
석 사 학 위 논 문
Master’s Thesis

실수에서의 지수 크기 선형대수학 문제의 계산

복잡도

Computational Complexity of Linear Algebra Problems with

Exponential Size and Real Entries

2020

코스아라 이반 아드리안 (Koswara, Ivan Adrian)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology

석 사 학 위 논 문

실수에서의 지수 크기 선형대수학 문제의 계산

복잡도

2020

코스아라 이반 아드리안

한 국 과 학 기 술 원

전산학부

실수에서의 지수 크기 선형대수학 문제의 계산

복잡도

코스아라 이반 아드리안

위 논문은 한국과학기술원 석사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2020년 12월 14일

심사위원장 Martin Ziegler (인)

심 사 위 원 Svetlana Selivanova (인)

심 사 위 원 류 석 영 (인)

Computational Complexity of Linear Algebra

Problems with Exponential Size and Real Entries

Ivan Adrian Koswara

Advisor: Martin Ziegler

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Daejeon, Korea

December 14, 2020

Approved by

Martin Ziegler

Professor of School of Computing

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.

MCS 코스아라 이반 아드리안. 실수에서의 지수 크기 선형대수학 문제의 계산

복잡도. 전산학부 . 2020년. 30+i 쪽. 지도교수: 마틴 지글러. (영문 논문)

Ivan Adrian Koswara. Computational Complexity of Linear Algebra Problems

with Exponential Size and Real Entries. School of Computing . 2020.

30+i pages. Advisor: Martin Ziegler. (Text in English)

초 록

지수 크기 문제는 복잡도 이론에서 잘 연구되지는 않았지만 몇몇 응용에서 나타난다. 예를 들어 편미분

방정식의 해를 근사하려면 지수 크기 행렬의 큰 거듭제곱을 계산해야 한다. 우리는 입력 벡터와 행렬이

어떤 모수에 대하여 지수 크기를 갖고 실수 성분을 가지는 선형대수 문제들을 형식적으로 정의한다. 우리는

해당 문제들의 계산복잡도 또한 조사한다. 우리는 지수 크기 내적 계산이 #P이고 지수 크기 행렬 거듭제곱

계산이 FPSPACE이며 이들이 모두 최적임을 보인다. 또한 편미분방정식에서 얻은 영감으로 우리는 일부

행렬들은 다항식으로 변환될 수 있고 다항식 거듭제곱 계산은 #P임을 보인다. 이는 해당 행렬들에 대해

행렬 거듭제곱 계산에 대한 결과를 강화한다. 우리는 또한 참신한 방법으로 일부의 다항식 거듭제곱은 FP

임을 보이고 (지수 크기가 아닌) 내적과 행렬 거듭제곱이 선형 미만 공간에서 계산될 수 있음을 보인다.

핵 심 낱 말 계산복잡도, 지수 크기 문제, 정확한 실수 계산

Abstract

Exponential-size problems have not been investigated very well in complexity theory even though they

appear in several applications. For example, approximating the solution of a partial differential equation

requires one to raise an exponential-size matrix to a large power. We formally define linear algebra

problems when the input vectors and matrices have size that is exponential in a parameter and have

real number entries. We also investigate the computational complexity of these problems. We show that

computing exponential-size inner product is in #P and computing exponential-size matrix powering is

in FPSPACE, and these are both optimal. Furthermore, inspired from the partial differential equation

motivation, we show some matrices can be converted into polynomials, and that computing polynomial

powering is in #P, improving the matrix powering result for these matrices. We also show that some

cases of polynomial powering are in FP with novel methods, and computing (not exponential-size) inner

product and matrix powering can be done in sublinear space.

Keywords Computational complexity, exponential-size problem, exact real computation

Contents

Contents . i

Chapter 1. Introduction 1

Chapter 2. Definitions 3

2.1 Real computation . 3

2.2 Complexity classes . 4

2.3 Linear algebra problems . 7

Chapter 3. Main theorems 8

3.1 Exponential-size inner product is R#P-complete 8

3.2 Exponential-size matrix powering is RPSPACE-complete 10

3.3 Polynomial powering is in R#P 15

3.4 Certain cases of polynomial powering is in RP 16

Chapter 4. Applications 23

4.1 Linear recurrences and linear ordinary differential equations . . 23

4.2 Linear partial differential equations 27

Chapter 5. Conclusion 29

Bibliography 30

i

Chapter 1. Introduction

There has been much research on the computational complexity of linear algebra problems. Perhaps

one of the most famous problems is computing the matrix multiplication. The naive definition of matrix

multiplication suggests an algorithm with time complexity of O(n3); however, in 1969, Volker Strassen

proved this exponent is not optimal by providing an O(nlog2 7) = O(n2.80736) algorithm [9]. Further

research has subsequently reduced the exponent down to O(n2.3728639) [5], and it is an open question

whether an O(n2) algorithm exists. In the same 1969 paper, Strassen also proved that computing matrix

determinant and matrix inverse are both asymptotically equivalent to matrix multiplication.

There is one subtle point, though; these algorithms usually treat an arithmetic operation as being

exact and having a constant cost. This is fine in many practical situations, but problematic once we

try to apply it to broader cases. The following describes two examples that are often encountered in

computational linear algebra, along with other programming contexts involving non-integral numbers.

The numerical science community usually works with floating-point number data types, which have a

fixed precision. A common problem arising from this is adding two numbers of very different magnitudes:

if x� y, then x+ y is often approximated by x, as the number closest to x+ y that can be represented

in the data type is in fact x itself. However, since x+ y and x are now equal, we have (x+ y)− x = 0;

in other words, taking the difference loses all information about y. In applications where it is crucial to

distinguish 0 from a nonzero number, such as performing Gaussian elimination, this is clearly an issue.

Occasionally, instead of using floating-point numbers, some programmers work with exact rational

numbers; since rational numbers are just pairs of integers, computers can manipulate them exactly.

However, it can also be shown that, in general, each arithmetic operation can double the lengths of the

numerators and denominators. As standard integral data types such as int and long have limited size,

we will have to work with arbitrary-precision integers. Now the lengths of the numbers matter, as adding

n-bit numbers in general takes time O(n). With numbers that quickly grow very long, this per-operation

cost quickly becomes prohibitive. This approach also only works with rational numbers; if we wish to

use real numbers, this approach does not work.

Due to these shortcomings, people that are particularly concerned about rigor, such as mathemati-

cians, began to develop a formal theory on computational complexity, but with real numbers. In his

1991 book, Ker-I Ko collected various results forming the foundation of this theory [3]. For example, a

common rule of thumb in the numerical science community is to never compare two floating-point num-

bers for equality, because floating-point numbers are imprecise, and instead to use approximate equality

[1]. It can in fact be proven that determining whether two real numbers are equal is an undecidable

problem.

There have also been implementations of this formal theory, often called exact real computation, such

as a C++ package called iRRAM [6]. The idea behind exact real computation is to track the uncertainty

of each number computed. If the uncertainty gets too large, the entire computation is restarted, but

with inputs that are more precise, i.e. with smaller uncertainty. The goal of exact real computation is to

guarantee that all computations are correct, as opposed to using floating-point numbers that may lead

to useless results.

This rigorous theory of computability and complexity of real numbers is still in active research.

There have been a number of results, such as computing Riemann integral of bounded and poly-time

1

computable functions being in #P [3, p.182]. Still, the vast amount of mathematical problems means

there are always new avenues to pursue.

This thesis contributes to solving some such problems: the computational complexity of linear alge-

bra problems, in particular matrix multiplication, matrix powering, and polynomial powering, where the

input vector/matrix is exponential-size and the entries are real numbers. By exponential-size, we mean

the complexity will be parametrized by log k, where k is the dimension of the input vectors/matrices.

These problems are motivated by their applications to approximating partial differential equations, fur-

ther expanded in Section 4.

The paper is organized into several parts. Section 2 defines the formal definitions of real computation

and real complexity classes. Section 3 states the main results of the paper, about the complexity of such

problems; many of the proofs are postponed to the appendix. Section 4 provides a number of applications

of these results to other problems, including the aforementioned motivation from approximating partial

differential equations. Section 5 gives a conclusion with a summary of our results.

In this entire paper, log stands for base-2 logarithm while ln stands for natural logarithm.

2

Chapter 2. Definitions

2.1 Real computation

While integers and rational numbers can be represented exactly, in general, we cannot do the same

to real numbers; we need to give infinitely many digits following the decimal point. Therefore real

computation theory has been developed to formalize what it means for computers to work with real

numbers. In this paper, we use the following definition of computable real numbers among several

equivalent ones.

Definition 2.1.1. A real number x is computable if there exist a computable integer function p and

an algorithm A, satisfying the following: when A takes input an integer n, it produces output an integer

an satisfying ∣∣∣x− an
2p(n)

∣∣∣ ≤ 2−n.

We say A approximates x. When n is given, we say A approximates x to (absolute) error 2−n.

We also say a real number y is an approximation of x to (absolute) error 2−n if |y − x| ≤ 2−n.

Therefore, A approximates x if it can output an approximation of x to arbitrarily small error.

Intuitively, x is computable if we can approximate the real number x arbitrarily well by dyadic

fractions: given any n, we can give an approximation with (absolute) error 2−n. This definition closely

matches the definition by Ko based on Cauchy functions [3, Def2.1a p.42]. In Ko’s definition, the

function p has to be the identity, i.e. the denominator is 2n instead of 2p(n). However, from the view

of computation theory, our definition is equivalent; once we obtain an, we simply “round” it to the

appropriate number of bits.

Similarly, we can define computable real functions. We provide the definition for a univariate

function, although it is easy to extend it to multivariate functions; we provide an all-encompassing

general definition later on.

Definition 2.1.2. A function F : R→ R is computable if there exist computable integer functions q, p

and an algorithm A, satisfying the following: when A takes input integers n, bn satisfying∣∣∣∣x− bn
2q(n)

∣∣∣∣ ≤ 2−q(n)

it produces output an integer an satisfying∣∣∣F (x)− an
2p(n)

∣∣∣ ≤ 2−n.

