
석 사 학 위 논 문
Master’s Thesis

실수연산의 계산 가능성, 효율, 실제사례

Real Computation:

from Computability via Efficiency to Practice

2021

황 지 만 (黃智萬 Hwang, Jiman)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology

석 사 학 위 논 문

실수연산의 계산 가능성, 효율, 실제사례

2021

황 지 만

한 국 과 학 기 술 원

전산학부

실수연산의 계산 가능성, 효율, 실제사례

황 지 만

위 논문은 한국과학기술원 석사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2021년 5월 31일

심사위원장 Ziegler Martin (인)

심 사 위 원 Svetlana Selivanova (인)

심 사 위 원 한 종 인 (인)

Real Computation:

from Computability via Efficiency to Practice

Jiman Hwang

Advisor: Martin Ziegler

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Daejeon, Korea

May 31, 2021

Approved by

Martin Ziegler

Professor of School of Computing

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.

MCS 황지만. 실수연산의 계산 가능성, 효율, 실제사례. 전산학부 . 2021년.

36+iv 쪽. 지도교수: 지글러마틴. (영문 논문)

Jiman Hwang. Real Computation:

from Computability via Efficiency to Practice. School of Computing . 2021.

36+iv pages. Advisor: Martin Ziegler. (Text in English)

초 록

이 논문에서는 실수연산에 관한 세 가지 주제를 다룬다. 첫째, 유클리드 공간상의 콤팩트 집합을 정확히

표현하기 위한 추상데이터형을 제안한다. 이 추상데이터형으로 한 점이 콤팩트 셋에 포함되는지 여부를 알

수 있다. 또한 콤팩트 집합이 평면상에 정의되는 경우, 픽셀 단위로 정확한 그림을 그릴 수 있다. 둘째, 100

비트급 크기의 부동소숫점 곱셈을 부동소숫점장치로 가속하는 방법을 알아본다. 널리 쓰이는 MPFR 소프트

웨어 라이브러리보다 부동소숫점장치로 행렬 곱셈과 다항식 곱셈을 하면 최소 네 배 빠른 것으로 실험결과

확인되었다. 셋째, 공기청정기에서 정화된 공기가 사람들에게 효과적으로 전달되도록 하는 출구 모양과 설

치 높이를 시뮬레이션을 통해 알아낸다. 그 결과, 기존 프로토타입에 대비해 PM2.5 밀도가 50µg/m3이하인

영역이 공기청정기 주변으로 형성됨을 확인하였다.

핵 심 낱 말 실수 연산, 콤팩트 집합, 곱셈, 모의실험, 미세먼지

Abstract

We address three subjects regarding real computation. Firstly, we introduce an abstract data type

(ADT) for representing compact subsets in Euclidean space in Exact Real Computation. Given a point,

it provides membership check up to the desired precision. Furthermore, the visualization is supported

for 2D compact subsets. Secondly, we explain a method to accelerate multiplication of 100-bit precision

floating-points via Floating-Point Unit (FPU). The experiment shows that it is at least 2-4 times faster

than MPFR to multiply matrices and polynomials, respectively. Lastly, we run a simulation to design an

outlet shape and installation height for an air purifier so that the clean air flows to the average human

effectively. Our simulation has improved the efficiency of the original prototype so that it successfully

forms an area of PM2.5 density less than 50µg/m3 around itself.

Keywords real computation, compact set, multiplication, simulation, fine dust

Contents

Contents . i

List of Tables . iii

List of Figures . iv

Chapter 1. Introduction 1

Chapter 2. Compact Euclidean Subsets as Computable Data Type 2

2.1 Background . 2

2.2 Compact . 3

2.2.1 Drawing 2D images . 4

2.3 Homotopy . 5

2.3.1 Membership check . 5

2.3.2 Drawing 2D images . 10

2.4 Conclusion . 12

Chapter 3. Accelerating Intermediate-Precision Arithmetic 13

3.1 Background . 13

3.1.1 Data structure for arbitrary precision 13

3.1.2 Multi-digit vs Multi-component 14

3.1.3 Position of leading 1 in multi-digit 15

3.1.4 Descending order and non-overlap of multi-component . 15

3.2 Long multiplication analysis . 15

3.2.1 Long multiplication . 16

3.2.2 Correctness . 17

3.2.3 Performance . 17

3.3 Experiments . 18

3.3.1 Why EDD is less efficient than DD 20

3.4 Conclusion . 21

Chapter 4. Simulating Fine Dust Air Purifier 22

4.1 Background . 22

4.2 Clean air shelter . 22

4.3 Simulation . 24

4.3.1 Independent variables . 24

4.3.2 Simulation environment 24

i

4.3.3 Results and analysis . 25

4.4 Conclusion . 28

Chapter 5. Summary 29

Chapter 6. Appendix 30

Bibliography 32

Acknowledgments 35

Curriculum Vitae 36

ii

List of Tables

2.1 Assumptions for the bit-cost complexity analysis . 8

3.1 Comparison of Floating-point, Multi-digit and Multi-component 14

3.2 The number of primitive operations on multiplying two np-bit numbers 18

4.1 Total score for models . 26

6.1 Matrix multiplication elapsed time ratio . 30

6.2 Polynomial multiplication elapsed time ratio . 30

6.3 PM density sensor readings . 31

6.4 PM density subtotal and total score . 31

iii

List of Figures

2.1 Deciding the precision of drawing an image . 4

2.2 Membership check of x for the compact set C = f (HR) 6

2.3 Distance to the compact set f (HR) . 7

2.4 Conditions for the lower and upper bounds . 8

2.5 Possible cases of checking the boundaries of a compact set 9

2.6 The smallest bound of divided compact subset for the procedure termination 10

2.7 Examples of drawn images . 11

3.1 Correct and incorrect component assignments of multi-component 15

3.2 Multiplication procedure of multi-digit . 16

3.3 Multiplication procedure of multi-component . 16

3.4 Matrix multiplication speed comparison of MPFR, DD, EDD, and QD 19

3.5 Polynomial multiplication speed comparison of MPFR, DD, EDD, and QD 20

4.1 Original prototype of clean air shelter . 23

4.2 PM density distribution of the original prototype . 23

4.3 Section view of the prototype . 23

4.4 Cover models . 24

4.5 Virtual experiment setup . 25

4.6 PM sensors . 25

4.7 PM density distributions of the models . 27

4.8 Created clean area . 28

iv

Chapter 1. Introduction

Real-valued models arise in many applications, including Physics, Engineering, Artificial Intelligence,

etc. While the real numbers form a continuous space in Mathematics, a computer works on discrete

spaces. This discrepancy makes it hard to deal with real numbers on a computer, leaving the design

choice between accuracy and computation speed depending on the purpose of the computation. High

accuracy is very difficult to achieve while it is every important e.g. for safety-critical applications such

as Particle Physics. At the same time, it is also vital to keep the computations feasible, and carefully

balancing between high accuracy and fast computation.

Chapter 2 explains how to represent compact subsets in Euclidean spaces with any prescribed

precision. This is done based on an Exact Real Computation package called iRRAM [2]. Written in C++,

it performs real computations within any given rounding error. Chapter 3 discusses how to increase the

efficiency of multiplication performance in iRRAM when balancing between the accuracy and the speed by

utilizing multiple floating-points. Lastly, Chapter 4 explores an application of real computation where a

simulation is used to improve a purifier, exploiting fast computations.

1

Chapter 2. Compact Euclidean Subsets

as Computable Data Type

It is desired to manipulate some geometric objects in Euclidean space such as a triangle, a sphere,

or even a function on Rn via software. Some software (e.g. Mathematica and Geogebra) support it for

the education and research purpose. However, these suffer from error-prone computations under the

hood because the data structure for containing real numbers has a finite precision. As a result, one may

get a wrong answer, for example, from a membership test of a point near the boundary of a shape in

Euclidean space.

In this chapter we present an abstract data type (ADT) which takes the characteristic function for a

bounded and closed subset C of Euclidean space—thereby compact— in Exact Real Computation(ERC).

It provides two functionalities: 1) testing if a given point is in C and 2) drawing a figure of C if C ⊂ R2.

Moreover, handling a homotopy of the form f : [0, 1]
m → Rn as a compact set is explained because

finding the characteristic function is often cumbersome.

Section 2.1 explains the necessity and brief internals of ERC. Section 2.2 introduces ADT for compact

subsets, which takes a characteristic function as an input. Section 2.3 describes another ADT for compact

subsets, which takes a homotopy of the form f : [0, 1]
m → Rn as an input.

All contents in this Chapter are implemented in iRRAMx, an iRRAM [2] extension. See the full code

at https://github.com/realcomputation/iRRAMx.

2.1 Background

A mathematical method of representing a bounded and closed set C ⊂ Rn, or equivalently compact

subset, is to define a characteristic function χ : Rn → {0, 1} where χ(x) = 1 if x ∈ C and χ(x) = 0

otherwise. For example, the closed ball of radius π centered at the origin is defined as χ(x) = 1 if |x| ≤ π
and χ(x) = 0 otherwise.

When it comes to computer realm where only discrete memory cells are provided, it is not trivial

to embed a function defined on Rn. For instance, when |y| = π, the characteristic function χ above

produces χ (y) = 1. Suppose we implemented a function χ′ to approximate χ such that χ′(x) = 1 if

|x| ≤ 3.14159 and χ′(x) = 0 otherwise, using IEEE [11] 64-bit floating-point. It follows that χ′(z) = 0

for |z| = 3.141591, which exhibits the failure of the approximation. This is due to the lack of precision

when manipulating real numbers. The approximated boundary 3.14159 isn’t precise enough to express

π = 3.14159265359 · · · , hence it raises a round-off error.

