
박 사 학 위 논 문
Ph.D. Dissertation

검증된 계산을 위한 연속적 추상형 자료형

Continuous Abstract Data Types

for Verified Computation

2021

박 세 원 (朴世原 Park, Sewon)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology

박 사 학 위 논 문

검증된 계산을 위한 연속적 추상형 자료형

2021

박 세 원

한 국 과 학 기 술 원

전산학부

검증된 계산을 위한 연속적 추상형 자료형

박 세 원

위 논문은 한국과학기술원 박사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2021년 6월 7일

심사위원장 Martin Ziegler (인)

심 사 위 원 강 지 훈 (인)

심 사 위 원 양 홍 석 (인)

심 사 위 원 최 성 희 (인)

심 사 위 원 Alex Simpson (인)

심 사 위 원 이 계 식 (인)

Continuous Abstract Data Types

for Verified Computation

Sewon Park

Advisor: Martin Ziegler

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Daejeon, Korea

June 7, 2021

Approved by

Martin Ziegler

Professor of School of Computing

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.

DCS 박세원. 검증된 계산을 위한 연속적 추상형 자료형. 전산학부 . 2021년.

148+v 쪽. 지도교수: 지글러마틴. (영문 논문)

Sewon Park. Continuous Abstract Data Types for Verified Computation.

School of Computing . 2021. 148+v pages. Advisor: Martin Ziegler. (Text

in English)

초 록

이 논문에서는 실수를 추상형 자료형으로 제공하는 명령형 프로그래밍 언어들을 고안한다. 실수라는 연속

적인 자료를 추상적으로 다루는 기존의 방식으로는 크게 대수적 계산 모형에 기반하는 것과 실수를 double

등의 유한 표기법을 사용하여 근사하는 것이 있다. 대수적 계산 모형의 경우 실제로 컴퓨터에 구현할 수

없거나 초월수 등을 다룰 수 없다는 한계가 있으며 유한 표기법에 기반한 계산의 경우 엄밀한 계산 모형이

없거나 계산 결과를 신뢰할 수 없다는 문제가 존재한다. 이 논문에서는 연속형 자료에 대한 계산의 엄밀한

이론적 토대인 계산 해석학에 기반하여 위의 문제들을 해결한다. 이 논문에서 제안되는 언어들은 명령형

프로그래밍 언어로 선행 조건과 후행 조건을 통해 프로그램들을 명세할 수 있다. 또한, 이 논문에서는 명

세된 프로그램들을 검증할 수 있는 호아르 방식의 프로그래밍 검증법을 정의한다. 결과적으로 사용자들은

쉽게 실수 계산을 프로그램으로 표현할 수 있으며, 작성된 프로그램의 작동 방식을 명세할 수 있고, 명세된

프로그램을 검증할 수 있다. 프로그래밍 언어들을 고안하는 단계를 프레임워크로 만들어서 행렬, 연속함수

등 다른 연속적 추상형 자료형으로 확장하는 방법 또한 제안한다.

핵 심 낱 말 실수 계산, 연속적 추상형 자료형, 계산 해석학, 명령형 언어, 프로그램 검증

Abstract

We devise imperative programming languages for verified real number computation where real numbers

are provided as abstract data types such that the users of the languages can express real number compu-

tation by considering real numbers as abstract mathematical entities. Unlike other common approaches

toward real number computation, based on an algebraic model that lacks implementability or transcen-

dental computation, or finite-precision approximation such as using double precision computation that

lacks a formal foundation, our languages are devised based on computable analysis, a foundation of

rigorous computation over continuous data. Consequently, the users of the language can easily program

real number computation and reason on the behaviours of their programs, relying on their mathemat-

ical knowledge of real numbers without worrying about artificial roundoff errors. As the languages are

imperative, we adopt precondition-postcondition-style program specification and Hoare-style program

verification methodologies. Consequently, the users of the language can easily program a computation

over real numbers, specify the expected behaviour of the program, including termination, and prove

or disprove the correctness of the specification. Furthermore, we suggest extending the languages with

other interesting continuous data, such as matrices, continuous real functions, et cetera.