Note that A is allowed to behave arbitrarily for inputs not satisfying the hypothesis.

Intuitively, F is computable if we can approximate F (x) arbitrarily well, given a sufficiently precise

approximation of x. Note that we require the approximation to x to be given in advance, with an

error bound of 2−q(n) that may only depend on the accuracy n. This is in contrast to Ko [3, Def2.11

p.51], which provides approximations of x as an oracle that the algorithm can query; theoretically such

algorithm may query an approximation of x with different error bounds depending on the value of x.

However, even this definition is lacking. We wish to be able to include classical discrete inputs, i.e.

integer arguments. More importantly, while the definition above can be generalized to any arbitrary

3

arity, F still has a fixed arity. Since in linear algebra we are interested in vectors and matrices as both

inputs and outputs, which may have arbitrary dimensions, we wish to modify this definition.

The following definition is the most general form we consider. Instead of considering a single function

F , we consider a sequence of functions {Fk}, each one with fixed arity that may depend on k. We include

not only real arguments but also integer arguments to the input. Finally, instead of asking for an entire

vector as the output, we can instead define Fk to take an additional integer argument as an index to

indicate which element of the output we seek. This lets us to keep the codomain R.

Definition 2.1.3. A sequence of functions {Fk} where Fk : Zdk × Rdk → R is computable if there

exist computable integer functions q, p and an algorithm A, satisfying the following: when A takes input

integers k, n, ~mk,n,~bk,n satisfying∣∣∣∣xi − bk,n,i
2q(λ)

∣∣∣∣ ≤ 2−q(λ) for all i = 1, . . . , dk,

it produces output an integer ak,n satisfying∣∣∣Fk(~mk,n, ~x)− ak,n,j
2p(λ)

∣∣∣ ≤ 2−n

where λ = k + n + `(~mk,n). Note that A is allowed to behave arbitrarily for inputs not satisfying the

hypothesis. Here ~m,~b are understood to have dk elements.

Note that the argument to p, q is λ = k + n+ `(~mk,n). This reflects that the values of k, n, and ~m

may determine how much accuracy we demand from the real inputs.

2.2 Complexity classes

Before proceeding to complexity classes, we wish to note a definition from classical discrete com-

putability and complexity theory, namely one of function problems. There are two common definitions

of function problems in literature, one that has exactly one valid output to every input and one that

does not. Here, we use the latter definition; the reason will be made clear after we define real numbers.

Definition 2.2.1. Given a domain X and codomain Y , a (partial) function problem F is a subset

of X×Y ; we say F : X → Y to denote that the function problem F has domain X and codomain Y . An

algorithm A computes a function problem F if, given any x ∈ X as input such that there exists some

y ∈ Y where (x, y) ∈ F , A outputs one such y. Note that A is allowed to behave arbitrarily for x not

having any corresponding y, including not halting.

It is important that we distinguish “function problems” from “functions”; functions still have exactly

one output for each input. Informally speaking, in this paper, we treat functions as the idealized form

in mathematics, taking exact real numbers as inputs and producing exact real numbers as outputs.

Function problems are defined to consider the inaccuracies of real numbers.

For example, a real number x is a function problem; it maps the desired accuracy represented as

n to an approximation of x having the desired error 2−n. Note that there are many possible outputs;

for example, if n = p(n), then we can “round” x either downward or upward to the closest multiple

of 2−n, and both are valid approximations of x. As another example, the problem computed by an

algorithm A computing a real function f is also a function problem; f itself maps x to f(x), but A maps

approximations of x to approximations of f(x) (in which there can be several).

With this peculiarity sorted out, we now proceed to define complexity classes. We first recall

definitions of classical complexity classes, so that we can define their real versions accordingly.

4

Definition 2.2.2. For a computable function t, a function problem F : Z → Z is in FTIME(t) (respec-

tively FSPACE(t)) if there exist a computable function t and an algorithm A computing F , and on input

x, A takes time (resp. uses space) ≤ O(t(`(x))) where `(x) is the length of the input.

If there exists polynomial (respectively exponential) t such that A takes time ≤ t, we say F is in FP

(resp. FEXP). If there exists polynomial t such that A uses space ≤ t, we say F is in FPSPACE.

We leave “length of the input” intentionally not defined, because sometimes we wish to encode the

input in binary (i.e. `(x) = log(1 + |x|)) and sometimes in unary (i.e. `(x) = O(x)).

These definitions translate directly into definitions of real numbers and functions computable with

a certain resource bound. For instance, we have the following definition for the complexity of a real

number.

Definition 2.2.3. A real number x is poly-time/exp-time/poly-space computable if the correspond-

ing function problem of approximating x as per Definition 2.1.1 is in FP,FEXP,FPSPACE respectively,

with n in unary.

Note that, in Definition 2.1.1, the output of A has length p(n) +O(1). We also want p(n) ≥ n− 1;

otherwise sometimes there is no valid output. Therefore the running time of A is at least n + O(1).

This motivates why we write n in unary, i.e. parametrize the complexity function in n instead of log n;

if n was in binary, the running time would be exponential in log n and so “poly-time computable real

number” would not make sense.

It might seem straightforward to define the complexity of a real function, too. However, we have

a problem of determining the parameter of the complexity function: what is “`(x)” in Definition 2.2.2?

Here, we use the desired accuracy n as defined in Definition 2.1.2 as the parameter. Similar to the

previous definition, n here is in unary.

This raises another issue: the magnitude of the input is not included in the parameter. For example,

it is unreasonable to ask that the algorithm runs in the same time for x = 0 and x = 21000; after all, the

function f(x) = x will take time at least proportional to the length of x, the time taken to copy the input

to the output. We solve this problem by restricting the domain into a fixed, bounded interval. Therefore

the integer part has constant size, and the fractional part is already parametrized by n, leading to the

following definition.

Definition 2.2.4. For a fixed real c, a function F : [−c, c] → R is in RP if there exist a polynomial t

and an algorithm A computing F in the sense of Definition 2.1.2, and A takes time t(n).

The definitions for F being in REXP, RPSPACE, RTIME, RSPACE are similar.

It follows that p, q in Definition 2.1.2 should be polynomial. If p is more than a polynomial, then

A cannot output the required digits in polynomial time; if q is more than a polynomial, there are input

bits that are not read and so q could have been made smaller.

We can also likewise extend this to a sequence of functions, like in Definition 2.1.3. The main

difference from the previous definition is that the complexity function takes into account the function

index k and all the integer inputs `(~mk,n). This time, there is no particular justification why we choose

k instead of log k; it is just more convenient.

Definition 2.2.5. For a fixed real c, a sequence of functions {Fk} where Fk : Zdk × [−c, c]dk → R is in

RP if there exists a polynomial t and an algorithm A computing {Fk} in the sense of Definition 2.1.3,

and A takes time t(λ).

The definitions for {Fk} being in REXP, RPSPACE, RTIME, RSPACE are similar.

5

Remark 2.2.6. It is crucial that the input to A is presented in a way such that A can seek to the i-th bit

in time O(log i). For example, A may be a random-access machine, which can fetch the contents of any

address in constant time, so that the cost of retrieving the bit is just the cost of computing the address.

Note that A cannot be a Turing machine, as a Turing machine takes time O(i) to seek to the i-th

bit. This is important because our input may have size exponential in λ, and in particular, exponential

in k.

Besides these classical complexity classes, we will also discuss the complexity class #P, defined

by Valiant [10]. In the classical definition, a #P problem counts the number of accepting paths of a

nondeterministic Turing machine. This has the disadvantage that #P is not closed under subtraction

(since we cannot count a negative number of accepting paths), and so GapP has been introduced as the

closure of #P under subtraction. In this paper, we will take a different approach: since negative real

numbers exist naturally, we will treat as if #P is already complete under subtraction in the first place,

providing the following definition.

Definition 2.2.7. A function problem F : Z→ Z is in #P if there exist a polynomial r and an algorithm

A satisfying the following: on input (x,w) where w is a binary string having length r(`(x)), A produces

output aw in time polynomial in `(x), and ∑
w

aw = F (x).

Here the summation is over all w of length r(`(x)).

In other words, A takes an additional input w, called the witness. Note that A produces possibly

different outputs on different witnesses, even with the same input x. The function F (x) is the sum of all

the outputs from different witnesses.

Intuitively, this means we can break down the computation of F (x) into many pieces, each indexed

by a different witness, and sum together all the answers. The power of this definition comes from the

fact that there can be exponentially many witnesses: since r is a polynomial, there are 2r(`(x)) witnesses,

which is exponential in `(x). Naively summing over all witnesses would take exponential time; however,

if each piece can be computed in polynomial time, the problem F is in #P. Another way to interpret

#P is that we get a final summation “for free”, even if the summation is exponentially long.

We can also take the real equivalent of #P; this simply combines the definitions of computable real

sequences of real functions and #P.

Definition 2.2.8. For a fixed real c, a sequence of functions {Fk} where Fk : Zdk × [−c, c]dk → R
is in R#P if there exist polynomials q, p, r and an algorithm A satisfying the following: on input

(k, n, ~mk,n,~bk,n, w) where w is a binary string having length r(λ) and∣∣∣∣xi − bk,n,i
2q(λ)

∣∣∣∣ ≤ 2−q(λ) for all i = 1, . . . , dk,

A produces output ak,n,w in time polynomial in λ, and∣∣∣∣∣F (~x)−
∑
w

ak,n,w
2p(λ)

∣∣∣∣∣ ≤ 2−n

where λ = k + n+ `(~mk,n). Here the summation is over all w of length r(`(x)).

6

2.3 Linear algebra problems

We have defined the computability and complexity of sequences of real functions as in Definition

2.1.3, 2.2.5, and 2.2.8. Note that although the functions are defined to only take a single real vector as

input, in practice we can also take multiple vectors as well as matrices in a straightforward way.

We will finally define the functions of our interest: exponential-size inner product, exponential-size

matrix powering, and polynomial powering. The informal definitions are that we want to compute the

inner product ~u · ~v, any entry of the matrix power Me, and the coefficients of polynomial power p(~x)e.