The problem is that a round-off error may take place over the entire computation and influence

the real world seriously [7]. As the necessity of more precise computation is observed, researchers have

developed software for high precision such as MPFR [1], which provides an arbitrary precision. Instead of

having a fixed precision, the programmer adjusts it so that the final result gets more accurate. Some

applications are inspecting mathematical constants [9], or mathematical Physics [8].

However, extending the available precision doesn’t guarantee that the final result is solid. Logistic

map [17] is a good example that exhibits a chaotic aspect and fails to acquire the correct value. Moreover,

numerical analysts take advantage of partial pivoting for Gaussian elimination [10] to alleviate the round-

off error even if each element of a matrix has an arbitrary precision.

2

https://github.com/realcomputation/iRRAMx

ERC came up with the concept of an arbitrary round-off error. A programmer is able to set the

upper bound of the round-off error without a problem-specific workaround such as Gaussian elimination.

A common way of achieving it is the interval arithmetic. Instead of working with a concrete value a ∈ R,

we maintain an interval [l, r] 3 a where l and r are expressible with a finite precision, often dyadic.

It follows that all arithmetic operations are defined on the intervals. For example, we can define the

addition of [l1, r1] and [l2, r2] as [l1 + l2, r1 + r2] which still include the true value. The error is the half

of the length, which is likely to increase over a sequence of computations.

The computing procedure is done iteratively. Initially a fixed precision is used for the boundary of

each interval. If the error after the entire calculations is greater than the desired one, then we start it

over with a higher precision. This iteration is repeated until the final error is less than the target.

However, this approach needs a caution because comparing two real number is not decidable [5,

Theorem 4.1.16]. Assume a > b is tested where a and b are numbers represented by intervals. If a and b

are distinct, then the computation will finish within finite steps. However, if they’re the same, then the

computation never stop.

One workaround is to use two conditions in parallel. For a positive dyadic ε� 1, we test a > b and

a < b + ε in parallel. Regardless of the equality of a and b, either condition must hold. Also, we’ll get

accurate result as ε→ 0. Although we cannot say a = b definitely in practice, ε is adjustable at the cost

of more computations so that we can confirm that the test result is correct within a certain error bound.

There are software for ERC such as iRRAM [2] and core2 [4] which utilize the interval arithmetic. In

addition, reallib [3] is another one that has implemented ERC in a hybrid way by adding a symbolic

approach on top of interval arithmetic. Having C++ as the base code, we used iRRAM to express real

numbers in this paper.

2.2 Compact

As a base object, Compact is an ADT for a compact set in Euclidean space, which takes a character-

istic function as an initialization parameter. Since comparing two real numbers is not decidable, a naive

characteristic function χ : Rn → {0, 1} may fail to compute χ (x) for x on the boundary of the compact

set C. Therefore, Compact accepts a multivalued characteristic function of the following properties [6,

Definition 2.2.7].

χ : Rn × N ⇒ {0, 1}

χ (x, p) =

1 if B (x, 2−p) ∩ C 6= ∅

0 if B
(
x, 2−p+1

)
∩ C = ∅

0 or 1 otherwise

(2.1)

where B (x, r) is the open ball of radius r centered at x. For example, the unit sphere at the origin is

represented by

χ : R3 × N ⇒ {0, 1}

χ (x, p) =

1 if |x| < 1 + 2−p

0 if |x| > 1 + 2−p+1

0 or 1 otherwise

or equivalently as code

3

a

À

2−p

Á

2−p

A

B

C

(a) a proper precision

a

À

2−p

Á

2−p

A

B

C

(b) an improper precision

Figure 2.1: Deciding the precision of drawing an image. and illustrate a pixel and a part of the

compact set, respectively. The pixel center is tested on which side it is, based on À and Á in parallel.

The pixel is marked as black if it’s on area A, white if it’s on area C, and either black or white on area

B. Both (a) and (b) must be colored by black because the pixel contains a part of the compact set. (a)

shows an adequate setting of the precision p in which is on area A. (b), however, is not configured

properly in which is on area B, possibly failing to color the pixel.

unitSphere(x, p)

1 d =
√
x2

1 + x2
2 + x2

3

2 return choose(d > 2−p, d < 2−p+1)

where choose(expr1, expr2) computes expr1 and expr2 in parallel and returns j when exprj turns out

to be true first. In the implementation, we use two condition in parallel as above example.

The second parameter p ∈ N in (2.1) works as the precision controller. We acquire a more accurate

result as p→∞. It is user’s responsibility to make a characteristic function that agrees with (2.1).

The membership check is trivially supported by directly computing χ.

2.2.1 Drawing 2D images

The other functionality is drawing the computer image of the compact set on real plane. Every

pixel that overlaps the compact set is colored by black, while the others are either white or black. To

this end, we’ll check if each pixel center is in the compact set or not with an appropriate precision.

If the precision is too low, we’ll only get a trivial image such as all-black one that definitely covers

the compact set. If the precision is too high, some pixel may not cover the compact set as shown in Fig

2.1.b.

Given the pixel size a ∈ R, we must find p such that 2−p > a
√

2/2 so that the pixel center lies on

area A, shown in Fig 2.1. Thus, we pick up p := b1/2− log2 ac to draw the image as precise as possible.

Equipped with this decision strategy, drawCom takes the characteristic function χ, the image

width(the number of pixels), and the region [x1, x2] × [y1, y2] to draw and outputs the image as a two-

dimensional binary array. Each cell having 1 indicates the corresponding pixel is colored.

4

drawCom(χ, imgWidth, x1, x2, y1, y2)

1 pixelSize = (x2 − x1)/imgWidth

2 imgHeight = d(y2 − y1) /pixelSizee
3 p = b1/2− log2 pixelSizec
4 image = new array[1..imgWidth][1..imgHeight]

5 for i = 1 to imgWidth

6 for j = 1 to imgHeight

7 u = x1 + pixelSize × i− pixelSize/2

8 v = y1 + pixelSize × j − pixelSize/2

9 image[i][j] = χ((u, v), p)

10 return image

Line 1 and 2 computes the side length of a pixel and the image height respectively. drawCom

doesn’t provide scaling along a single axis, hence the image height is determined by the image width.

Line 3 computes the precision in accordance with the aforementioned explanation. Line 4 prepares the

two-dimensional array to contain the image. For each pixel(cell), we compute the coordinate of its center,

(u, v), on line 7-8 and test the membership on line 9.

See Fig 2.7 for an example.

2.3 Homotopy

Compact demands the characteristic function that satisfies (2.1) from the programmer, which is often

unhandy. To give you an example, suppose we want to manipulate the compact set f ([0, 1]) such that

f : [0, 1]→ R2 and f (t) = (t, t) via Compact. An intuitive approach to design the characteristic function

is to compute the distance from an arbitrary point (u, v) ∈ R2 to f . First, we partition R2 into three

areas by y = x and y = x+ 2. Then, we compute the distance between (u, v) and one of (0, 0), (1, 1) and

f—by the perpendicular distance— depending on the area that contains (u, v). Splitting cases is already

a hassle even for this simple example, not to mention more complicated ones such as f(t) = (sin t, cos t).

To remove this inconvenience, we introduce the class Homotopy, which takes a computable homotopy

of the form f : [0, 1]
m → Rn as an initialization parameter and represents the compact set f ([0, 1]

m
).

Like Compact, checking the membership and drawing 2D image are available.

2.3.1 Membership check

Although we’ll describe the membership checking function as code, not as a mathematical formula,

both of them do exactly the same task. For this reason, let χ denote the membership check function.

Initialized with a computable f : [0, 1]
m → Rn, χ follows the property (2.1) with C = f ([0, 1]

m
).

However, the algorithm works differently as the characteristic function is not given.

Let us show the entire process to compute χ as code and then elaborate each line over a few

subsections. The main strategy is the divide-and-conquer.

5

x

À

2−p

Á

2−p

A

B

C

Figure 2.2: Membership check of x for the compact set C = f (HR). The two condtions of χ are

drawn as À and Á, which partition the Euclidian space into three areas. If there exists z ∈ C on area A,

χ (x) = 1. If all z ∈ C are on area C, χ (x) = 0. Otherwise, χ (x) = 0 or 1, randomly. The two conditions

are tested in parallel. If Á turns out to be true first, then there exists z ∈ C on area A or B, thereby it’s

safe to state χ (x) = 1. If À turns out to be true first, then there exists z ∈ C on area B or C, thereby

it’s safe to state χ (x) = 0.

member(f, x, p,R)

1 Get a hyperrectangle HR′ that includes f(HR).

2 r = |(center of HR′)− (corner of HR′)|
3 d = |(center of HR′)− x|
4 if choose(d− r > 2−p, d− r < 2−p + 2−p−2) == 0

5 return 0

6 elseif choose(d+ r > 2−p+1 − 2−p−2, d+ r < 2−p+1) == 1

7 return 1

8 for each b ∈ {0, 1}m

9 if member(f, x, p,Rb) == 1

10 return 1

11 return 0

member takes a computable f : [0, 1]
m → Rn, a point x ∈ Rn, precision p, and a m× 2 matrix R.

R corresponds to the hypercube

HR :=

m∏
j=1

[rj1, rj2] = [r11, r12]× · · · × [rm1, rm2] (2.2)

member(f, x, p,R) returns χ(x, p) for the compact set C = f(HR). Refer to Fig 2.2. Thus, calling

member(f, x, p, U) is equivalent to compute χ(x, p) for the target compact set C = f([0, 1]m) where

uj1 = 0, uj2 = 1 for all j, which corresponds to [0, 1]m.

Line 1 computes f(HR) via the interval arithmetic, resulting in a hyperrectangle HR′ ⊃ f(HR).

Line 2-7 test the conditions À and Á in Fig 2.2 over HR′ . If it is outside of À, return 0. If it is

inside of Á, return 1. See Base cases below for the detail.

If the two conditions above were not useful, we divide R ⊂ Rm into 2m hypercubes of the same size.