Keywords real number computation, continuous abstract data type, computable analysis, imperative

programming, formal verification

Contents

Contents . i

List of Tables . iv

List of Figures . v

Chapter 1. Introduction 1

Notations 10

Chapter 2. Computable Analysis 11

2.1 Discrete Computation . 11

2.2 Type-2 Computability . 12

2.3 Rep the Category of Represented Sets 14

2.3.1 Representations . 14

2.3.2 Partial Functions . 18

2.4 Applicative Functors and Monads 21

2.5 Real Number Computation . 24

2.5.1 With or Without Computational Content 24

2.5.2 Effective Representation of Real Numbers 25

2.6 Nondeterminism . 27

2.7 Asm(NN) the Category of Assemblies over NN 29

2.7.1 Partial Functions in Asm(NN) 31

2.7.2 Multifunctions in Asm(NN) 32

2.7.3 Lifting Sequences . 34

2.8 Further Remarks on Multifunctions 37

Chapter 3. ERC: Simple Imperative Language with Real Numbers 40

3.1 Overview of ERC with Example Programs 42

3.2 Formal Syntax and Typing . 43

3.2.1 Formal Syntax . 43

3.2.2 Typing Rules . 45

3.3 Denotational Semantics . 46

3.3.1 Powerdomain for ERC . 47

3.3.2 Denotations of Terms . 49

3.3.3 Denotations of Commands 50

3.3.4 Denotations of Programs 52

i

3.4 The Logic of ERC . 54

3.4.1 Assertion Language L . 54

3.4.2 Reasoning Principles . 56

Chapter 4. ERC in Asm(NN) and its Extension 63

4.1 Interpretation of ERC in Asm(NN) 63

4.1.1 Powerdomain in Asm(NN) 64

4.1.2 Interpretation of Terms, Commands, and Programs . . . 66

4.2 Extending ERC . 68

4.2.1 Extension Structure . 68

4.2.2 Extended Reasoning Principles 70

4.3 Root Finding in ERC Extended with Continuous Real Functions 71

Chapter 5. Clerical: Expression-based Language with Limit Operator 74

5.1 Overview of Clerical with Example Programs 74

5.2 Formal Syntax and Typing . 77

5.2.1 Formal Syntax . 77

5.2.2 Typing Rules . 77

5.3 Denotational Semantics . 79

5.3.1 Denotations of Data Types and Contexts 79

5.3.2 Semantic Construction . 80

5.3.3 Denotations of Expressions 89

5.4 Reasoning Principles . 92

5.4.1 Assertion Language . 92

5.4.2 Specifications . 93

5.4.3 Proof Rules . 94

5.5 Example Formal Verifications . 100

5.5.1 Abbreviations of Derivations 100

5.5.2 Simple Arithmetical Expressions 101

5.5.3 Formal Verification of Computing π 104

5.6 (Relative) Completeness . 110

Chapter 6. Clerical in Asm(NN) 118

6.1 Modified Powerdomain in Asm(NN) 118

6.2 Computability of Clerical . 120

Chapter 7. Reliable Symmetric Matrix Eigenproblem 123

7.1 Introduction . 123

7.1.1 QR Algorithm and Wilkinson Shift 123

ii

7.1.2 Reliable Computation using Intervals 124

7.1.3 Related Works and Our Contributions 125

7.2 Problem Statement and Overview 126

7.3 Interval Computation and Fuzziness 127

7.3.1 Dyadic Intervals . 127

7.3.2 Fuzzy Sign . 128

7.4 Fuzzy Wilkinson Shift . 128

7.5 Separating Eigenvalues . 129

7.5.1 Interval Tridiagonal Reduction 129

7.5.2 Interval QR Step with Fuzzy Shift 131

7.5.3 Interval QR Algorithm Fuzzy Shift 132

7.5.4 Separating Eigenvalues . 133

7.6 Interval Kernel Problem . 134

7.6.1 Interval Gaussian Algorithm 134

7.6.2 Pseudo-regularity . 135

Chapter 8. Conclusion 138

Bibliography 139

Index 145

Acknowledgments 148

iii

List of Tables

iv

List of Figures

3.1 The typing rules for terms in ERC . 45

3.2 The typing rules for commands in ERC . 46

3.3 The denotations of ERC terms. 50

3.4 The denotations of ERC commands. 51

3.5 The verification calculus of ERC . 57

4.1 The interpretation of ERC terms in Asm(NN). 67

4.2 The interpretation of ERC commands in Asm(NN). 68

4.3 A root finding program in ERC(Erfun). 71

5.1 The formal syntax of Clerical expressions. 78

5.2 The typing rules of Clerical. 79

5.3 The denotational semantics of Clerical. 91

5.4 A Clerical expression for computing π. 105

7.1 Classifying on λ̃1, λ̃2 and λ̃3, the three enlarged intervals, yields the pairs (λ̃′1, 2) and (λ̃′2, 1)

where λ̃′1 := λ̃1 ∩ λ̃2. If the distance between the actual eigenvalues (the two filled circles)