Formally, they are defined as follows. Note that these are functions, i.e. the Fk’s in the definitions

mentioned above; their associated function problems follow accordingly.

Definition 2.3.1. The function EXPSIZE-INNER-PRODUCT with index k is defined as follows: given two

real vectors ~u,~v of 2k elements, where each element is in [−1, 1], compute

~u · ~v :=

2k∑
i=1

uivi.

Definition 2.3.2. The function EXPSIZE-MATRIX-POWER with index k is defined as follows: given a

2k × 2k real matrix M satisfying

‖M‖ := max
j

∑
i

|Mi,j | ≤ 1,

a positive integer E, and positive integers I, J , compute the (I, J)-th element of ME; that is, (ME)I,J .

Here E, I, J are represented in binary.

Definition 2.3.3. The function POLYNOMIAL-POWER with index v, d is defined as follows: given the

coefficients of a polynomial P on x1, . . . , xv and degree d, satisfying

‖P‖ :=
∑

i1,...,iv

|P [xj11 . . . xjvv]| ≤ 1,

a positive integer E, and nonnegative integers I1, . . . , Iv, compute the coefficient of xI11 . . . xIvv in the

polynomial P (x1, . . . , xv)
E. Here E, I1, . . . , Iv are represented in binary.

7

Chapter 3. Main theorems

The main theorems in this paper are the complexity results of exponential-size inner product,

exponential-size matrix power, and polynomial power. We will show that computing inner product

is in R#P, computing matrix powering is in RPSPACE, and computing polynomial powering is in R#P

with specific cases that are in RP. We will also mention how the polynomial powering results can be

used for certain cases of matrix powering that arise from solving differential equations. Moreover, we

also show that, in a sense, computing inner product is “#P-hard” and computing matrix powering is

“PSPACE-hard”.

3.1 Exponential-size inner product is R#P-complete

The main results of this section are the following two theorems related to computing exponential-size

inner product. The first simply states that inner product is in R#P. The second says, given any function

in #P, we can reduce it into an instance of exponential-size inner product. However, since the instance

will be exponential-size, the reduction instead provides an algorithm that generates the input.

Theorem 3.1.1. EXPSIZE-INNER-PRODUCT is in R#P.

Theorem 3.1.2. For any function F ∈ #P, there exists a polynomial-time algorithm RF with the

following property:

Given integer input x, algorithm RF returns (k,B) where k is the index to EXPSIZE-INNER-PRODUCT

and B is an algorithm that approximates the input ~u,~v for EXPSIZE-INNER-PRODUCT in the following

manner:

Given accuracy parameter n and index w, i where w ∈ {u, v} and i ∈ [1, 2k], B outputs an approxi-

mation of wi to error 2−n. Moreover, the vectors ~u,~v approximated by B have the property ~u ·~v = F (x).

3.1.1 Proof of Theorem 3.1.1

The idea for the proof is very straightforward. Since

~u · ~v =

2k∑
i=1

uivi,

we can construct an algorithm A as follows: given a witness w ∈ [1, 2k], A seeks the approximations of

uw, vw and outputs an approximation of uwvw. Then the sum of the outputs over all witnesses is exactly

~u · ~v. The problem is to determine whether we can do this with sufficient accuracy. This section will

show that, yes, we can obtain sufficient accuracy without much trouble.

Lemma 3.1.3. (a) If x, y are real numbers and x̂, ŷ are approximations of x, y to error δx, δy respectively,

i.e.

|x− x̂| ≤ δx and |y − ŷ| ≤ δy,

then x̂+ ŷ is an approximation of x+ y to error δx + δy.

(b) If x, y are real numbers satisfying |x| ≤ cx, |y| ≤ cy for some cx, cy, and x̂, ŷ are approximations

of x, y to error δx, δy respectively and also satisfying |x̂| ≤ cx, |ŷ| ≤ cy, then x̂ŷ is an approximation of

xy to error cxδy + cyδx.

8

The proof is simple and largely mechanical.

Proof of Lemma 3.1.3. (a) The error of x̂+ ŷ is given by

|(x+ y)− (x̂+ ŷ)| = |(x− x̂) + (y − ŷ)|

≤ |x− x̂|+ |y − ŷ| by triangle inequality

≤ δx + δy by assumption

(b) The error of x̂ŷ is given by

|xy − x̂ŷ| = |(xy − xŷ) + (xŷ − x̂ŷ)|

= |x(y − ŷ) + ŷ(x− x̂)|

≤ |x| · |y − ŷ|+ |ŷ| · |x− x̂| by triangle inequality

≤ cxδy + cyδx by assumption

Equipped with these results, we can now determine the required accuracy.

Let x be an input real number satisfying |x| ≤ 1. Suppose we guarantee that the approximation x̂

of x has absolute error ≤ 1. Then it follows |x̂| ≤ |x− 2−n| ≤ 2. Therefore, all input real numbers and

their approximations have absolute value ≤ 2.

Fix the accuracy parameter n. Fix a real number δn to be determined later. For each input real

number ui, let ûi be an approximation of it with absolute error δn ≤ 1; define v̂i similarly. Then by

Lemma 3.1.3b, ûiv̂i is an approximation of uivi with absolute error 2δn + 2δn = 4δn, and

2k∑
i=1

ûiv̂i

is an approximation of ~u · ~v with absolute error 2k · 4δn = 2k+2δn. Since we want this approximation to

have error ≤ 2−n, we can take δn = 2−k−n−2.

More formally, using Definition 2.2.5, we take λ = k + n (as we do not have any integer input to

EXPSIZE-INNER-PRODUCT). We also take q(λ) = λ + 2, p(λ) = 2λ + 4, r(λ) = λ. Map the integers in

[1, 2k] to the binary strings of length r(λ) such that the mapping is one-to-one. Suppose A receives input

(k, n,~bu,k,n,~bv,k,n, w) satisfying the following condition: ~bu,k,n is a 2k-element vector where, if we define

ûi =
bu,k,n,i
2k+n+2

,

we have

|ui − ûi| =
∣∣∣∣ui − bu,k,n,i

2k+n+2

∣∣∣∣ ≤ 2−(k+n+2) for all i = 1, . . . , 2k.

Similar condition applies for ~bv,k,n. If w is not one of the strings mapped by [1, 2k], A outputs 0.

Otherwise, A outputs bu,k,n,w · bv,k,n,w. According to the proof above, we know∣∣∣∣∣~u · ~v −∑
w

~bu,k,n,w ·~bv,k,n,w
22(k+n)+4

∣∣∣∣∣
=

∣∣∣∣∣~u · ~v −∑
w

~bu,k,n,w
2k+n+2

·
~bv,k,n,w
2k+n+2

∣∣∣∣∣
=

∣∣∣∣∣~u · ~v −∑
w

ûwv̂w

∣∣∣∣∣ by definition of ûw, v̂w

≤ 2−n by the proof above

9

Clearly A takes polynomial time, as bu,k,n,w, bv,k,n,w have length k+n+ 3 bits (1 bit for the integer

part as the absolute value is ≤ 21, plus k + n + 2 bits for the fractional part), which is polynomial in

k + n, so they can be multiplied in polynomial time. This shows that EXPSIZE-INNER-PRODUCT is in

R#P.

3.1.2 Proof of Theorem 3.1.2

We will in fact avoid the real part of this problem altogether: the vectors ~u,~v we construct will only

have integer entries. This way, not only B can output an approximation of wi to error 2−n as desired,

but B can output wi exactly.

Since F ∈ #P, there exists a polynomial r and algorithm A satisfying Definition 2.2.2. Recall that

the length of the witness w is r(`(x)). Let A take time t(`(x)), where t is a polynomial. Then the output

aw of A satisfies |aw| ≤ 2t(`(x)).

Let k = r(`(w)) + t(`(x)). Let vi = 1 for all i ∈ [1, 2k]. Define ui as follows. Let

i = 2t(`(x)) · r + t+ 1

where r ∈ [0, 2r(`(x)) − 1], t ∈ [0, 2t(`(x)) − 1]; we can treat r as a binary string of length r(`(x)). Then

consider the output ar of A with witness r. If |ar| > t, then ui = 1 if ar > 0 and ui = −1 otherwise.

Otherwise, ui = 0.

Note that ui, vi ∈ [−1, 1], so this is an instance of EXPSIZE-INNER-PRODUCT. We claim ~u ·~v = F (x).

Fix r, and consider all i having the same r. The number of nonzero ui’s is exactly |ar| (these are

the ones where t = 0, 1, . . . , |ar| − 1), and the values of all these ui’s are the same, 1 if ar > 0 and -1

otherwise; equivalently, ui = sgn(ar) for the nonzero ui’s. Therefore, the sum of all ui’s for a given r is

exactly |ar| · sgn(ar) = ar. Since vi = 1 for all i, it follows
∑
i uivi = ar for the i’s giving the same r.

Therefore, ∑
i

uivi =
∑
r

ar = F (x)

by definition of F , as it is the sum of all ar’s.

Finally, we need to show this can be computed in time polynomial in `(x). But this is straightfor-

ward. If B is asked to compute vi, it can immediately output 1. Otherwise, B computes the necessary

r(`(x)), t(`(x)) as well as the decomposition i = 2t(`(x)) · r + t + 1, then computes A on input x and

witness r which takes time polynomial in x (specifically t(`(x))), and finally output the appropriate ui.

All these steps take time polynomial in `(x).

3.2 Exponential-size matrix powering is RPSPACE-complete

Similar to the previous section, the main results of this section are the following two theorems

related to computing exponential-size matrix power. The first states that computing matrix power is in

RPSPACE. The second says we can reduce a known PSPACE-complete problem, LBA-HALTING, into an

instance of exponential-size matrix powering. Again, the reduction instead provides an algorithm that

generates the input.

Theorem 3.2.1. EXPSIZE-MATRIX-POWER is in RPSPACE.