For each hypercube Rb, line 9 checks if there exists any Rb for which the membership test returns 1. If

it exists, it means there exists z ∈ C on area A or B, hence we return 1 immediately on line 10. If all

6

x

y
z

d

r

(a) Compact set in a hyperrectangle

x

d− r

d + r

(b) The lower and upper bounds of the distance to compact set

Figure 2.3: Distance to the compact set f (HR) = . In (a), is included in a hyperrectangle . x is

the queried point for the membership test. y is the center of . z is an arbitrary point on . d is is the

distance from x and y. r is the distance from y to a corner of . (b) shows that d− r ≤ |x− z| ≤ d+ r

for all z ∈ .

sub-member testing returned 0, this indicates all z ∈ C is on area B or C, thus we return 0. See Dividing

into sub-hypercubes below for the detail.

Base cases

Line 2-7 in member are explained here, in which it tries to decide the answer given HR′ . The idea

is to find the upper and the lower bound of |x− z| for z ∈ f(HR). Then, the lower bound is used to test

if f(HR) is outside of À in Fig 2.2. Similarly, the upper bound is used to test if f(HR) is inside of Á.

In Fig 2.3.a, an arbitrary z ∈ f(HR) is bounded by d and r. By the triangle inequality,

|x− z| = |x− y + y − z| ≤ |x− y|+ |y − z| ≤ d+ r

Also, by the reverse triangle inequality,

|x− z| = |x− y − (z − y)| ≥ |x− y| − |z − y| ≥ d− r

Therefore

d− r ≤ |x− z| ≤ d+ r

as illustrated in Fig 2.3.b.

To this end, two more conditions are necessary as shown in Fig 2.4. The procedure will run forever

if only À is compared with the lower bound and they’re the same. Therefore, Â is added and used along

with À in parallel to resolve the decidability problem on comparing the lower bound. Similarly Ã is

added for the upper bound.

Fig 2.5 shows all cases. If either (a) or (b) is true, then we immediately return 0 or 1. Otherwise

the f(HR) is split further.

Dividing into sub-hypercubes

Line 8-11 in member are executed if none of the base cases above is satisfied. Fig 2.5.c exhibits a

situation where member returns either 0 or 1 because 2−p < |x− z| < 2−p+1 for all z ∈ . However, it is

possible Â was chosen when comparing the lower bound, meaning there exists z ∈ with |x− z| < 2−p,

where member must return 1.

7

x

À

2−p

Á

2−p

Â

2−p−2

Ã

2−p−2

Figure 2.4: Conditions for the lower and upper bounds. Condition Â and Ã are added to resolve the

decidability problem. À and Á are used to test the lower bound d− r, while Â and Ã to test the upper

bound d+ r.

1. f has a modulus of continuity µ (k). That is, |z − z′| ≤ 2−µ(k) → |f (z)− f (z′)| ≤ 2−k for all z, z′ ∈ dom (f).

2. It takes Tf (p) time to compute f (z) where z has the precision p.

3. Tf is an increasing function.

Table 2.1: Assumptions for the bit-cost complexity analysis

To make this happen, we divide the compact set f (HR) into smaller subsets. HR ⊂ Rm is a

hypercube, whose interval for j’s dimension is [rj1, rj2]. We divide it by half for each dimension, hence

we acquire 2m sub-hypercubes of equal size.

On the line 8 in member, b selects which sub-hypercube to use for each iteration. We define m× 2

matrix Rb that contains the interval information on its rows.

Rb :=

r11 + r12−r11

2 b1
r11+r12

2 + r12−r11
2 b1

r21 + r22−r21
2 b2

r21+r22
2 + r22−r21

2 b2
...

...

rm1 + rm2−rm1

2 bm
rm1+rm2

2 + rm2−rm1

2 bm

The j’s dimension of HR is [rj1, rj2], which is splitted into [rj1, (rj1 + rj2) /2] and [(rj1 + rj2) /2, rj2].

bj chooses either of them. If bj = 0, we pick up [rj1, (rj1 + rj2) /2], otherwise [(rj1 + rj2) /2, rj2]. The

combined expression is
[
rj1 +

rj2−rj1
2 bj ,

rj1+rj2
2 +

rj2−rj1
2 bj

]
, which corresponds to the j’s row of Rb.

For each iteration, membership check done for f(HRb
) on line 9. If any membership test returns 1,

return 1 immediately. If not, return 0.

Time complexity

We analyze the worst case of member. Assume Table 2.1.

In the worst case, the situation in Fig 2.5.c keeps taking place until every divided compact subset

becomes small enough to meet one of the base cases, shown in Fig 2.5.a and Fig 2.5. Fig 2.6 illustrates

such subset.

member is called with HR = (the unit hypercube). Assume that the dividing occurred with depth

of q. At the depth j, member is called at most 2jm times, each taking O(Tf (j)). Therefore the total

8

x

À

2−p

Á

2−p

Â

2−p−2

Ã

2−p−2

(a) À is satisfied

x

À

2−p

Á

2−p

Â

2−p−2

Ã

2−p−2

(b) Á is satisfied

x

À

2−p

Á

2−p

Â

2−p−2

Ã

2−p−2

(c) Â and Ã are satisfied.

Figure 2.5: Possible cases of checking the boundaries of a compact set . The tests are done in

sequential : choose(À,Â) for the lower bound, and then choose(Á,Ã) for the upper bound. If À turns

out to be true as shown in (a), then return 0 (line 4-5 in member). If Â is satisfied before À, then test

the upper bound. If Á is satisfied first as shown in (b), then return 1 (line 6-7 in member). If Ã is

satisfied before Á as shown in (c), then we divide the compact set into smaller subsets and repeat this

process for each subset. is divided by .

time complexity T (f, p) is

T (f, p) =

q∑
j=1

2jmO (Tf (j))

Since Tf is increasing,

T (f, p) = O (Tf (q))
2qm+1 − 1

2m − 1
= O (Tf (q) 2qm) (2.3)

A divided hypercube HR ⊂ Rm at the depth q has a diagonal length 2−q
√
m. Let 2−q−1

√
m ≤ 2−µ(k)

and we’ll define k properly. By the definition of the modulus of continuity, |f (z)− f (z′)| ≤ 2−k for all

z, z′ ∈ dom (f). Fig 2.6 states that every divided subset is included in a ball of radius 2−p−2/
√
n. If

2−k ≤ 2−p−2/
√
n, then Fig 2.5.c does not happen. Thus, let

k :=

⌈
p+ 2 +

1

2
log2 n

⌉
Similarly let

q :=

⌈
µ (k)− 1 +

1

2
log2m

⌉
to satisfy 2−q−1

√
m ≤ 2−µ(k).

(2.3) becomes

T (f, p) = O
(
Tf (q)mm/22µ(k)

)
Space complexity

Since member doesn’t store a variable, maintained within the same depth, the space complexity is

O (q) = O

(
µ

(
p+ 2 +

1

2
log2 n

)
+ log2m

)

9

x

À

2−p

Á

2−p

Â

2−p−2

Ã

2−p−2

Figure 2.6: The smallest bound of divided compact subset for the procedure termination. is

inscribed between Â and Ã by the opposite corners. The two corners and x are on the same line.

2.3.2 Drawing 2D images

Similar to member, we use divide-and-conquer on drawing.

drawHom(f,R, x1, x2, y1, y2, image)

1 Get a hyperrectangle HR′ that includes f(HR).

2 pixelSize = (x2 − x1)/imgWidth

3 if HR′ ∩ [x1, x2]× [y1, y2] 6= ∅
4 if there exists a hypercube of side length pixelSize that includes HR′

5 Set 1s to 2× 2 cells in image that overlap HR′ .

6 else

7 for each b ∈ {0, 1}m

8 drawHom(f,Rb, x1, x2, y1, y2, image)

drawHom takes a computable f : [0, 1]
m → Rn, a m× 2 matrix R as input. R corresponds to the

hypercube HR 2.2. It also takes the range to draw [x1, x2]× [y1, y2], and a two-dimentional binary array

image. The output is stored in image. A programmer must call drawHom(f, U, x1, x2, y1, y2, image)

where uj1 = 0, uj2 = 1 for all j, which corresponds to [0, 1]m, and image must be initialized 0 for all

cells, meaning all white pixels. We assume that the image width and height are already determined in

the same way Compact does.

Line 1 gets a hyperrectangle HR′ that includes the target compact set f(HR).

Line 2 computes the side length of a pixel.

Line 3 checks if HR′ overlaps the target area [x1, x2]× [y1, y2]. If not, no drawing is necessary. When

checking the boundary, we add additional conditions to resolve the decidability problem.

Line 4 checks if HR′ is small enough to be included in a hypercube of side length pixelSize. If this

is satisfied, f(HR) must reside 2× 2 pixels at most. Thus, We color the corresponding pixels.

If HR′ is not small enough, we split and delve into each subsets on line 7-8.

See Fig 2.7 for examples.

10

(a) Compact (Unit square)

(b) Homotopy 1 (Prolate cycloid) (c) Homotopy 2 (Whirl 1)

(d) Homotopy 3 (Filled sin func.) (e) Homotopy 4 (Whirl 2)

Figure 2.7: Examples of drawn images. (a) f : [0, 1]
2 × N ⇒ {0, 1}, f (u, v, p) = 1 if the distance from

(x, y) to unit rectangle is less than 2−p. (b) f : [0, 1] → R2, f (t) = (16πt+ 3 sin (8πt) , 3 cos (8πt)). (c)

f : [0, 1] → R2, f (t) = (8πt cos (8πt) , 8πt sin (8πt)). (d) f : [0, 1]
2 → R2, f (u, v) = (6πu, v sin (6πu)).

(e) f : [0, 1]
2 → R2, f (u, v) = (r cos θ, r sin θ) where r = 4πu and θ = 4πu (2v + 3) /5.