is greater than some ε and the widths of the intervals are less than ε/2, the procedure

succeeds. 133

7.2 Changes in eigenvalues to the perturbation with ε in the proof of Lemma 7.6. Shifting with

small enough ε on a singular diagonalizable matrix makes it regular and its eigenvalues

are shifted by ε. 136

7.3 When the width wj is smaller than bj/2, the interval can be selected as a pivot element. 137

v

Chapter 1. Introduction

Real numbers are infinite objects that cannot be represented exactly using discrete data. Traditional

models of computation are based on discrete data such as natural numbers, integers, rational numbers,

discrete graphs, and et cetera. Turing machines, which is the most renowned model, read and write finite

sequences of finite alphabets. When we abstract Turing machines, they represent only partial functions

from natural numbers to natural numbers. Hence, any attempt on computing over real numbers using

Turing machines, or any equivalent models, fail.

double-like data types in common programming languages, is a superstition. Its success in practical

applications is misleading too many people. It disguises itself as it realizes real number computation.

The set of finite-precision floating-point numbers is countable, and obviously, it fails to realize real

number computation. It is not hard to find where a finite-precision floating-point computation becomes

erroneous. When we look at any programming communities, there always are questions like “why 1.0+1.0

is not equal to 2?” And, there always are answers like “that is how real number computation is”. Due to

its design, rounding errors are inherent in floating-point computation [Gol91, Rum88, LW02, KMP+08].

When it comes to deciding the order of two real number expressions, it is possible to compute the totally

wrong answer due to the errors in evaluating the two operands. In mission-critical applications, the

errors will not be a Q&A post that we can laugh at [Hol94, JM97].

Algebraic models such as Blum-Shub-Smale machines [BSS+89] or Real-RAM [Sha78] consider al-

gebraic real numbers. Algebraic real numbers are those that are roots of integer polynomials. Being

represented by integer polynomials, even discrete models of computation such as Turing machines can

compute over them exactly. However, in many scientific computing applications, the domain of compu-

tation often exceeds from being algebraic: π, e, and et cetera. Extending the domain, the assumption

on comparing real numbers get unrealistic [Bra03, BV99]. Hence, though they surely are one important

aspect of computing over real numbers, they are not in the scope of this topic. Hence, when we mention

real number computation in this dissertation, it refers to computing over not only algebraic but all real

numbers.

When there is a set that we want to compute over, say A, the set itself is not what machines

recognize. When we abstract Turing machines as partial functions from N to N, to compute over A

using Turing machines, there should be some representation r : N⇀ A. A representation is a relation of

realization. If r(n) = a ∈ A holds for some n ∈ N, the natural number n can be seen as an implementation

of the abstract object a ∈ A. Then, we can let a Turing machine M : N ⇀ N realizes or computes a

mathematical function f : A → A with regards to the representation r if for every element a ∈ A and

its implementation n, it holds that r
(
M(n)

)
= f(a). A representation is valid if it, as a function, is

surjective. I.e., a valid representation must make every element implementable. In this sense, as the

set of real numbers’ cardinality strictly exceeds the set of natural numbers’ cardinality, it is impossible

to work with ordinary Turing machines to compute over the set of real numbers. There is no valid

representation on the set of real numbers for the ordinary Turing machines.