Theorem 3.2.2. Let LBA-HALTING be the following decision problem: given a Turing machine T and a

natural number t in unary, determine whether T halts without using more than t cells of the tape. There

exists a polynomial-time algorithm R with the following property:

10

Given a Turing machine T and a natural number t in unary, the algorithm R returns (k,E, I, J,B)

where k is the index to EXPSIZE-MATRIX-POWER, E is the exponent of the matrix, I, J are the indices of

the desired entry, and B is an algorithm that approximates the input M for EXPSIZE-MATRIX-POWER in

the following manner:

Given accuracy parameter n and index i′, j′ ∈ [1, 2k], B outputs an approximation of Mi′,j′ to error

2−n. Moreover, the matrix M approximated by B has the property (ME)I,J = 1 if T halts without using

more than t cells of the tape, and 0 otherwise.

Remark 3.2.3. Note that, unlike the result for inner products, here we only show we can reduce lan-

guages, i.e. decision problems, into matrix powering. The main reason is that our definition of matrix

powering requires the matrix to have bounded powers, so that all the entries will be restricted in the range

[−1, 1]; otherwise, due to the exponential power, the entries can blow up exponentially. We enforce this

by requiring the absolute row sums to be in the range [−1, 1]. Decision problems, whose outputs are

in {0, 1}, form a natural candidate to be reduced into our problem; meanwhile, function problems, with

unrestricted output, seem difficult to adapt.

3.2.1 Proof of Theorem 3.2.1

The idea is to perform the algorithm known as exponentiation-by-squaring. In essence, we use the

following identity:

Me =

(Me/2)2 if e is even,

M ·Me−1 if e is odd

By recursively applying the algorithm, it can be shown that this algorithm requires at most 2 log e

multiplications. Therefore, although the exponent e is exponential in the parameter λ = k + n + log e,

the number of multiplications is polynomial in λ.

Another issue is that M is also exponential-size; it is of order 2k × 2k. It is clear that we cannot

hope to compute Me in polynomial time. However, it turns out we can compute it in polynomial space.

The sketch of the proof is that computing inner product requires little space, and matrix product is just

a composition of several levels of inner products. The trick is, each level of inner product can reuse the

same space by recomputing entries as needed, leading to little space requirement. This same trick is

used in the proof of Savitch’s theorem [8].

Before going into the proof, we will prove a quick lemma about approximating an approximation.

Lemma 3.2.4. (a) Let x be a real number. Let x̂1 be an approximation of x to error δ1. Let x̂2 be an

approximation of x̂1 to error δ2. Then x̂2 is an approximation of x to error δ1 + δ2.

(b) Let x be a real number in [a, b] for some reals a, b. Let x̂1 be an approximation of x to error δ.

Let x̂2 be a “clamping” of x̂1 into the interval [a, b]; that is,

x̂2 =

a if x̂1 < a,

x̂1 if a ≤ x̂1 ≤ b,

b if b < x̂1

Then x̂2 is an approximation of x to error δ.

Proof of Lemma 3.2.4. (a) Immediate from triangle inequality:

|x− x̂2| = |(x− x̂1) + (x̂1 − x̂2)| ≤ |x− x̂1|+ |x̂1 − x̂2| ≤ δ1 + δ2.

11

(b) If x̂2 = x̂1 the conclusion immediately follows. Otherwise, without loss of generality suppose

x̂2 = b. Then x ≤ x̂2 ≤ x̂1, so |x− x̂2| ≤ |x− x̂1| ≤ δ.

The proof is divided into two parts. In the first part, we take the unrealistic assumption that we can

do real arithmetic operations exactly without loss of accuracy, in constant time and space. We construct

an algorithm to establish correctness. In the second part, we drop the assumption and construct an

algorithm working with approximations of real numbers, and translate the proof of correctness into the

new algorithm.

Part 1: Ideal algorithm

For now, we assume real arithmetic operations can be done exactly. Fix k. To implement the idea

of exponentiation-by-squaring, we will use a subroutine P that acts as one “level” of the recursion. P
takes integer inputs e, i, j, where e is the exponent and i, j are the indices. The subroutine works as

follows. Here, P(e, i, j) means the output of P on input (e, i, j).

1. If e = 1, return Mi,j from the input.

2. Set s0 ← 0. This will be an accumulator for the inner product.

3. For each m = 1, . . . , 2k,

3.1. If e is even, let M ′i,m = P(e/2, i,m) and M ′′m,j = P(e/2,m, j).

3.2. If e is odd, let M ′i,m = P(1, i,m) and M ′′m,j = P(e− 1,m, j).

3.3. Set sm ← sm−1 +M ′i,m ·M ′′m,j .
4. Return s2k .

We claim that P(e, i, j) outputs (Me)i,j , by induction on e. When e = 1, this is obvious from step

1. Otherwise, P runs step 3.

In both step 3.1 and step 3.2, P generates numbers M ′i,m and M ′′m,j , and in step 3.3, P adds the

result to s. Therefore we can induct on h to get

sh =

h∑
m=1

M ′i,m ·M ′′m,j

and so s2k is the inner product of the vectors M ′i,· = (M ′i,1, . . . ,M
′
i,2k) and M ′′·,j = (M ′′1,j , . . . ,M

′′
2k,j).

Therefore, if M ′ and M ′′ are interpreted as 2k × 2k matrices, s2k is the (i, j)-th entry of the product

M ′ ·M ′′.
Finally, using the inductive hypothesis, in step 3.1 we have M ′ = M ′′ = Me/2 so M ′ ·M ′′ = Me,

while in step 3.2 we have M ′ = M and M ′′ = Me−1 so M ′ ·M ′′ = Me. Therefore, in either case, P
outputs s2k = (Me)i,j .

Part 2: Approximation algorithm

Now we will construct a subroutine P ′ based on P, but working with approximations of real numbers

instead. Fix n; let δn be a real number in the form 2−q, for some integer q to be determined later. We

also assume δn � 1. P ′ takes integer inputs e, i, j just like P ′, where e is the exponent and i, j are the

indices, and returns (Me)i,j .

The subroutine P ′ works as follows. Assume the element Mi,j from the input is approximated as

bk,n,i,j/2
q.

1. If e = 1, return bk,n,i,j from the input.

2. Set s0 ← 0. This will be an accumulator for the inner product.

3. For each m = 1, . . . , 2k,

12

3.1. If e is even, let M̂ ′i,m = P ′(e/2, i,m) and M̂ ′′m,j = P(e/2,m, j).

3.2. If e is odd, let M̂ ′i,m = P ′(1, i,m) and M̂ ′′m,j = P(e− 1,m, j).

3.3. Set sm ← sm−1 + M̂ ′i,m · M̂ ′′m,j .
3.4. Remove M̂ ′i,m, M̂

′′
m,j , sm−1 from memory.

4. Set s← bs2k/2qc.
5. If s < −2q, set s← −2q. If s > 2q, set s← 2q.

6. Return s.

We claim P ′(e, i, j) outputs an integer s such that s/2q is an approximation of (Me)i,j to error

2(k+3)·r(e)δn, where r is a function from {1, 2, . . .} to the naturals, satisfying the following recursion:

r(e) =

0 if e = 1,

1 + r(e/2) if e is even,

1 + r(e− 1) if e > 1 is odd

Equivalently, r(e) + 2 is equal to the number of digits of e in binary plus the number of 1’s when

writing e in binary. It follows from this equivalence that r(e) ≤ 2dlog ee.
We will prove the claim on P ′ by induction on e. For e = 1, we have r(1) = 0, so the claim is that

P ′(1, i, j) outputs s where s/2q is an approximation of Mi,j to error δn. This is true by definition, as

δn = 2−q.

Otherwise, by the inductive claim, the output of P ′ is the numerator of a fraction with denom-

inator 2q. Therefore, M̂ ′i,m/2
q is an approximation of a real number M ′i,m; similarly, M̂ ′′m,j/2

q is an

approximation of a real number M ′′m,j . Therefore,

sh/2
q

2q
=

1

22q
·

h∑
m=1

M̂ ′i,m · M̂ ′′m,j

=

h∑
m=1

M̂ ′i,m
2q
·
M̂ ′′m,j

2q

and so
s
2k
/2q

2q is an approximation of M ′i,· ·M ′′·,j .
When e is even, M ′ = M ′′ = Me/2 from the inductive claim. Therefore M̂ ′i,m/2

q is an approx-

imation of M ′i,m with error 2(k+3)·r(e/2)δn, and M̂ ′′m,j/2
q is also an approximation of M ′′m,j with error

2(k+3)·r(e/2)δn. By Lemma 3.1.3,

∣∣∣s2k
22q

∣∣∣ =

∣∣∣∣∣∣
2k∑
m=1

M̂ ′i,m
2q
·
M̂ ′′m,j

2q

∣∣∣∣∣∣ ≤ 2k+2 · 2(k+3)·r(e/2)δn.

Since s = bs2k/2qc, it follows |s− s
2k

2q | ≤ 1. Therefore s/2q is an approximation of
s
2k
/2q

2q with error

2−q, and by Lemma 3.2.4, s/2q is an approximation of M ′i,· ·M ′′·,j with error

2k+2 · 2(k+3)·r(e/2)δn + δn ≤ 2(k+3)·(1+r(e/2))δn = 2(k+3)·r(e)δn.

The same approach works when e is odd. The only difference is that the error of s2k/2
2q is

2k+1 · (2(k+3)·r(e−1) + 1)δn

and so the error of s/2q is

2k+1 · (2(k+3)·r(e−1) + 1)δn + δn ≤ 2(k+3)·(1+r(e−1))δn = 2(k+3)·r(e)δn.

13

Therefore, P ′(e, i, j) is an approximation of (Me)i,j to error 2(k+3)·r(e)δn, proving the claim. Fur-

thermore, using r(e) ≤ 2dlog ee, we can pick q = n+ 2(k + 3)dlogEe and δn = 2−q so that P ′(E, I, J) is

an approximation of (ME)I,J to error 2−n.

Finally, we analyze the memory used by P ′. The recursion depth of P ′ is exactly r(E) = O(logE).

In each level of recursion, P ′ only needs to remember m, sm−1, M̂
′
i,m, M̂

′′
m,j ; when we advance to the next

value of m, we can forget the previous values as explicitly directed in step 3.4, since we no longer need

their values.