11

Time complexity

We assume 2.1 again for the analysis and use a similar approach from member. We also assume

that drawHom ends at the maximum q the depth in the worst case. A divided hypercube HR ⊂ Rm at

the depth q has a diagonal length 2−q
√
m. Let 2−q−1

√
m ≤ 2−µ(k) and we’ll define k properly. By the

definition of the modulus of continuity, |f (z)− f (z′)| ≤ 2−k for all z, z′ ∈ dom (f). Line 4 states that

every divided subset is included in a ball of radius pixelSize. If 2−k ≤ ∆x
W where ∆x = x2 − x1 and W

is the image width(number of pixels), then no more split takes place. Thus, define k as

k :=

⌈
− log2

∆x

W

⌉
Similarly let

q :=

⌈
µ (k)− 1 +

1

2
log2m

⌉
to satisfy 2−q−1

√
m ≤ 2−µ(k).

Then, the time complexity of drawHom T (f, p) is the same with that of member but k.

T (f, p) = O
(
Tf (q)mm/22µ(k)

)
Space complexity

Like member, drawHom doesn’t store a variable, maintained within the same depth. Therefore,

the space complexity is

O (q) = O

(
µ

(
− log2

∆x

W

)
+ log2m

)

2.4 Conclusion

Euclidean compact subsets are managable via Compact and Homotopy in Exact Real Computation.

Both of them commonly provide two functionalities: 1) given a point x ∈ Rn, output if x is in a

certain compact set, and 2) drawing the image of a certain compact set on real plane. Compact takes a

characteristic function as an input, and a programmer should manually make sure that the characteristic

function satisfies some conditions. However, Homotopy takes a computable homotopy f : [0, 1]m → Rn,

avoiding the cumbersome step above.

12

Chapter 3. Accelerating Intermediate-Precision Arithmetic

Being fundamental operations in many fields, real computations include, but are not limited to,

Numerical Analysis, some areas of Artificial Intelligence, etc. They often demand computations in

various forms such as matrices, polynomials and and so on. However, all these high-level operations are

implemented in the four arithmetic operations, which implies that whenever they get improved, so is the

overall speed of the computation.

This chapter concerns the multiplication performance of the real computation packages in practice

such as iRRAM and MPFR, which often demands a lot of time. Any speed improvements are thus very

valuable, and we aim at achieving them at the level of the basic arithmetic operations. Section 3.1

introduces the background. Section 3.2 inspects the mechanism how the acceleration is feasible. Section

3.3 exhibits the improvement in a quantitative manner.

3.1 Background

Modern computers deal with some mathematical concepts in limited ways. For instance, int as a

primitive data structure stores an integer up to a finite bound. Working with the integers beyond it

requires an additional effort. Established in 1985, on the other hand, IEEE [11] introduced 32-bit and

64-bit floating-point for the real numbers. Having 23 and 53 bits precision and supported by hardware

such as FPU [16], they have been widely used in engineering where fast real computations are demanded.

For example, Tensorflow [20] and Pytorch [21] utilize 32-bit floating-point as the default primitive data

structure.

However, the floating-points above suffer from the insufficient precision [18, 19, 26]. This is where

an intermediate-precision comes in. We call a precision intermediate if it’s more than 53 bits but less

than 640 bits, high if larger than 640 bits, and low otherwise.

Equipped with many popular math software such as Matlab, Mathematica and Geogebra, intermediate-

precision provide a more reliable computation. Some hardware have implemented intermediate-precision.

128-bit floating-point computation is offered by IBM in various instruction set architectures [12, 13, 14]

and by RISC-V system [15]. Moreover, x87 chipset [16], planted on the most recent PCs, also provides

80-bit floating-point computation as an extension of 64-bit one.

Meanwhile, the intermediate-precision plays an important role in high precision computations. Many

advanced algorithms for the high-precision multiplication including Karatsuba [22, 23], Toom-Cook [24],

Schönhage–Strassen [25] take advantage of divide-and-conquer strategy in which a long mantissa is

split into shorter ones of an intermediate size. As multiplication is at the crux of other operations

such as matrix or polynomial multiplications, we explain how to accelerate the multiplication of two

intermediate-precision numbers and observe its effect via experiments.

3.1.1 Data structure for arbitrary precision

There are two major data structures to manipulate arbitrary precision numbers: multi-digit and

multi-component. We explore how these are defined on Sec 3.1.2, followed by their properties on Sec

3.1.3 and 3.1.4.

13

Table 3.1: Comparison of Floating-point, Multi-digit and Multi-component Floating-point, Multi-digit

and Multi-component. The sign of each data structure is omitted. Multi-digit has a arbitrary long

fractional part, while multi-component consists of many floating-points. We call fracj in multi-digit a

limb and fracj in multi-component a component

Floating-point Multi-digit Multi-component

Illustration
frac exp

p q

frac1 · · · fracn+1 exp

p p q

∑n
j=1

fracj expj

p q

Formula frac× 2exp (frac1|| · · · ||fracn+1)× 2exp ∑
j fracj × 2expj

Precision Fixed (p = 24, 53, · · ·) Arbitrary(np) Arbitrary(np)

Implementation Hardware MPFR DD, QD(n = 2, 4)

Mul. algo. Long Long, Toom-Cook, Schönhage–Strassen Long

3.1.2 Multi-digit vs Multi-component

Table 3.1 shows their properties along with those of the canonical floating-point.

Inheriting the concept of separating fractional and exponent part from the floating-point, multi-

digit and multi-component are considered extensions of the floating-point. Multi-digit simply extends the

length of fractional part to an arbitrary length via an array of unsigned integers, called limbs, each of size

p. For example, a binary number

128︷ ︸︸ ︷
1010 · · · 10 is equal to 0.

128︷ ︸︸ ︷
1010 · · · 10×2128, ((

64︷ ︸︸ ︷
1010 · · · 10,

64︷ ︸︸ ︷
1010 · · · 10), 128).

Note that many implementation use a little larger storage than needed for performance aspect. In the

illustration p bits were additionally used to contain a np-bit number. See Sec 3.1.3 for the details. On the

other hand, multi-component utilizes multiple identical floating-points, called components, represent-

ing a real number as an unevaluated sum of them. To give you an example, the aforementioned binary

number

128︷ ︸︸ ︷
1010 · · · 10 is equal to 0.

53︷ ︸︸ ︷
1010 · · · 1×2128 + 0.

53︷ ︸︸ ︷
1010 · · · 1×274 + 0.

19︷ ︸︸ ︷
1010 · · · 1×220, hence we store

(

53︷ ︸︸ ︷
1010 · · · 1, 128), (

53︷ ︸︸ ︷
1010 · · · 1, 74) and (

19︷ ︸︸ ︷
1010 · · · 1, 20) separately. Note that both examples may slightly

vary depending on the implementation.

The traditional floating-point supports only fixed precision(p). Meanwhile, both multi-digit and

multi-component can deliver an arbitrary precision number(np) by either increasing the number of ele-

ments for fractional part or using more components.

There are several hardware for the floating-point as we enumerated in the Sec 3.1. MPFR [1] is a

representative implementation of multi-digit on which many software including but not limited to the

ones in the Sec 3.1 depend. Multi-component has been implemented for some fixed number of component

such as DD and QD [27], etc. [28, 29, 30]

It is important to construct efficient algorithms for data structures. We explore multiplication

algorithms in this paper. Multiplying two floating-points is already wired on circuit, thereby, no software-

level algorithm is necessary. Meanwhile, there are some algorithms for the high-precision multiplication

based on multi-digit such as the ones in Sec 3.1, while multi-component doesn’t have such an algorithm.

This difference comes from the simplicity of their structures. The fractional part of multi-digit is easily

partitioned into several limbs of a constant-size like 64bits, giving algorithm designers more chance of

finding an efficient algorithm. In contrast, multi-component doesn’t show such an alignment property,

giving less chance of achieving the same goal.

14

(a)

C1 C2

1 0 1 0 1 0 1 0 1 0 1 0 0

(b)

C1 C2

1 0 1 0 1 0 1 0 1 0 1 0 0

(c)

C1 C2

1 0 1 0 1 0 1 0 1 0 1 0 0

(d)

C2 C1

1 0 1 0 1 0 1 0 1 0 1 0 0

Figure 3.1: Correct and incorrect component assignments of two components for a binary number

x = 1010101010100. We assume that a component can at most 5 bits for explanation. (a) correctly

assigned the two components, while the rests didn’t. (b) doesn’t express the best approximation to x.

(c) has an overlap between C1 and C2. In (d), the components are not sorted in descending order.

3.1.3 Position of leading 1 in multi-digit

When representing non-zero number, each data structure above traces where the most significant 1

is for optimizing the consecutive computations. The canonical floating-point has no interest as it has only

one component in which the leading 1 always lies on the first position of the fractional part. Moreover,

whenever a computation takes place, hardware will maintain this property implicitly. Similar to the

canonical floating-point, multi-component maintains the leading 1 for each component in the same way

where the canonical floating-point does. That is, the fractional part of every component starts with 1.

Multi-digit, however, doesn’t trace the exact position of it for performance issue. For instance,

x = 0.

128︷ ︸︸ ︷
1 · · · 1 is represented as ((

64︷ ︸︸ ︷
1 · · · 1,

64︷ ︸︸ ︷
1 · · · 1), 0). If we want to have the fractional part always start

with 1, then x− 0.1 must be ((

64︷ ︸︸ ︷
1 · · · 1,

63︷ ︸︸ ︷
1 · · · 1 0),−1), acquired by shifting each element for the fractional

part. If there are n elements in the fractional part, then the addition will take O (n) time.

For this reason, multi-digit often utilize one more limb. If we want to represent a number of precision

np, where p is the size of a limb, then we use n+1 limbs and maintain the most significant integer as

non-zero. This sloppy condition prevents the aforementioned problem and gives more chance to correctly

round to the desired precision because it has longer fractions than required.

