE) =Ro-t+ Y > Rujon;(t) (4.2)
n=1 j=1
However, this doesn’t imply the computability of Brownian motion even though W is the com-
putable random variable for every NV € N and its convergence is almost sure convergence. Indeed, we
can show that this convergence doesn’t have the computable global modulus of convergence. The main

reason is that this convergence is not uniform.

Theorem 4.3.4. There is no function p: N — N which satisfies
m > p(n) = PAW™,W)<2™) =1

Proof. Assume that there exists such function p. Fix n € N and let m = p(n). Then sup,¢jo 47 [W™(¢) —
W (t)| < 2=". However, for some k > m, it’s possible with positive probability that Ry ; is arbitrarily
big so that |Wy(t) — W (t)| > 27" for some t € [0,1]. Because Ry ; is gaussian random variable and not
almost surely bounded. It’s contradiction because k > m implies that sup,co ) Wkt — W (t)] <27

So, there’s no such function u. O

With a similar argument, we can also prove that sequence in Donsker’s theorem also doesn’t have
a global modulus of convergence.

Here’s the little bit different example. Let’s consider the Kolmds-Major-Tusnady approximation
theorem. It says that the supremum norm between empirical process and Brownian bridges is bounded

with given probability bound.

Theorem 4.3.5. [8, Thm 4] Let X1, Xa,--+ be a sequence of i.i.d. random variables with distribution

0 ift<O
P(X,<t)=<t if0<t<l1
1 ift>1

Let F,(t) be empirical distribution function based on the sample X1, Xo, -+, X,, and let B1(t), Ba(t),- -

be sequence of independent Brownian bridges. There is a version of the sequences F(t), B, (t) such that

77< sup sup |k(Fi(t) —t) — ZBj(t)‘ > C(logn + z) logn) < ke
1<k<n 0<t<1 =

for all x and n, where C, K, \ are positive absolute constants.

However, this theorem also said that there always be positive probability that finite approximation
has unbounded error. It means that we cannot compute the Brownian motion with probability 1 using

this approximation.

14



Chapter 5. Conclusion and Future Work

In this paper, we suggest the new concept related to probabilistic computation called samplability.
But we don’t know the relationship between samplability of measure p, and traditional computability of
. It seems that sampling is much more difficult than just computing measures as a function. But we
cannot find any evidence supporting it yet.

Also, we figure out the relationship between almost sure computability and almost sure conver-
gence. However, the random variable has two more types of convergence concept, called convergence
in probability and convergence in distribution. [4] proposes a computability concept called computable
approximation and computability in mean. This concept is supposed to be related to the corresponding
convergence concept, but not covered in this paper.

In lemma 4.2.2, we show that random variable ¢ do a key role in the sampling of the Brownian
motion. However, the problem of whether ¢ is the computable random variable remains open. It means
that even though we make a significant step, but still cannot figure out the samplability of Brownian

motion.
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