Since we know ‖Me‖ ≤ 1, it follows |M̂ ′i,m|, |M̂ ′′m,j | ≤ 2q and |sm−1| ≤ 22q. It is also clear m ≤ 2k.

Therefore the total memory needed to store the numbers of one level is O(log 2q+log 2q+log 22q+log 2k) =

O(k + q) = O(n + k logE). As there are O(logE) levels in total, the memory needed in total is

O(n logE + k log2E); calls on the same level reuse the same memory space. This amount is polynomial

in λ = k + n+ logE.

Finally, A just calls P ′(E, I, J) and returns the result. This gives us a polynomial-space algorithm

to compute (ME)I,J , therefore showing EXPSIZE-MATRIX-POWER ∈ RPSPACE.

Remark 3.2.5. Savitch’s algorithm [8] is very similar to this proof. The main differences are as follows:

the entries are only 0 and 1 instead of real numbers; the inner product of two vectors is 1 if some

component is 1 in both vectors, and 0 otherwise; and there is no restriction in matrix norm. Therefore,

the input matrix is the adjacency matrix of a directed graph; Step 3.3 of the algorithm changes to Sm ←
max{Sm−1,M ′i,m ·M ′′m,j}; and the meaning of (Me)i,j is changed to the following: there exists a path

from i to j with length e. This shows that graph reachability is in PSPACE.

3.2.2 Proof of Theorem 3.2.2

Just like Theorem 3.1.2, we will ignore the real part; our matrix will be a 0-1 matrix. Not only that,

but each row has at most one element with value 1. Then this matrix clearly satisfies the bounded norm

condition.

For the Turing machine T , define a “basic configuration” to be a tuple (T, h, s) where T is the

current tape contents, h is the position of the head, and s is the state of the head. Note that a basic

configuration completely describes the current state of T . We also define two “special configurations”:

“accept” and “reject”. The configuration “accept” means the machine halted without overstepping the

memory limit; the configuration “reject” means the machine tried to step over the memory limit.

Let C be the set of configurations. We also define a transition relation → on C as follows: if in one

step, T moves from configuration c1 to c2, then we say c1 → c2. Note that since T is deterministic, from

any basic configuration c1 there is exactly one c2 such that c1 → c2. We also define accept→ accept and

reject→ reject, therefore turning → into a function.

Since T is limited to t cells of memory, the total number of basic configurations is O(1)t× t×O(1):

there are O(1)t possible tape contents as there are a constant number of symbols for each of the t cells,

there are t possible positions for the head, and there are a constant number of states. There are also

2 = O(1) special configurations. Therefore, in total there are 2O(t) possible configurations. That means

we can compute, in polynomial time, an integer k such that the total number of configurations is ≤ 2k.

This k is the index to EXPSIZE-MATRIX-POWER.

14

Enumerate the configurations as c1, c2, . . . , c|C|. Define the input matrix M as follows:

Mi,j =

1 if i, j ≤ |C| and ci → cj ,

0 if i, j ≤ |C| and ci 6→ cj ,

1 if i, j > |C| and i = j,

0 otherwise

(3.1)

Each entry of this matrix can be computed in polynomial time as follows. First, if either of i, j is

> |C|, we simply check for equality. Otherwise, we can convert them to the configurations ci, cj , then

we take a step of T from configuration ci and check if the result is cj ; simulating a step of the Turing

machine takes polynomial time. For simplicity, in the rest of this proof, we will assume that M has size

|C| × |C|.
We claim (Me)i,j = 1 if and only if T moves from configuration ci to cj in exactly e steps, by

induction on e. When e = 1, this is obvious by definition. Otherwise, we know

(Me)i,j =

|C|∑
m=1

Mi,m · (Me)m,j .

Since T is deterministic, there is exactly one m such that ci → cm. Let m0 be such m; then Mi,m0
= 1

and Mi,m = 0 for all other m, and so we have

(Me)i,j = (Me−1)m0,j .

But this just says, since the first step of T is moving from configuration ci to cm0
, the only way T moves

from ci to cj in e steps is if T moves from cm0 to cj in e− 1 steps. This proves the claim.

Let cs be the starting configuration of T and ca be the accepting configuration. Consider 2k steps

of T starting from cs; let the execution be cs = c′0 → c′1 → . . . → c′2k . Since there are |C| ≤ 2k

configurations in total but the execution has 2k + 1 configurations visited, at least one configuration is

repeated twice. Since T is deterministic, this forms a cycle; therefore, the execution ends in a cycle.

If this cycle is ca → ca, then T halts within the memory bounds. Otherwise, either T is stuck in the

rejecting configuration for having stepped over memory bounds, or T is stuck in an infinite loop; either

way, it means T does not halt within the memory limit of t cells of tape.

Therefore, (M2k)cs,ca = 1 if and only if T halts without using more than t cells of tape. Therefore

R works as follows:

1. Compute the value of k (based on T and t).

2. Fix some enumeration of the configurations. Let cs, ca be the starting configuration and accepting

configuration respectively.

3. Compute E = 2k, I = cs, J = ca.

4. Define B as follows: on input i′, j′, it computes Mi′,j′ as defined in Equation 3.1.

Finally, R runs in time poly(t), and B also runs in time poly(k) = poly(t). So this is a correct

polynomial-time reduction.

3.3 Polynomial powering is in R#P

The main result of this section is that computing polynomial powering is in R#P. In Section 4

we show that some forms of matrices, which occur from solving differential equations using difference

15

schemes, can be converted into polynomials; therefore, for those matrices, the matrix powering result

can be improved from RPSPACE to R#P.

Theorem 3.3.1. For any fixed v, d, POLYNOMIAL-POWER is in R#P.

3.3.1 Proof of Theorem 3.3.1

We first recall the following theorems.

Fact 3.3.2 (Cauchy’s integral formula for polynomials). If P (x1, . . . , xv) is a polynomial and I1, . . . , Iv

are natural numbers, then

P [xI11 . . . xIvv] =
1

(2πi)v

∮
v

. . .

∮
1

P [z1, . . . , zv]

zI1+1
1 . . . zIv+1

v

dz1 . . . dzv

where i is the imaginary unit and each
∮
j

is a complex integral taken on a loop around the origin with

winding number 1.

Fact 3.3.3 (Integration is in R#P). If f : [0, 1] → R is bounded and polynomial-time computable, then

the function

x 7→
∫ x

0

f(t) dt

is in R#P. [3, Thm5.32 p.184]

For Fact 3.3.3, we can in fact say more. Although it says we need f to be polynomial-time computable

and have codomain R, we can generalize this: f just needs to be in R#P and have codomain C. In Ko [3],

the proof of Fact 3.3.3 approximates f using step functions {fn} that converge to f ; here, step functions

are piecewise constant functions, which are easy to integrate. We can still approximate R#P-computable

functions using step functions; the fn’s will be in R#P, but this just means the whole integration remains

in R#P. We can also use codomain C as we can as easily approximate complex-valued functions using

step functions.

The proof now follows immediately. Using Fact 3.3.2, we can express our desired coefficient as a

series of complex integrals. For each
∮
j
, we take the path |zj | = 1, and we also transform the polynomial

with polar substitution zj 7→ wj exp(θj2πi) so that
∮
j
’s path becomes

∫ 1

0
. The function in the integral

is R#P-computable (in fact polynomial-time computable), thus by Fact 3.3.3, the entire integral is in

R#P.

3.4 Certain cases of polynomial powering is in RP

We show that specific cases of polynomial powering are in RP. While the restrictions are rather

severe, leading to limited utility, the ideas used for the proof are rather novel. It might be possible to

extend these ideas for a larger class of cases of polynomial powering.

Theorem 3.4.1. Consider the following restriction of POLYNOMIAL-POWER: v = d = 1, the polynomial P

is fixed, and n = bc logEc for a fixed real c > 0, where E is the exponent. Then this problem is in RP.

Remark 3.4.2. By “the polynomial P is fixed”, it means for different polynomials, we have different

algorithms. The only inputs to the problem are the exponent E, the index I of the indeterminate, and

sufficiently accurate approximations of the coefficients of P . (Recall that an algorithm should receive

sufficiently accurate approximations of its input real numbers, depending on the desired output accuracy;

16

since our output accuracy n depends on E, which is part of the input, we do need the input real numbers

to be more precise as E gets larger.)

3.4.1 Proof of Theorem 3.4.1

Before we proceed to the proof, we will first recall the following theorems.

Fact 3.4.3 (Chernoff–Hoeffding theorem [2]). Let X1, . . . , Xn be independent and identically distributed

random variables taking values on {0, 1}. Let X =
∑
Xi/n and p = E[X]. Then, for any real ε > 0,

Pr(|X − p| ≥ ε) ≤ 2 · exp(−2ε2n).

Fact 3.4.4 (Stirling series). For every natural number t, there exist rational numbers a1, . . . , at−1, bt

such that, for all complex number z with positive real part,

ln Γ(z) = z ln z − z +
1

2
ln

2π

z
+

t−1∑
i=1

ai
z2i−1

+Rt(z)

where Γ is the Gamma function and

|Rt(z)| ≤
bt

|z|2t−1
.

Remark 3.4.5. In this proof we will only use Stirling series where z is a positive integer; therefore,

Γ(z) = (z − 1)!. The rational numbers a1, . . . , at−1, bt are related to Bernoulli numbers and can be

computed exactly, but it is not clear if they can be computed in time polynomial in t.

We also prove the following lemmas about approximating log x and exp(x).

Lemma 3.4.6. (a) Let x be a real number satisfying |x| ≤ 1
2 , and x̂ be an approximation of x to error δ.

Then for any natural number k, it is possible to approximate ln(1 + x) to error kδ + 2−k. In particular,

if δ ≤ 2−(n+logn+2), it is possible to approximate ln(1 + x) to error 2−n.

(b) Let x > 0 be a real number, and x̂ be an approximation of x to error δx where δ ∈ (0, 1/2).

Then ln x̂ is an approximation of lnx with error 2δ.