3.1.4 Descending order and non-overlap of multi-component

A multi-component keep making its components sorted and not overlapped to its neighbor com-

ponent to express the best approximation to the available precision. Example of correct and incorrect

component assignments are shown in Fig 3.1.

3.2 Long multiplication analysis

Although the advanced multiplication algorithms run faster than the long multiplication does asymp-

totically, we must conceive the overhead in practice. This is why the long multiplication is used for the

15

x1 x2 x3

× y1 y2 y3

(1) - - ×1

(2) - - ×2

(3) - ×3

(4) ×2

(5) ×1

(6) z1 z2 z3

Figure 3.2: Multiplication procedure of multi-digit. x, y and z are contained in 3-limb multi-digits where

each limb has p-bit precision. (1)= x3y3. (2)= x2y3 + x3y2. (3)= x1y3 + x2y2 + x3y1. (4)= x1y2 + x2y1.

(5)= x1y1. (6) = (3)+(4)+(5). - is not computed.

x1 x2

× y1 y2

(1) - - ×1

(2) - ×2

(3) ×1

(4) z′1 z′2

(5) z1 z2

Figure 3.3: Multiplication procedure of multi-component. x, y and z are contained in 2-component

multi-digits where each component has p-bit precision. Note that x = x1 +x2 and y = y1 +y2. (1)= x2y2.

(2)= x1y2 + x2y1. (3)= x1y1. (4)=(2)+(3). (4) is renormalized into (5). - is not computed.

intermediate-precision. The long multiplication works similarly on both multi-digit and multi-component.

Yet, the number of necessary primitive operations are different.

Sec 3.2.1 describes how the multiplication is done for each data structure. Sec 3.2.2 explains how

many bits are lost when a multiplication takes place. Sec 3.2.3 inspects the performance by counting the

number of primitive operations.

3.2.1 Long multiplication

We explore the base case. Let x and y be 2p-bit numbers where p is the length of a limb and a

component. We want to compute z = xy with multi-digit and multi-component, respectively.

Multi-digit uses 3 limbs to contain a 2p-bit number as explained in Sec 3.1.3. Fig 3.2 illustrates the

computation procedure of z. The limb-wise multiplications are drawn as (1), · · · , (5), which are summed

up to make z on the last line. Note that we don’t need to compute - s because they are too small to

affect the final 3-limb result z.

On the other hand, multi-component spends two components to contain a 2p-bit number. The

16

multiplication procedure looks similar except the last stage, shown in Fig 3.3. z′1 and z′2 may overlap

with each other, violating one of the maintenance rules of multi-component. To resolve this issue, we

must renormalize (Sec 3.1 in [27]) (4), resulting in (5).

3.2.2 Correctness

The multiplication on multi-digit produces the best approximation. That is, if x and y in the Fig

3.2 are exact, then z contains the most significant 2p bits of xy.

However, multi-component loses the last two bits. Assume that x and y in the Fig 3.3 are exact and

that |x| , |y| ∈ [0.5, 1) without loss of generality. By the properties in Sec 3.1.4, |x1| , |x1| < 2−p. The

absolute error xy − z is

|xy − z| = |x0y1 − x0 ⊗ y1 + x1y0 − x1 ⊗ y0 + x1y1|

where a⊗ b is the most significant p bits of ab. By the triangular inequality,

|xy − z| ≤ |x0y1 − x0 ⊗ y1|+ |x1y0 − x1 ⊗ y0|+ |x1y1|

|x0y1 − x0 ⊗ y1| is the least significant p bits of x0y1, which is less than 2−2p. Thus,

|xy − z| < 2−2p + 2−2p + 2−2p < 2−2p+2

Therefore, we lose only the last two bits, reducing the number of primitive operations.

3.2.3 Performance

There are three primitive operations in Fig 3.2 and Fig 3.3 : 1) × → , 2) × →
and 3) + → . 1) multiplies two limbs (components) and produces one 2-limb (2-component)

number without losing any information. 2) also multiplies two limbs(components), but it retains only

the significant one. 3) adds two limbs(components) and produces one limb(component), in which a carry

is assumed to be handled without a hassle with the help of hardware such as the instruction ADC or FADD

in x86.

We now consider the general case where the multiplication is applied on np-bit numbers. Multi-digit

uses n+ 1 limbs and multi-component uses n components to a np-bit number.

On the multi-digit multiplication, we compute xiyj of type 1) for i + j ≤ n + 1, incurring 1 + 2 +

· · · + n = n (n+ 1) /2 multiplications. Also we need xiyj of type 2) for i + j = n + 2, incurring n + 1

multiplications. Lastly, 2 + 4 + · · ·+ 2n = n2 + n additions of type 3) are necessary to get z.

On the multi-component multiplication, xiyj of type 1) for i+ j ≤ n of type 1) are needed, meaning

1 + 2 + · · · + (n− 1) = n (n− 1) /2 multiplications. xiyj of type 2) for i + j = n + 1 incurs n multi-

plications. z′ is acquired by adding these xiyj , requiring 2 + 4 + · · · + (2n− 2) = n2 − n additions of

type 3). Renormalizing z′ requires 3 (n− 1) + 3 (n− 2) = 6n − 9 additions of type 3), considering a

Quick Two Sum()(Alg 3 in [27]) takes one additions and two subtractions.

Table 3.2 summarizes the number of primitive operations for each data structure. Since (a)-(b)

is positive for all operations when n = 2, multi-component must outperform multi-digit for computing

2p-bit number.

However, this is not true when we increase the precision. (a)-(b) for operation 3) is −4n + 9,

implying that multi-digit will run faster than multi-component does as n → ∞. Since we aim the

improvement in practice, we have conducted experiments to figure out the break-even point between the

two data structures.

17

Table 3.2: The number of primitive operations on multiplying two np-bit numbers. The + (6n− 9) at

operation 3) on multi-component is for the renormalization.

Operation (a) Multi-digit (b)Multi-component (a)-(b)

1) × → n (n+ 1) /2 n (n− 1) /2 n

2) × → n+ 1 n 1

3) + → n2 + n
(
n2 − n

)
+ (6n− 9) −4n+ 9

3.3 Experiments

It is difficult to measure the performance of a single multiplication. To see the performance difference,

we’ve tested matrix and polynomial multiplications, which are widely used operations in Engineering.

In the matrix multiplication test, we generate two n × n matrices A and B with each element

having k-bit mantissa, and compute AB. We compare the elapsed time taken by multi-digit and that

by multi-component.

We’ve used the popular library MPFR for multi-digit which provides an arbitrary precision. Multi-

component is provided with some fixed precisions — 106 and 212 bits by DD and QD, respectively, although

the actual precision is reduced for a reason explained in Sec 3.2.2. Also we tried the modified DD, called

Extended Double-Double(EDD). DD utilizes IEEE double as a primitive data structure. Supported by

the x87 chipset, we’ve replaced it with extended double that offers 64-bit mantissa, so that EDD provides

128 bits in total.

The MPFR was tested with changing precision that corresponds to those of DD, EDD and QD, roughly

k ≈ 106, 128 and 212 bits.

The PC specs used in the experiments are Intel i7-7700, 16GB and Ubuntu 18 x64 and compiled

with gcc7.5.

Fig 3.4 summarizes the result. See Table 6.1 for the full data. We’ve plotted the elapsed time ratio

to compare the performances more easily. DD outperformed MPFR around its precision. Since MPFR is

designed to offer an arbitrary precision, there is some overhead such as branch instructions, which gives

rise to even more performance gap. EDD is faster than MPFR but it’s less efficient than DD. When it comes

to QD, multi-component isn’t faster than multi-digit. Neither MPFR nor QD has shown a clear dominant

result.

The polynomial multiplication test has been conducted in a similar way. We generate two polynomi-

als p(x) and q(x) of order n with each coefficient having k-bit mantissa, and compute AB. We compare

the elapsed time taken by multi-digit and that by multi-component.

18

200 500 1,000 2,000 5,000

5.5

8.8

12

n

E
la

p
se

d
ti

m
e

ra
ti

o

MPFR 96/DD

MPFR 100/DD

MPFR 104/DD

MPFR 106/DD

MPFR 112/DD

MPFR 128/DD

(a) MPFR / DD

200 500 1,000 2,000 5,000

3.4

4.85

6.3

n

E
la

p
se

d
ti

m
e

ra
ti

o

MPFR 104/EDD

MPFR 106/EDD

MPFR 112/EDD

MPFR 120/EDD

MPFR 128/EDD

MPFR 144/EDD

(b) MPFR / EDD

200 500 1,000 2,000 5,000

0.8

1.33

1.85

n

E
la

p
se

d
ti

m
e

ra
ti

o

MPFR 192/QD

MPFR 200/QD

MPFR 208/QD

MPFR 212/QD

MPFR 224/QD

(c) MPFR / QD

Figure 3.4: Matrix multiplication speed comparison of MPFR, DD, EDD, and QD. (a) shows the elapsed

time ratio of MPFR to DD. Regardless of the various precisions, DD was faster than MPFR from five to twelve

times. (b) illustrates a similar aspect regarding EDD but the ratio is reduced to (3.4, 6.3). (c) shows the

elapsed time ratio of MPFR to QD. The ratios were plotted around 1, meaning no sizable performance

difference.