Hence, to ‘rigorously’ compute over the set of real numbers or any other sets whose cardinality

exceeds the cardinality of the set of natural numbers, it is necessary to extend the model of computation

and the notion of representation. Type-2 Turing machines, though we will not go in deep into its definition

yet, provides a formal framework for computing over the set of infinite sequences NN. Intuitively, they

1

are extensions of Turing machines by letting the input and output tapes be infinitely long. Abstracting

it, type-2 machines represent partial functions from NN to NN. Having the domain of data extended

to NN, (infinite) representation on a set A is, now, a surjective function δ : NN ⇀ A. And, an infinite

sequence ϕ ∈ NN is an implementation of a ∈ A with regards to the representation if δ(ϕ) = a holds.

Similarly, the notion of computing a function on type-2 machines is extended.

The right way of computing over real numbers is, as opposed to using finite-precision floating-point

computation, to use infinite representation of real numbers such that it avoids any rounding errors

[BCRO86, BC88, PER89, DG93, EE00, Wei00, Mül00, EHS04, BCC+06, CNR11, KTD+13]. In fact,

there are many, infinitely many, representations of real numbers; since any surjective function δ : NN ⇀ R
is a representation. Among the infinitely many others, let us see what the Cauchy representation, which

is often called the standard representation, is. The set of rational numbers Q being countable, we can

embed it in the set of natural numbers ιQ : N→ Q such that all primitive operations of rational numbers

are computable. A datum ϕ ∈ NN implements a real number x if n’th entry of the datum ϕ(n) represents

a 2−n approximation to the real number x. In other words, δCauchy is

δCauchy(ϕ) = x :⇔ |ιQ(ϕ(n))− x| ≤ 2−n for all natural number n .

A datum ϕ is an implementation of x ∈ R if ϕ encodes a sequence of rational numbers which converges

rapidly to x. The datum ϕ can be seen as a magical black box that when we inquire some portion n ∈ N
of the real number that it represents, it tells us the amount of information. The crucial part of it is that

we can repeat the inquiry as many times as we want and ask as much information out of it. Under the

Cauchy representation, the field arithmetic of real numbers can be computed exactly.

On the first day, there were Turing machines. When we make Java, C, C++, or Python programs,

it is not too exaggerating to say that Turing machines are behind them. Turing machines provide a

formal foundation for computing over any discrete objects such as natural numbers, integers, and so

on. Abstracting Turing machines away, we get programming languages. Only their tedious semantics

concern how to translate each instruction of the programming language to Turing machines’ instructions.

Lucky us, and all the programmers, we do not have to worry about Turing machine instructions when

we write a simple Python program.

The same is desired for type-2 computation. Type-2 machines provide a formal foundation for

computing over any sets whose cardinality is Continuum. To make it practically usable, it is essential to

abstract the implementation-specific details away. We need to have a programming language that works

at the abstract level. How programs in the language to be actually simulated by machines should be

hidden to the users; thus, it is okay for them to be aware of only the abstract semantics. And, that is

what this dissertation is all about, especially for real numbers.

We can introduce real numbers in a programming language as a primitive notion of the language,

such as int, double, et cetera [DG93, Esc96, ES14]. This approach, which is classified to be external by

[BES02a], is suitable when we are interested in the abstraction of real numbers. However, declaring, not

defining, a type for real numbers, we have to face a vital decision problem: which real number operations

should come as primitives and what should their semantics be. To make the decision, we need to know

the universal property of real number computation as we do not want our data type for real numbers to

be representation specific.