Proof of Lemma 3.4.6. (a) By Taylor expansion, we have

ln(1 + x) =

∞∑
i=1

(−1)i+1xi

i
= x− x2

2
+
x3

3
− x4

4
+ . . .

which is valid for |x| < 1. In particular, since our assumption is that |x| ≤ 1
2 , this expansion holds. By

truncating it on the k-th term and using x̂ instead of x, we obtain an approximation of ln(1 + x) as

k∑
i=1

(−1)i+1x̂i

i
.

The error of this approximation can be written as follows.∣∣∣∣∣
∞∑
i=1

(−1)i+1xi

i
−

k∑
i=1

(−1)i+1x̂i

i

∣∣∣∣∣
≤

∣∣∣∣∣
k∑
i=1

(−1)i+1(xi − x̂i)
i

∣∣∣∣∣+

∣∣∣∣∣
∞∑

i=k+1

(−1)i+1xi

i

∣∣∣∣∣
≤

k∑
i=1

|xi − x̂i|
i

+

∞∑
i=k+1

|xi|
i

17

The first summation is the error obtained by approximating x as x̂, and the second summation is

the error obtained by removing all but the first k terms.

The first summation can be bounded as follows. Since |x| < 1, we can use Lemma 3.1.3 to show

that x̂i is an approximation of xi to error iδ. Therefore the first summation becomes

k∑
i=1

|xi − x̂i|
i

≤
k∑
i=1

iδ

i
= kδ

The second summation can be bounded by noting |x| ≤ 1
2 , so this series decays faster than a

geometric series, as follows.

∞∑
i=k+1

|xi|
i
≤

∞∑
i=k+1

|xi| ≤
∞∑

i=k+1

(
1

2

)i
= 2−k

Therefore, the error of the approximation is kδ + 2−k. By using δ ≤ 2−(n+logn+2) and k = n + 1,

this error becomes

kδ + 2−k ≤ (n+ 1) · 2−(log 2n) · 2−n−1 + 2−n−1 ≤ 2n.

(b) Let x̂ = ĉx. We have

| ln x̂− lnx| = |(ln ĉ+ lnx)− lnx| = | ln ĉ|.

By definition of ĉ, ĉ is an approximation of 1 to error δ. Therefore we have

1− δ ≤ ĉ ≤ 1 + δ =⇒ ln(1− δ) ≤ ln ĉ ≤ ln(1 + δ)

We again use Taylor expansion, but this time going for a different estimate. When |z| ≤ 1/2,

| ln(1 + z)| =

∣∣∣∣∣
∞∑
i=1

(−1)i+1zi

i

∣∣∣∣∣
≤
∞∑
i=1

∣∣∣∣ (−1)i+1zi

i

∣∣∣∣
≤
∞∑
i=1

|z|i

≤
∞∑
i=1

|z| ·
(

1

2

)i−1
= 2|z|

Therefore, applying this with z = δ and z = −δ gives

−2δ ≤ ln ĉ ≤ 2δ =⇒ | ln ĉ| ≤ 2δ.

Therefore, ln x̂ is an approximation of lnx with error | ln ĉ| ≤ 2δ.

Remark 3.4.7. We can also compute ln x̂ in part (b) of the lemma. First, multiply or divide x̂ by

e = exp(1) until it falls in the interval (1/2, 3/2); this must happen, even with approximated x̂, since
3/2
1/2 = 3 > e. Each multiplication by e corresponds to adding 1 to the logarithm; each division corresponds

to subtracting 1 from the logarithm. Once x̂ is in the interval (1/2, 3/2), we use part (a) of the lemma

to approximate ln x̂, and add/subtract the appropriate number of 1’s.

Lemma 3.4.8. For any natural number n, there exists δ satisfying the following. Let x ≤ 0 be a real

number, and x̂ be an approximation of x to error δ. Then exp(x) can be approximated to error 2−n, in

time polynomial in n+ `(x).

18

Proof of Lemma 3.4.8. First, note that if −x > ln 2·n, then exp(x) < 2−n and thus 0 is an approximation

of exp(x). Thus assume −x ≤ ln 2 · n.

Using Taylor expansion,

exp(x) =

∞∑
i=0

xi

i!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ . . .

Just like in Lemma 3.4.6(a), we approximate this by truncating at the k-th term and using x instead

of x̂. We assume k > en and write k = en+ k′. Then the error is

≤
k∑
i=0

|xi − x̂i|
i!

+

∞∑
i=k+1

|xi|
i!
.

The first part of the error is bounded by

k∑
i=0

|xi − x̂i|
i!

≤
k∑
i=0

iδ

i!
≤ eδ.

The second part of the error is bounded by

∞∑
i=k+1

|xi|
i!
≤ |x|

k

k!
·
∞∑
i=1

(ln 2 · n)i

(en)i
≤ 2 · |x|

k

k!
.

In turn, using k = en+ k′, we can further bound it as

2 · |x|
k

k!
≤ 2 · (ln 2 · n)en

(en)!
· (ln 2 · n)k

′

(en)k′

By Stirling’s approximation (Fact 3.4.4), (en)! ≥ nen, thus the second term is bounded by ≤
(ln 2)en ≤ 1. Since (ln 2)/e < 1/2, the third term is bounded by 2−k

′
. Therefore this error is bounded

by 2−k
′+1.

In total, the error of approximating exp(x) using truncated Taylor series is

eδ + 2−k
′+1.

By picking δ = 2−n−log e−1 and k′ = n+ 2, we obtain the desired error 2−n. This approximation runs in

time poly(k) = O(poly(n)) as k = en+ (n+ 2) = O(n). (The `(x) part of the running time is only used

at the beginning, to check if −x > ln 2 · n.)

We will now begin the proof. Due to the restriction v = d = 1, the polynomial is P (X) = aX + b

for some reals a, b satisfying |a|+ |b| ≤ 1. We will first prove the claim when a ∈ (0, 1/2] and b = 1− a;

then we will generalize the result.

Part 1: P (X) = aX + (1− a) with a ∈ [0, 1/2]

Then the coefficient of XI in PE is given by

PE [XI] =

(
E

I

)
aI(1− a)E−I .

Note that PE [XI] ∈ (0, 1] as long as I ∈ [0, E].

Taking the logarithm gives

logPE [XI] = logE!− log I!− log(E − I)! + I log a+ (E − I) log(1− a) (3.2)

The idea of the algorithm is the following.

19

1. If
∣∣a− I

E

∣∣ is sufficiently large, by using Chernoff–Hoeffding theorem, we can approximate PE [XI]

with 0.

2. Otherwise, by using Stirling’s formula, we can approximate logE!, log I!, log(E − I)! with a suffi-

ciently small error.

3. Using Lemma 3.4.6, log a and log(1 − a) can be approximated with small error. Therefore,

logPE [XI] can be approximated with small error. Using Lemma 3.4.8, we also can approximate

PE [XI] with small error.

Step 1: Approximating with 0 if PE [XI] is too small in the first place

Consider the following probabilistic interpretation. Let Y1, . . . , YE be independent and identically

distributed random variables, such that Yi = 1 with probability a and Yi = 0 with probability 1− a. Let

Y =
∑
Yi. Then the distribution of Y is given by the binomial distribution with parameters E and a;

in particular,

Pr(Y = I) =

(
E

I

)
aI(1− a)E−I = PE [XI].

At the same time, by using Fact 3.4.3 and taking ε = 1
2a,

Pr

(∣∣∣∣YE − a
∣∣∣∣ ≥ 1

2
a

)
≤ 2 · exp

(
−1

2
a2E

)
.

Assume I is such that
∣∣a− I

E

∣∣ ≥ 1
2a. Then

Pr(Y = I) ≤ Pr

(∣∣∣∣XE − a
∣∣∣∣ ≥ 1

2
a

)
as the event Y = I is a subset of the event

∣∣Y
E − a

∣∣ ≥ 1
2a. Therefore,

0 ≤ PE [XI] ≤ 2 · exp

(
−1

2
a2E

)
.

Since a is fixed, the right hand side decays exponentially in E. On the other hand, the required

accuracy

2−n = 2−bc logEc = O(E−c)

decays polynomially in E. Therefore, there exists some E0 such that, for all E′ ≥ E0,

0 ≤ PE [XI] ≤ 2 · exp

(
−1

2
a2E′

)
< 2−bc logE

′c.

Therefore, if E ≥ E0 and I satisfies
∣∣a− I

E

∣∣ ≥ 1
2a, we can output 0.

Step 2: Approximating logE!, log I!, log(E − I)! with small error

Suppose
∣∣a− I

E

∣∣ < 1
2a. Therefore I

E > 1
2a. Also, since we assume a ≤ 1

2 , we have I
E ≤

3
4 < 1− 1

2a,

therefore E−I
E > 1

2a.

By using Fact 3.4.4, for some t to be determined later, there exists some real number bt such that,

for every natural number m, we can approximate lnm! with some real number St(m) with error

≤ bt
(m+ 1)2t−1

.

Since logm! = log e · lnm!, it follows we can also approximate logm! with some real number S′t(m) with

error

≤ log e · bt
(m+ 1)2t−1

.

20

Moreover, it can also be seen from Fact 3.4.4 that S′t(m) is computable in time poly(logm).

We will apply this for m = E, I,E − I. We know E, I,E − I > 1
2aE, therefore the error is

≤ log e · bt(2/a)2t−1

E2t−1 .

It follows that S′t(E)− S′t(I)− S′t(E − I) is an approximation of logE!− log I!− log(E − I)! with error

3 · log e · bt(2/a)2t−1

E2t−1 .

Step 3: Approximating PE [XI] with small error

Using Equation 3.2, we approximate

logPE [XI] = logE!− log I!− log(E − I)! + I log a+ (E − I) log(1− a)

using the approximation

Â := (St(E)− St(I)− St(E − I)) + (I log e · ln â+ (E − I) log e · ln(1− â)) .

The error of this approximation comes from two sources. The first part, by Step 2, is bounded by

3 · bt(2/a)2t−1

E2t−1 .

The numerator is a constant for any fixed t. When t = c, this error is of order O(E−2c−1), so this decays

faster than 2−n = O(E−c).