19

1,000 2,000 5,000 10,000 20,000

4

8

12

n

E
la

p
se

d
ti

m
e

ra
ti

o

MPFR 96/DD

MPFR 100/DD

MPFR 104/DD

MPFR 106/DD

MPFR 112/DD

MPFR 128/DD

(a) MPFR / DD

1,000 2,000 5,000 10,000 20,000

2

3

4

n

E
la

p
se

d
ti

m
e

ra
ti

o

MPFR 104/EDD

MPFR 106/EDD

MPFR 112/EDD

MPFR 120/EDD

MPFR 128/EDD

MPFR 144/EDD

(b) MPFR / EDD

1,000 2,000 5,000 10,000 20,000

0.7

0.83

0.95

n

E
la

p
se

d
ti

m
e

ra
ti

o MPFR 192/QD

MPFR 200/QD

MPFR 208/QD

MPFR 212/QD

MPFR 224/QD

(c) MPFR / QD

Figure 3.5: Polynomial multiplication speed comparison of MPFR, DD, EDD, and QD. (a) shows the elapsed

time ratio of MPFR to DD. Regardless of the various precisions, DD was faster than MPFR from four to twelve

times. (b) illustrates a similar aspect regarding EDD but the ratio is reduced to (2, 4). (c) shows the

elapsed time ratio of MPFR to QD. The ratios were plotted below 1, meaning that MPFR computes faster

than QD.

Fig 3.5 illustrates a similar aspect to that of the matrix test. DD and EDD outperformed MPFR around

their precisions, while QD underperformed MPFR.

Judging by the two tests above, the break-even point is k ≈ 212 bits

3.3.1 Why EDD is less efficient than DD

It is worthwhile to discuss the result of EDD. There are difference between DD and EDD when im-

plementing the primitive operation 1) in Sec 3.2.3. DD utilizes Fused Multiply-Subtract(FMS) for 1),

incurring a little cost. However, EDD lacks FMS or a similar instruction to achieve the same goal. Thus,

the implementation should combine other instructions, which takes a high cost.

20

3.4 Conclusion

Multi-digit and multi-component treat a number differently. Multi-digit assigns a subsequent space

to store the fractional part of a number, while multi-component utilizes several floating-points. On

multiplication, multi-component outperforms multi-digit up to the precision about 212 bits. Therefore,

if we replace the most prevalent library for the real computation, MPFR or iRRAM, with DD or EDD, then

the computation runs faster at least four or two times.

21

Chapter 4. Simulating Fine Dust Air Purifier

For encouraging collaborations and convergence researches, the project named A localized air pu-

rification system in the city to prevent pedestrians from the exposure to fine dust had been conducted

from July 2019 to June 2020 in collaboration of the three laboratories in KAIST: Environment Back To

Environment Lab, Maturepolis Lab, and Complexity and Real Computation Lab. As the title implies,

the goal was to design a purifier for improving the air quality in metropolises. The first two labs worked

on figuring out how to convert the contaminated air into the clean one considering the efficiency and

economics, while the third lab took a responsibility of distributing the clean air.

Section 4.1 explains why air quality matters and what considerations are relevant. Section 4.2

introduces the purifier prototype designed by Prof. Jongin Han, which we analyzed by computational

software, as described in Section 4.3.

4.1 Background

Since the mankind has appeared on the earth, the population became higher than ever before with

the power of the industrialization [31, 32, 33]. Unfortunately, this phenomenon gives rise to several

environmental problems including higher temperature, contaminated river, etc. Among them, we focus

on the air pollution, which affects human’s health intensively [34] and deliberately [35].

There are two main strategies to manage it: 1) remove the pollution source and 2) improve the air

quality around humans. The first approach sounds ideal, yet it is often impractical for some reasons.

For example, consider a factory that generates sulfur dioxide(SO2) while the production. The factory

will be reluctant to install a preventing facility if it has no economical benefit [37] or there is a technical

issue. Perhaps a government isn’t willing to force the factory to do it for a political reason. On the other

hand, purifying the air around people is free from such problems. This is why we aim to make and place

an air purifier in the middle of city.

When it comes to the purification mechanism, traditional solutions such as a High-Efficiency Par-

ticulate Air(HEPA) filter [36] are discouraged in favor of a wet scrubber [38] system, which consists of

machine and water. The absence of a chemical compound gives us high economic feasibility and easy

maintenance. Furthermore, the scale-up is done without much hassle because of its simple structure.

Having these merits, the clean air shelter was introduced, planned to be placed on sidewalks and on

the top of buildings.

4.2 Clean air shelter

Clean air shelter is an air purifier in form of a wet scrubber. Fig 4.1 shows the original experimen-

tally designed prototype. The polluted air above the machine goes into the machine along with water

from the pipe. Then, the impeller shatters the water into droplets, which absorb the particulate matters

inside the polluted air into themselves. The heavy droplets fall into the tank in the bottom, while the

fresh air goes out through the gap between the wet chamber and the tank.

Requiring water and electricity only, clean air shelter provides a shelter in which people take clean

air without the repeated filter replacement. Fig 4.2 illustrates the PM density distribution around the

22

Figure 4.1: The prototype of clean air shelter designed by Prof. Jongin Han. Air enters the open top,

goes through the purification process, and exits through the passage at the middle of the machine.

initial prototype. It emits the cleaned air upwards, thereby affecting people indirectly. An improvement

is available by guiding the clean air to be emitted toward people directly. It also increases the efficiency

because the cleaned air will not likely go through the filter process again.

Figure 4.2: The particulate matter(PM) den-

sity in µg/m3. The PM density less than

30µg/m3 is considered good. Bad if it is larger

than 75µg/m3 or more.

C
en

tr
al

ax
is

Water

Air
10

0

Figure 4.3: The section view of the prototype.

The air passes the outlet of height 100mm.

The way to improve it is modifying the outlet shape, which was too wide (100mm in Fig 4.3) to

spread the air horizontally. We’ve decided to attach a cover to make it have a narrower exit as either

redesigning from the scratch or modifying the prototype would raise a high cost. Which shape of a cover

would successfully form the clean air? The next section provides the answer.

23

C
en

tr
al

ax
is

Water

Air

1
2.

5
1
2.

5

5

(a) Model 1

C
en

tr
al

ax
is

Water

Air

1
0

1
0

5
0

5

(b) Model 2

C
en

tr
al

ax
is

Water

Air

90

5

(c) Model 3

C
en

tr
al

ax
is

Water

Air

1
2.

5
1
2.

5

50

(d) Model 4

Figure 4.4: Cover models(mm)

4.3 Simulation

Before manufacturing covers, we take advantage of a computer simulator to save fund. The goal is

to design an outlet of the clean air shelter with two metrics, PM density drop and clean area size. The

bigger these quantities are, the better performance is indicated.

The software for this virtual experiment are Autodesk Inventor 2020 for modeling the purifier and

the covers and Autodesk CFD 2019 for running simulations.

4.3.1 Independent variables

There are two indepenent variables: cover model and height.

The cover must be designed to emit air horizontally, meaning that the outlet size is essentially less

than that of the original prototype. However, we shouldn’t go too far since a reflux is more likely to take

place. Four models are introduced in Fig 4.4, which costs little material.

Model 1 has four gaps of height 12.5mm, while Model 2 and 3 have two and one gaps of height

10mm. That is, we decreased the total gap height by about a half of the previous model. Similar to

Model 1, Model 4 has the same gap positions and heights formed by the prolonged cover size (50mm).

On the other hand, the height of the machine affects the distribution of air. Therefore, for each

model, we’ve tested three different heights, 0m, 1m and 2m, from the ground by lifting the purifier so as

to find a better installation height.

4.3.2 Simulation environment

Fig 4.5 illustrates the configuration. The clean air shelter is placed on the ground. Fine dust is

generated on the boundary of a cylinder having 6m radius and 8m height. Note that the cylinder is

hypothetical. There is no wall that surrounds the purifier. This configuration makes sense because we

design an outdoor product and dust will come from somewhere instead of generated inside or near the

machine. The specifications are as follow

• PM density of fine dust: 75µg/m3 (PM2.5 Interim target-1, 24-hour in [39])

24

Figure 4.5: The virtual experiment setup for testing performance of the clean air shelter

C
le

an
A

ir
S
h
el

te
r

y

x

1.65

0.5

0.5

0.2

Figure 4.6: PM sensors(m)

• PM density of purified air: 10µg/m3

• Volumetric flow rate of motor: 50m3/min

• Fan speed: 1700RPM

The PM sensors are positioned in the grid formation, shown in Fig 4.6. There are five rows centered

on the 1.65m height, which is intended and will be explained in Sec 4.3.3. Spaced by 0.5m, there are

eight columns to measure the PM density over different distances from the machine.

4.3.3 Results and analysis

The PM density distributions are visualized in Fig 4.7. Model 1 shows the similar result to that of

the original prototype, hence we skipped the lifting tests for model 1. Model 2 successfully emitted the

air horizontally, although the PM density was not improved below the outlet when it was lifted. This

is because the air flows upwards just before going out and the cover in model 2 didn’t change direction

clearly. Having only one outlet passage, model 3 pushes the air to the downward. When lifted by 1m, it

25

Table 4.1: Total score for models(µg/m3). Smaller is better.

Models Weighted average

Model 1 lifted by 0m 7.094

Model 2 lifted by 0m 7.091

Model 2 lifted by 1m 6.103

Model 2 lifted by 2m 7.087

Model 3 lifted by 0m 7.083

Model 3 lifted by 1m 7.039

Model 3 lifted by 2m 7.060

Model 4 lifted by 0m 4.788

Model 4 lifted by 1m 4.676

Model 4 lifted by 2m 5.037

formed a clean-air space below the machine. Unlike other models, model 4 pushed the air horizontally,

filling the space below even in the lifted cases.

We define the total score as the weighted average of the sensor readings to pick up the best option.

(Total score) =
1

40

∑
i,j

w (yi) · PM (xj , yi)

where PM (xj , yi) refers to the sensor reading at (xj , yi) and w is the weight function which depends on the

height of people as they’re beneficiaries. We take the height of total population of Korea in 2015, which

has the mean of 165.42cm and the standard deviation 9.174cm (sizekorea.kr). Assuming it is normally

distributed, we define w as the probability density function(PDF) that has the same mean and standard

deviation.

w (y) = f

(
y − 1.65

0.09174

)
(y in m)

where f(x) is the PDF of normal distribution.

Note that the weight function isn’t affected by the horizontal distance from the clean air shelter.

Also, since the PM density is better when it has lower value, so is to total score. Table 4.1 summarizes

the total score for each model. Check Table 6.3 and Table 6.4 in chapter 6 for the full data.

Having the minimum total score, the model 4 lifted by 1m is the best case.

So how large is the created clean area? If PM density less than 50µg/m3 (PM2.5 Interim target-2,

24-hour in [39]) is considered to be fresh, then the best case makes a circular clean area of radius

3.7m (Fig 4.8). In other words, when we install the clean air shelters in a row, spaced by 3.7m, a clean

air passage of width 7.4m is generated.

26

sizekorea.kr

(a) Model 1 lifted by 0m

(b) Model 2 lifted by 0m (c) Model 2 lifted by 1m (d) Model 2 lifted by 2m

(e) Model 3 lifted by 0m (f) Model 3 lifted by 1m (g) Model 3 lifted by 2m

(h) Model 4 lifted by 0m (i) Model 4 lifted by 1m (j) Model 4 lifted by 2m

Figure 4.7: PM density distributions the models(µg/m3)

27

Figure 4.8: Clean area(m), model 5 lifted by 1m

4.4 Conclusion

Unlike the traditional systems, clean air shelter demands only water and electricity. The initially

proposed prototype distributed the purified air upwards, as shown in the simulation. Considering eco-

nomics, we suggested a specially crafted cover to the outlet, based on the simulation result. Model

4, acquired by attaching the four-piece cover to the original prototype, showed the least weighted PM

density when it was lifted by 1m among other models and heights. It provides a clean area of radius

3.7m in which the PM density is under 50µg/m3 when that of the fine dust is 75µg/m3.

28

Chapter 5. Summary

We’ve explored the diverse aspects of the real computation throughout three topics. In Chapter

2, compact subsets in Euclidean spaces were managed by introducing two new abstract data types in

iRRAM — an Exact Real Computation package. Chapter 3 analyzed and exhibited that the current

real computation in iRRAM can be done more efficiently. Chapter 4 went over an application of real

computation in practice, where the exit of purifier was designed by a simulation.

Chapter 2 was presented at KSC2020 with the title Compact Subsets in Exact Real Computation.

Chapter 2 was presented at CCA2020 and KMS2020 with the titles Happy Birthday, iRRAM! Consider-

ations for the Future of Exact Real Computation and Faster multi-precision computation by hybridization

between hardware and software, respectively.

29

Chapter 6. Appendix

Table 6.1: Matrix multiplication elapsed time ratio. DD or QD is faster than MPFR if the ratio is greater

than 1.

mat.size 200 500 1000 2000 5000

MPFR96/DD 9.237 11.485 9.694 7.437 8.976

MPFR100/DD 11.224 12.161 10.325 8.180 9.070

MPFR104/DD 7.895 10.584 8.518 6.726 9.068

MPFR106/DD 8.197 10.466 8.932 7.198 9.712

MPFR112/DD 5.763 9.583 7.966 6.302 7.803

MPFR128/DD 8.303 10.900 9.506 7.502 9.242

MPFR192/QD 1.027 1.155 1.270 1.286 1.624

MPFR200/QD 0.791 1.202 1.407 1.443 1.826

MPFR208/QD 1.010 1.053 1.230 1.236 1.757

MPFR212/QD 0.835 1.136 1.335 1.388 1.796

MPFR224/QD 1.016 1.047 1.229 1.242 1.852

Table 6.2: Polynomial multiplication elapsed time ratio. DD or QD is faster than MPFR if the ratio is

greater than 1.

poly.order 1000 2000 5000 10000 20000

MPFR96/DD 10.000 5.923 6.425 6.486 6.619

MPFR100/DD 12.000 6.692 7.411 7.572 7.791

MPFR104/DD 9.500 4.846 5.356 5.441 5.576

MPFR106/DD 6.500 4.923 5.493 5.710 5.909

MPFR112/DD 6.500 4.077 4.562 4.569 4.678

MPFR128/DD 10.500 6.308 6.808 6.917 7.116

MPFR192/QD 0.750 0.722 0.726 0.711 0.715

MPFR200/QD 0.944 0.874 0.899 0.909 0.906

MPFR208/QD 0.750 0.709 0.718 0.724 0.718

MPFR212/QD 0.861 0.795 0.792 0.790 0.798

MPFR224/QD 0.778 0.722 0.732 0.725 0.722

30

Table 6.3: PM density sensor readings(µg/m3). Smaller is better.

(x,y)
Model 1 Model 2 lifted by Model 3 lifted by Model 4 lifted by

0m 0m 1m 2m 0m 1m 2m 0m 1m 2m

(0.5,1.25) 74.943 74.992 74.985 74.995 75.000 55.743 66.912 75.000 49.959 53.991

(0.5,1.45) 74.821 74.996 73.658 74.994 75.000 61.700 68.844 74.999 46.126 54.276

(0.5,1.65) 74.949 74.999 50.757 74.982 75.000 74.743 72.158 74.942 26.837 54.376

(0.5,1.85) 75.000 74.998 56.532 74.934 75.000 74.906 74.167 74.913 73.053 54.565

(0.5,2.05) 72.801 74.998 62.727 74.935 75.000 75.000 75.000 74.865 74.535 54.716

(1.0,1.25) 74.999 73.995 72.879 74.953 74.856 67.373 74.925 71.031 46.859 54.017

(1.0,1.45) 74.998 74.826 70.431 74.933 74.958 71.517 74.844 72.849 42.972 54.159

(1.0,1.65) 75.000 74.978 62.116 74.904 74.995 74.042 74.981 74.881 47.191 54.040

(1.0,1.85) 74.993 74.996 54.256 74.978 74.997 74.782 74.970 75.000 59.157 54.127

(1.0,2.05) 75.000 74.998 58.605 75.000 74.993 74.933 75.000 75.000 64.697 52.117

(1.5,1.25) 74.998 74.381 70.130 74.962 74.643 71.916 74.979 52.187 47.232 53.844

(1.5,1.45) 74.994 74.626 68.768 74.939 74.793 74.252 74.992 54.183 47.312 53.901

(1.5,1.65) 74.990 74.782 65.567 74.977 74.889 74.484 74.977 61.386 51.956 53.590

(1.5,1.85) 74.994 74.907 61.942 75.000 74.969 74.836 74.984 67.686 56.808 53.231

(1.5,2.05) 74.998 74.960 60.410 75.000 74.971 74.880 74.995 71.903 59.339 51.903

(2.0,1.25) 74.999 74.778 69.528 74.948 74.631 73.769 75.000 40.646 48.717 53.243

(2.0,1.45) 74.998 74.851 69.189 74.890 74.591 74.253 75.000 43.111 49.950 53.032

(2.0,1.65) 74.995 74.933 66.336 74.845 74.704 74.949 74.992 46.976 53.682 52.763

(2.0,1.85) 74.990 74.947 64.651 74.528 74.859 74.941 74.992 50.601 54.140 52.621

(2.0,2.05) 74.988 74.911 62.966 74.211 74.979 74.932 74.992 55.409 54.598 52.479

(2.5,1.25) 75.000 74.857 68.441 74.926 74.677 74.003 74.995 36.918 50.942 52.671

(2.5,1.45) 75.000 74.957 69.192 74.892 74.548 74.720 75.000 37.099 51.831 52.463

(2.5,1.65) 74.999 74.993 68.248 74.831 74.536 74.960 75.000 36.956 52.184 52.586

(2.5,1.85) 74.999 74.978 66.597 74.551 74.676 74.996 75.000 39.993 52.648 52.559

(2.5,2.05) 74.999 74.960 64.904 74.238 74.816 74.986 75.000 43.536 53.119 52.438

(3.0,1.25) 75.000 74.718 68.460 74.963 75.000 72.711 74.982 36.664 51.479 52.521

(3.0,1.45) 74.999 74.992 68.778 74.947 74.928 74.700 75.000 36.761 52.326 52.342

(3.0,1.65) 74.999 74.991 67.835 74.886 74.872 74.806 75.000 36.647 52.680 52.532

(3.0,1.85) 74.999 74.981 66.848 74.824 74.841 74.881 75.000 36.525 53.020 52.740

(3.0,2.05) 75.000 74.971 65.861 74.762 74.811 74.955 75.000 36.403 53.360 52.949

(3.5,1.25) 75.000 74.659 67.402 74.955 75.000 71.835 74.970 36.668 51.788 52.782

(3.5,1.45) 75.000 74.992 67.378 74.944 75.000 74.025 74.991 36.695 52.372 52.615

(3.5,1.65) 75.000 75.000 67.147 74.959 75.000 74.421 74.995 36.451 52.535 52.798

(3.5,1.85) 75.000 75.000 66.890 74.976 75.000 74.743 74.999 36.207 52.687 53.008

(3.5,2.05) 75.000 74.992 66.067 74.932 74.962 74.873 75.000 36.058 52.984 53.216

(4.0,1.25) 75.000 74.964 67.853 74.957 74.994 72.511 74.984 36.663 51.977 52.884

(4.0,1.45) 75.000 74.998 66.853 74.941 74.995 73.820 74.986 36.658 52.453 52.886

(4.0,1.65) 75.000 75.000 66.145 74.953 75.000 73.913 74.988 36.514 52.377 53.228

(4.0,1.85) 75.000 75.000 65.954 74.970 75.000 74.239 74.992 36.272 52.529 53.450

(4.0,2.05) 75.000 75.000 65.763 74.987 75.000 74.565 74.996 36.031 52.681 53.672

Table 6.4: PM density subtotal and total score(µg/m3). Smaller is better.

weighted sum
Model 1 Model 2 lifted by Model 3 lifted by Model 4 lifted by

0m 0m 1m 2m 0m 1m 2m 0m 1m 2m

for y=1.25 0.015 0.015 0.014 0.015 0.015 0.014 0.014 0.009 0.010 0.010

for y=1.45 20.090 20.071 18.564 20.079 20.056 19.392 19.884 13.141 13.241 14.257

for y=1.65 239.086 238.984 204.901 238.849 238.713 237.646 237.954 161.303 155.201 169.736

for y=1.85 24.547 24.540 20.607 24.497 24.521 24.479 24.511 17.069 18.576 17.441

for y=2.05 0.022 0.022 0.018 0.022 0.022 0.022 0.022 0.016 0.017 0.015

Total score 7.094 7.091 6.103 7.087 7.083 7.039 7.060 4.788 4.676 5.037

31

Bibliography

[1] Fousse, Laurent, et al. ”MPFR: A multiple-precision binary floating-point library with correct round-

ing.” ACM Transactions on Mathematical Software (TOMS) 33.2 (2007): 13-es.