It remains to investigate the error from the second part. By Lemma 3.4.6 and Remark 3.4.7, ln â

and ln(1− â) can be approximated to any error 2−n
′

as long as â approximates a with error 2−poly(n
′)a.

In particular, taking n′ = n+ logE +O(1) allows us to approximate

I log e · ln â+ (E − I) log e · ln(1− â)

with error

I log e · 2−n
′−O(1) + (E − I) log e · 2−n

′−O(1) = E log e · 2−O(1) · 2−n · 2− logE .

The factors E and 2− logE cancel, so this error is ≤ 2−n−O(1).

Therefore, the total error of Â is ≤ 2−n−O(1).

Finally, we are looking for PE [XI] = 2Â = exp(ln 2 · Â). By using Lemma 3.4.8, since ln 2 · Â can

be approximated to error 2−n−O(1), we also can approximate PE [XI] to error 2−n−O(1), in particular

to error 2−n. Each part of this approximation can be computed in polynomial time, so this gives a

polynomial-time algorithm.

Part 2: P (X) = aX + b

We now generalize this to a general linear polynomial. The coefficient is(
E

I

)
aIbE−I .

Note that the sign can be easily determined:
(
E
I

)
is always positive, aI contributes the sign sgn(a)I ,

and bE−I contributes the sign sgn(b)E−I . Moreover, the sign does not affect the magnitude of the

coefficient. So for simplicity, assume a, b ≥ 0.

21

We scale the polynomial as

a =
a′

a+ b
b =

b′

a+ b

so the coefficient becomes

(a+ b)E ·
(
E

I

)
(a′)I(b′)E−I .

Since a + b ≤ 1, we can approximate the right term with Part 1 normally with error 2−n
′

where

n′ = (c + 1) logE. We can also easily approximate the left term with error 2−n
′
; therefore, we can

approximate the coefficient with error 2 · 2−n′ ≤ 2−n.

22

Chapter 4. Applications

The main motivation for the main results is from solving differential equations by using difference

schemes (also known as finite difference method). Given an ordinary or partial differential equation, we

divide all spatial and temporal dimensions into small discrete time steps, and convert the differential

equation into a difference scheme. When the differential equation is linear and has constant coefficients,

the difference scheme is a system of linear recurrences in the temporal dimension. A system of linear

recurrences in general is just the matrix equation

~ut+1 = M · ~u,

which by induction on t gives

~ut = M t · ~u0.

Therefore, by computing matrix powers and inner products, we can evaluate ~ut at any t, therefore

approximating the solution of the system at any time.

4.1 Linear recurrences and linear ordinary differential equa-

tions

Consider the following system of linear recurrences:(
at+1

bt+1

)
=

(
1 1

1 0

)
·

(
at

bt

)
.

This system describes the Fibonacci sequence: with a0 = 1, b0 = 0, we have at = Ft+1, bt = Ft where Ft

is the t-th Fibonacci number. We can also express other sequences that are similarly defined recursively

in this manner, as a matrix equation. This is a typical use of a system of linear recurrences, with small

dimensions but entries that grow arbitrarily large.

Similarly, consider the following linear ordinary differential equation:

−f ′′(x) = f(x).

Using difference schemes, we may approximate

f ′′(x) ≈ f(x+ 2h)− 2f(x+ h) + f(x)

2h2
,

and so for a time step of h, we obtain the linear recurrence

f(x+ 2h) ≈ 2f(x+ h) + (−1− 2h2)f(x).

This in turn can be converted into the following system of linear recurrences, by defining at = f(th) and

bt = f((t+ 1)h): (
at+1

bt+1

)
=

(
0 1

−1− 2h2 2

)
·

(
at

bt

)
.

23

In general, linear ordinary differential equations can be converted into systems of linear recurrences

with small dimensions; to be precise, ordinary differential equations of order k can be converted into

systems of k linear recurrences.

Consider a system of linear recurrences defined by the matrix equation

~ut+1 = M · ~ut,

where ~ut has dimension k and M has dimension k × k. Then by induction on t, we have

~ut = M t · ~u0,

so given the initial values ~u0 and t, we can obtain ~ut. From the motivation above, we are interested to

investigate when k is small (so the matrix can be read off in full), M is unrestricted (so we do not have

any stability constraints), and t is small (so the assumption that M is not necessarily stable is not a

problem). We can thus define two problems based on our exponential-size problems.

Definition 4.1.1. The function INNER-PRODUCT with index k is defined to be exactly the same as the

function EXPSIZE-INNER-PRODUCT in Definition 2.3.1, except that the dimensions of ~u,~v are k instead

of 2k.

The function MATRIX-POWER with index k is defined to be the function EXPSIZE-MATRIX-POWER in

Definition 2.3.2, except that the dimension of M is k × k instead of 2k × 2k.

Since EXPSIZE-INNER-PRODUCT and EXPSIZE-MATRIX-POWER are computable in polynomial space, it

follows INNER-PRODUCT and MATRIX-POWER are computable in poly-log space. We make it more precise

as follows. These results were previously published by the author [4].

Theorem 4.1.2. (a) INNER-PRODUCT is in RSPACE(log).

(b) If the exponent E is written in unary, MATRIX-POWER is in RSPACE(log2).

(c) If the exponent E is written in binary, MATRIX-POWER is in RP.

Remark 4.1.3. Here, the definition of using sublinear space such as RSPACE(log) follows the standard

convention: the input is random-access read-only and the output is write-only, but neither is charged

against the memory consumption. Only the working memory is charged.

4.1.1 Proof of Theorem 4.1.2

(a) We will first solve a related problem: ~u,~v are integer vectors of k elements each, where each

element is in the interval [0, 2p), and we wish to compute ~u · ~v. The complexity parameter is λ = k + p;

therefore, we want to use O(log λ) = O(log(k + p)) space.

First note that ~u · ~v ≤ k · 22p. Therefore the length of the output is O(log k + p). Write each ui in

binary:

ui =

p−1∑
j=0

ui,j2
j .

Note that this is possible since we assumed ui ∈ [0, 2p). Define ui,j = 0 for j ≥ p. Also define vi,j

24

similarly. Then

~u · ~v =

k∑
i=1

 p∑
j=0

ui,j2
j

 ·
 p∑
j=0

vi,j2
j

=

k∑
i=1

2p∑
b=0

b∑
j=0

ui,j2
j · vi,b−j2b−j

=

k∑
i=1

2p∑
b=0

2b
b∑
j=0

ui,jvi,b−j

A :=

2p∑
b=0

2b ·

 k∑
i=1

b∑
j=0

ui,jvi,b−j

Here, the second line is derived by rearranging the terms in the product of sums. We take the terms

in the form ui,j2
j · vi,b−j2b−j into the b-th group; this is motivated by 2j · 2b−j = 2b for all the terms in

the group, so that we can take the 2b out as in the third line. And furthermore, we can then interchange

the summations on i and b as the only terms that depend on either i or b are the terms inside the double

sum.

Note that for any b′, the b′-th bit of A is also obtained as the b′-th bit of A mod 2b
′+1, where

mod is the modulo operation. Moreover, if b > b′, then the b-th term of the outer-most summation of

A does not contribute to A mod 2b
′+1, as 2b divides 2b

′+1 so the contribution is always 0. Therefore A

mod 2b
′+1 can be determined from the following:

Ab′ :=

b′∑
b=0

2b ·

 k∑
i=1

b∑
j=0

ui,jvi,b−j

Moreover, the terms corresponding to b < b′ make up Ab′−1 by definition, so we have

Ab′ = Ab′−1 + 2b
′
·
k∑
i=1

b′∑
j=0

ui,jvi,b′−j .

This gives rise to the following algorithm. Our algorithm will compute the bits of the output from

the least significant bit; therefore, we assume that bits 0, 1, . . . , b − 1 have been computed and we are

computing bit b of the output.

Let Cb = b|Ab|/2bc; in other words, Cb is what we get when we remove the last b bits of Ab. Put

in another way, Cb is the part from computing Ab that still matter. (The last b bits of Cb are bits

0, 1, . . . , b − 1, which no longer matter as they have been output. The b-th bit is what we are working

on, and the (b+ 1)-th bit and above will matter later as carry.) Then by dividing the previous equation

by 2b
′

and taking floor,

Cb′ =

⌊
Cb′−1

2

⌋
+

k∑
i=1

b′∑
j=0

ui,jvi,b′−j .

Therefore Cb′ is obtained from the previous Cb′−1, plus a sum. We will investigate the memory

requirements of Cb′ .

We first look into the sum. Since i ranges in [1, k] and j ranges in [0, b′], we need O(log k) space for

i and O(log b′) space for j. Each term ui,jvi,b′−j is in the range {0, 1} (since ui,j , vi,b′−j ∈ {0, 1}), so the

total sum is at most k(b′+ 1); therefore, an accumulator for this sum takes space O(log(kb′)). Similar to

25

the proof of Theorem 3.2.1, we emphasize that once we compute a term and add it to the accumulator,

we forget the term; this is how we can reduce the amount of memory needed. In total, we require

O(log k) +O(log b′) +O(log(kb′)) = O(log k + log b′)

memory. However, since b′ ≤ 2p+ log k, the total memory reduces to O(log k + log p) = O(log λ).

Now, since the sum is at most k(b′ + 1) ≤ 2kp, we can prove by induction that Cb′ ≤ 2 · 2kp.
Therefore Cb′ only requires space O(log(kp)) = O(log λ) as well. It is also worth emphasizing that we

only store Cb′ , not Ab′ , in memory. From Cb′ we can obtain the b′-th bit; this is the least significant bit

of Cb′ . And we only need to remember bCb′/2c for the next iteration b = b′ + 1.

Therefore, each iteration takes space O(log λ), which we can reuse. The amount of memory required

to remember the current iteration is O(log b) = O(log λ), so in total, we can compute inner product of

natural number vectors in log-space.

We now wish to move to the real version. But first, we will show how to compute inner product of

integer vectors (with possibly negative entries) in log-space.

We assume each element ui, vi also has a sign bit ui,+, vi,+ indicating its sign. The idea is to split

the inner product into positive and negative contributions. During computation of Cb′ above, when

the algorithm wants to compute ui,jvi,b′−j , it first checks if the sign bits are correct: for the positive

contribution, we want ui,+ = vi,+, while for the negative contribution, we want ui,+ 6= vi,+. If the sign

bits are not appropriate, we skip the product; this corresponds to skipping the component because it is

considered in the other contribution.

Using this, the algorithm can compute the positive and negative contributions in log-space. It then

simply compares which one is larger to determine the sign of the output, and computes the difference to

determine the magnitude of the output. Both of these can be done in log-space as well.

The real version is now straightforward. The accuracy needed has already been settled by the proof

of Theorem 3.1.1. By approximating the input numbers to the required number of digits and then scaling

by a multiple of 2p (where p = 2 log k+ 2n+ 4 is the parameter for the input accuracy), we may assume

that all entries are integers. Then using inner product for integers above, we obtain a log-space algorithm

to compute the output to the correct approximation. Finally, since p = O(log k + n) = O(λ), it follows

our algorithm takes space O(log(k + p)) = O(log(k + n)) = O(log λ).

(b) This is simply a combination of the proof in (a) and the proof of Theorem 3.2.1. We use the

same idea of using accuracy from Theorem 3.2.1 and then scaling them so that we work with integers

as in (a). We can compute inner product in O(log(k + n)), and exponentiation-by-squaring requires

O(logE) levels of recursion. Therefore the total memory required is O(log(k + n) logE) = O(log2 λ).

As a remark, this statement even holds without the condition ‖M‖ ≤ 1, as long as the magnitude

plays a part in the complexity parameter: if the elements in M satisfy |Mi,j | ≤ 2c, then the complexity

parameter λ should be k + n+ E + c.

(c) The proof in (b) holds, but now the complexity parameter is k+ n+ logE instead of k+ n+E

since E is written in binary instead of unary. Therefore, a memory cost of O(log(k+n) logE) is no longer

log2-space. Instead, we now optimize for time. Instead of recomputing entries as needed, whenever we

need to compute a matrix such as Me/2 for Me, we remember the entire matrix. Since each entry is an

inner product and hence can be computed in poly-time, the whole matrix can be computed in poly-time.

Since there are O(logE) levels of recursion, which is polynomial in the parameter λ, the total time to

compute the matrix power is also polynomial.

26

4.2 Linear partial differential equations

Partial differential equations can also be approximated using difference schemes by dividing both

temporal and spatial dimensions into time steps. The main difference is that, instead of having ~u to

represent only the last few time steps (thus leading to a matrix of small size), we use ~u to represent the

approximate value of the function at every spatial point. For example, given the differential equation

ft(x, t) = fx(x, t)

defined on [0, 1]× [0,∞), we can divide the spatial dimension x into time steps of size k and the temporal

dimension t into time steps of size h to obtain

f(x, t+ h) ≈ h

k
f(x+ k, t) +

(
1− h

k

)
f(x, t).

Since our vector ~ut is only indexed by t, we need to include all the spatial points in order to hold

all the necessary information; in other words,

~ut = (f(0, t), f(k, t), f(2k, t), . . . , f(1, t)).

This means the dimensions of ~u and the matrix M are 1/h. To improve the approximation, we want

to take a smaller h; this leads to the exponential-size dimensions, hence why we have been studying of

exponential-size problems.

However, the matrices produced by this kind of difference schemes are not just random matrices;

they have a specific structure. In general, the matrices are very sparse, and nonzero elements are placed

close to the main diagonal, to capture the intuition that far-away points cannot influence each other.

For linear partial differential equations of one spatial dimension with periodic boundary condition

and constant coefficients, such as the above example of ft(x, t) = fx(x, t), it can be shown that the

matrix corresponding to it is a circulant matrix with low band-width. In more general situations with

more than one spatial dimension (but still with periodic boundary condition and constant coefficients),

the matrix is in the form

M :=
∑

|i1|,...,|iv|≤d

Bi1,...,iv ⊗ C
i1
N1
⊗ . . .⊗ CivNv

where ⊗ indicates the Kronecker product, Bi1,...,iv are b × b matrices that pairwise commute, CN is an

N ×N circulant matrix with 1’s on the off-diagonal below the main diagonal, N1, . . . , Nv are dimensions

of the “components” of the matrix, and d is a small constant indicating the bandwidth.

Any element of ME can be represented as an element of the block

B ⊗ CI1N1
⊗ . . .⊗ CIvNv

where B is some b× b matrix obtained as a product of powers of the Bi1,...,iv matrices, and I1, . . . , Iv are

some integers. Therefore, we wish to determine B for a specific choice of I1, . . . , Iv.

Treating CN1 , . . . , CNv as indeterminates, we obtain a Laurent polynomial in v variables and degree

d

pM =
∑

|i1|,...,|iv|≤d

Bi1,...,ivx
i1
1 . . . x

iv
v .

Raising this to the E-th power and seeking for the coefficient of xI11 . . . xIvv gives us the desired

matrix B. This motivates why we consider the function POLYNOMIAL-POWER treated in Section 3.3, as

computing powers of this polynomial allows us to compute powers of our matrix.

27

As a remark, note that there are some differences between pM and the polynomials we consider in

POLYNOMIAL-POWER, but these are of no particular importance.

First, pM is a Laurent polynomial, possibly having negative powers. But this is fine; if the degree

of pM is d, then multiply pM by xd1 . . . x
d
v and seek for the coefficient of xI1+dE1 . . . xIv+dEv .

Second, the coefficients of pM are real matrices instead of just real numbers. However, each element

of (pM)E is a polynomial, so our result still holds.

Third, the same block B⊗CI1N1
⊗ . . .⊗CIvNv

of ME can be obtained from multiple choices of I1, . . . , Iv.

However, since POLYNOMIAL-POWER is in #P, we can simply include an additional witness: choose the

indices I1, . . . , Iv as part of the witness, check if it contributes to the block we seek (and return 0

otherwise), and if yes, we proceed to POLYNOMIAL-POWER. Therefore computing the block is in #P.

28

Chapter 5. Conclusion

We discussed the definition of some linear algebra problems when they involve exponential-size

inputs and real number entries. We took an approach used by Ko [3], where computing a real number

means computing arbitrarily accurate approximations of it, and getting a real number as an input to

a real function means getting a sufficiently accurate approximation of it. We also developed a way to

formalize exponential-size inputs by instead treating a sequence of functions whose arities grow along the

sequence. In addition, we defined real complexity classes by generalizing existing classical complexity

classes; in particular, we defined R#P.

We also investigated the computational complexity of the linear algebra problems. In the case of

exponential-size inner product, the complexity is in R#P, and this is in a sense optimal by showing that

a #P-complete problem can be reduced to this. For exponential-size matrix powering, the complexity

is in RPSPACE, and this is also optimal in the sense that a PSPACE-complete problem is reducible to

exponential-size matrix powering. We also looked at several restrictions of the matrix powering problem,

turning it into a polynomial powering problem, which we showed to be in R#P. A particular special

case of the polynomial powering problem is in polynomial time with a novel approach. We also showed

an application of these results, namely the application of polynomial powering to approximate solutions

to differential equations using difference schemes. These theorems contribute to the growing field of real

complexity theory by providing new results in relation to exponential-size problems, previously poorly

researched.

Some of our results are not tight yet. For example, polynomial powering does not yet have a lower

bound. The input to this problem is no longer exponential-size, since we fix the degree and arity of the

polynomial; therefore, it seems reasonable that we can have a polynomial-time algorithm. Does such

algorithm exist or is our R#P result optimal? And what about the restriction discussed in Section 3.4;

does this poly-time result hold for a larger class of polynomials?

There are also plenty of other linear algebra problems, such as matrix determinant and inverse,

matrix decomposition, and more, which have not been discussed in this paper. With a matrix as an

input, it is reasonable to consider the exponential-size versions of them just like we discussed here;

while there have been results on the “small”-sized versions where the entire matrix can be read off, the

exponential-size versions are new. Their complexity can be researched and discussed in the future.

29

Bibliography

[1] B. M. Bush. “The Perils of Floating Point.” http://www.lahey.com/float.htm. 1996.

[2] W. Hoeffding. “Probability Inequalities for Sums of Bounded Random Variables.” Journal of the

American Statistical Association 58.301, p.13–30. 1963.

[3] K. Ko. Complexity Theory of Real Functions. Birkhäuser Basel. 1991.

[4] I. Koswara, S. Selivanova, M. Ziegler. “Computational Complexity of Real Powering and Improved

Solving Linear Differential Equations.” Computer Science – Theory and Applications (CSR 2019).

2019.

[5] F. Le Gall. “Powers of Tensors and Fast Matrix Multiplication.” 39th International Symposium on

Symbolic and Algebraic Computation (ISSAC 2014). arXiv: 1401.7714. 2014.

[6] N. T. Müller. “The The iRRAM: Exact Arithmetic in C++.” Computability and Complexity in

Analysis (CCA 2000), p.222–252. 2000.

[7] G. Nemes. “On the coefficients of the asymptotic expansion of n!.” arXiv: 1003.2907. 2010.

[8] W. J. Savitch. “Relationships between nondeterministic and deterministic tape complexities.” Jour-

nal of Computer and System Sciences 4 (2), p.177–192. 1970.

[9] V. Strassen. “Gaussian elimination is not optimal.” Numerische Mathematik 13, p.354–356. 1969.

[10] L. Valiant. “The complexity of computing the permanent.” Theoretical Computer Science 8 (2), p.

189–201. 1979.

30

http://www.lahey.com/float.htm

	 Contents
	Introduction
	Definitions
	Real computation
	Complexity classes
	Linear algebra problems

	Main theorems
	Exponential-size inner product is R#P-complete
	Exponential-size matrix powering is RPSPACE-complete
	Polynomial powering is in R#P
	Certain cases of polynomial powering is in R¶

	Applications
	Linear recurrences and linear ordinary differential equations
	Linear partial differential equations

	Conclusion
	Bibliography