[2] Müller, Norbert Th. ”The iRRAM: Exact arithmetic in C++.” International Workshop on Com-

putability and Complexity in Analysis. Springer, Berlin, Heidelberg, 2000.

[3] Lambov, Branimir. ”RealLib: An efficient implementation of exact real arithmetic.” Mathematical

Structures in Computer Science 17.1 (2007): 81-98.

[4] Yu, Jihun, et al. ”The design of Core 2: A library for exact numeric computation in geometry and

algebra.” International Congress on Mathematical Software. Springer, Berlin, Heidelberg, 2010.

[5] Weihrauch, Klaus. Computable analysis: an introduction. Springer Science & Business Media, 2000.

[6] M. Braverman, Computational Complexity of Euclidean Sets: Hyperbolic Julia Sets are Poly-Time

Computable, Proc. CCA 2004., Electr. Notes Theor. Comput. Sci. 120: 17-30 (2005)

[7] Lions, Jacques-Louis. ”Flight 501 failure.” Report by the Inquiry Board 190 (1996).

[8] Bailey, David H., and Jonathan M. Borwein. ”High-precision arithmetic in mathematical physics.”

Mathematics 3.2 (2015): 337-367.

[9] Pathria, R. K. ”A statistical study of randomness among the first 10,000 digits of π.” Mathematics

of Computation 16.78 (1962): 188-197.

[10] Chu, Eleanor, and Alan George. ”Gaussian elimination with partial pivoting and load balancing on

a multiprocessor.” Parallel Computing 5.1-2 (1987): 65-74.

[11] Stevenson, David. ”IEEE 754-1985 IEEE Standard for Binary Floating-Point Arithmetic.” 20pp,

IEEE, July (1985).

[12] Schwarz, Eric M., and Christopher A. Krygowski. ”The S/390 G5 floating-point unit.” IBM Journal

of Research and Development 43.5.6 (1999): 707-721.

[13] Gerwig, Guenter, et al. ”The IBM eServer z990 floating-point unit.” IBM journal of Research and

Development 48.3.4 (2004): 311-322.

[14] Sadasivam, Satish Kumar, et al. ”IBM Power9 processor architecture.” IEEE Micro 37.2 (2017):

40-51.

[15] Waterman, Andrew, et al. ”The risc-v instruction set manual, volume i: Base user-level isa.” EECS

Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011).

[16] Russinoff, David M. ”x87 Instructions.” Formal Verification of Floating-Point Hardware Design.

Springer, Cham, 2019. 227-231.

[17] May, Robert M. ”Simple mathematical models with very complicated dynamics.” The Theory of

Chaotic Attractors (2004): 85-93.

32

[18] Galias, Zbigniew. ”The dangers of rounding errors for simulations and analysis of nonlinear circuits

and systems? and how to avoid them.” IEEE Circuits and Systems Magazine 13.3 (2013): 35-52.

[19] Hu, Tianli, and Shijun Liao. ”On the risks of using double precision in numerical simulations of

spatio-temporal chaos.” Journal of Computational Physics 418 (2020): 109629.

[20] Abadi, Mart́ın, et al. ”Tensorflow: A system for large-scale machine learning.” 12th USENIX sym-

posium on operating systems design and implementation (OSDI 16). 2016.

[21] Paszke, Adam, et al. ”Pytorch: An imperative style, high-performance deep learning library.” arXiv

preprint arXiv:1912.01703 (2019).

[22] Karatsuba, Anatolii Alekseevich, and Yu P. Ofman. ”Multiplication of many-digital numbers by

automatic computers.” Doklady Akademii Nauk. Vol. 145. No. 2. Russian Academy of Sciences,

1962.

[23] Karatsuba, Anatolii Alexeevich. ”The complexity of computations.” Proceedings of the Steklov

Institute of Mathematics-Interperiodica Translation 211 (1995): 169-183.

[24] Cook, Stephen A., and St̊al O. Aanderaa. ”On the minimum computation time of functions.” Trans-

actions of the American Mathematical Society 142 (1969): 291-314.

[25] Schönhage, Arnold, and Volker Strassen. ”Rapid multiplication of large numbers.” Computing 7.3

(1971): 281-292.

[26] Bailey, David H., Roberto Barrio, and Jonathan M. Borwein. ”High-precision computation: Mathe-

matical physics and dynamics.” Applied Mathematics and Computation 218.20 (2012): 10106-10121.

[27] Hida, Yozo, Xiaoye S. Li, and David H. Bailey. ”Library for double-double and quad-double arith-

metic.” NERSC Division, Lawrence Berkeley National Laboratory (2007): 19.

[28] Dekker, Theodorus Jozef. ”A floating-point technique for extending the available precision.” Nu-

merische Mathematik 18.3 (1971): 224-242.

[29] Priest, Douglas M. On properties of floating point arithmetics: numerical stability and the cost of

accurate computations. Diss. University of California, Berkeley, 1992.

[30] Shewchuk, Jonathan Richard. ”Adaptive precision floating-point arithmetic and fast robust geomet-

ric predicates.” Discrete & Computational Geometry 18.3 (1997): 305-363.

[31] Kunzmann, Klaus R., and Michael Wegener. ”The pattern of urbanization in Western Europe.”

Ekistics (1991): 282-291.

[32] Ritchie, Hannah, and Max Roser. ”Urbanization.” Our world in data (2018).

[33] Scott, Allen J. ”Industrialization and urbanization: a geographical agenda.” Annals of the Associ-

ation of American Geographers 76.1 (1986): 25-37.

[34] Brunekreef, Bert, and Stephen T. Holgate. ”Air pollution and health.” The lancet 360.9341 (2002):

1233-1242.

33

[35] Cohen, Aaron J., et al. ”Estimates and 25-year trends of the global burden of disease attributable

to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.” The

Lancet 389.10082 (2017): 1907-1918.

[36] Payet, S., et al. ”Penetration and pressure drop of a HEPA filter during loading with submicron

liquid particles.” Journal of Aerosol Science 23.7 (1992): 723-735.

[37] Rooney, Charles. ”Economics of Pollution Prevention= How Wmte Reduction Pays.” Pollution

Prevention Review 261 (1993).

[38] Kim, H. T., et al. ”Particle removal efficiency of gravitational wet scrubber considering diffusion,

interception, and impaction.” Environmental engineering science 18.2 (2001): 125-136.

[39] World Health Organization (WHO). ”WHO Air Quality Guidelines for Particulate Matter.” Ozone,

Nitrogen Dioxide and Sulfur Dioxid (2005).

34

Acknowledgment

Finishing up one of my life stages as a student, I cannot help but show my gratitude to Prof. Dr.

Martin Ziegler, who hired and has guided me as a mentor. I’ve learned altruism as well as profound

knowledge from him. In addition, Dr. Svetlana Selivanova has taught me thoroughly and kindly, spending

her precious time on revising this thesis and presentation slides. I leave a big thanks to her on this small

paragraph.

Furthermore, I would like to mention the lab members. Dr. Alexander Stoimenov gave great talks

on the computational knot theory, which inspired me. Dr. Sewon Park gently introduced the compact

subset topic, developed and archived in Chapter 2. Donghyun Lim and Hyunwoo Lee also shed light on

whatever I was struggling with. Jihoon Hyun reminded me that I had a passion like his.

마지막으로 저의 여정을 도와주신 가족분들께 고마움을 표합니다. 30년이 넘도록 보답이라곤 제대로

해본적이없는저에게,그래도자식이라고무한한사랑을베풀어주신부모님고맙습니다. 또언제나웃으며

반겨주시는 큰이모네 가족분들과 막내이모도 모두 고맙습니다. 베푸신 은혜에 얼른 보답하도록 노력하겠습

니다. 서현아 승주야 너네는 커서 잘 살았으면 좋겠구나.

35

Curriculum Vitae

Name : Jiman Hwang

Date of Birth : July 1, 1990

Educations

2009. 2. – 2017. 2. 성균관대 기계공학부, 컴퓨터공학 (학사)

2019. 9. – 2021. 8. 한국과학기술원 전산학부 (석사)

Career

1990. 7. – 2021. 6. 경력도 없고 망했네

Academic Activities

1. Jiman Hwang, Svetlana Selivanova, Martin Ziegler Happy Birthday, iRRAM! Considerations for

the Future of Exact Real Computation, CCA 2020 (Sep.10, virtual, originally planned for Bologna,

Italy)

2. Jiman Hwang, Svetlana Selivanova, Martin Ziegler Faster Multi-Precision Computation by Hy-

bridization between Hardware and Software, 2020 KMS Annual Meeting) (Oct.23, virtual)

Publications

1. Jiman Hwang, and Sewon Park. Compact Subsets in Exact Real Computation. KSC2020: 1104-

1106.

36