Using the Cauchy representation, the field arithmetic of real numbers is computed exactly. Given

an arithmetical expression e, when we compute it, the number that the computer returns is exactly the

value that e mathematically represents. (Of course, the real number itself does not get printed; when we

2

put an additional input n, we get 2−n approximation to the real number.) However, it cannot be decided

if two real numbers are identical in this approach. Suppose we have two sequences of rational numbers

(qn)n∈N and (rn)n∈N that converge to real numbers x and y, respectively. The real numbers are identical

if and only if ∀n. |qn − rn| ≤ 2−n holds. And, testing if the statement holds is not decidable. The best

we can get is to say “no” when there is an index that n such that |qn − rn| > 2−n holds, by testing it

for each n. In consequence, testing inequality of real numbers x < y is only partially computable in the

sense that when x 6= y, we can say if x < y or y < x. However, when x = y, the procedure of testing

x < y will run into an infinite loop and never terminates. The explanation thus far is based on the

Cauchy representation. However, this is a universal property of infinite representation in that whichever

representation we use, inequality tests can only be computed partially [Wei00, Theorem 4.1.16].

As inequality tests become partial, nondeterminism becomes essential in real number computation .

[Luc77] 1 Suppose, in the middle of some computation, we have to decide if a real number x is positive or

not. The whole computation fails when x happens to be precisely 0 at the moment. However, in many

cases, it is not crucial to decide the sign of x precisely. (The sub-procedure being imprecise does not

necessarily mean that the whole computation being inexact.) Instead, if we are given a tolerance factor

ε > 0, we compute the sign of x within the error: when |x| ≥ ε, compute the sign of x correctly, and if

−ε < x < ε, return nondeterministically either +1 or −1. The tolerance factor, being an additional input,

can be seen as the required preciseness of the approximation. The smaller it gets, the more accurate the

total program gets. The nondeterminism can realized by the parallel evaluations: evaluate x > −ε and

x < ε in parallel, return +1 if testing x > −ε succeeds, and return −1 if testing x < ε succeeds. Since

x cannot be −ε and +ε at the same time, at least one of the two tests successes. It is nondeterministic

since when both hold, we do not know in prior which does terminate first.

There are different approaches to equip a programming language for real number computation with

nondeterminism. The first is to let the language itself be nondeterministic. It is possible to create

arbitrary nondeterministic branches: either binary, finite, or countable. Following this approach, we can

benefit from well-studied nondetermistic languages such as [Dij75, Apt83, AP86, Nel89]. This approach

can be found in [Mül00, KTD+13]. The other approach is to restrict the use of nondeterminism only

for real number comparisons. For example, in [BH98, MRE07], the language itself cannot create an

arbitrary nondeterministic branch. Nondeterminism happens only for the comparison of real numbers

with a tolerance factor as in the above paragraph. In this dissertation, we follow the first approach.

Thus, our languages become more expressive. And, we use the well-studied theory of nondeterministic

programming languages.

In order to go beyond algebraic computation, we need to equip our languages with the functionality

of computing real numbers by the limits of sequences that approximate them. The set of infinite sequences

of real numbers RN admits representations. Deferring discussions on correct representations of RN to

later, let us say δωCauchy be the representation which is defined by the Cantor-style encoding:

δωCauchy(ϕ) = (xi)i∈N :⇔ δCauchy(ϕi) = xi for all i ∈ N where ϕi :=
(
ϕ((i+ n) · (i+ n+ 1)/2 + i)

)
n∈N .

With the representation of infinite sequences of real numbers, of course, projections are computable.

1It is also called nonextensional computation [Bra95] to make it distinguished from computation done by nondetermin-

istic machines in complexity theory [Zie05]. Anyhow, we stick to the terminology nondeterminism in this dissertation that

is from programming language theory [Dij75, AP86]

3

More importantly, the partial operation

lim : {(xi)i∈N | ∃z. ∀n. |z − xn| ≤ 2−n} → R
: (xi)i∈N 7→ limn→∞(xi)

computing the limits of rapid Cauchy sequences is computable. (We say a Cauchy sequence rapid if

it has the above rate of convergence, similarly as in [Bis67].) We have not yet defined what it means

to compute a partial function. And, we are not going into detail about it in this introduction section.

However, the message is this: using the representation approach, when we can compute a rapid Cauchy

sequence, we can construct the real number that is the limit of the sequence. For example, if we have a

procedure f : N→ R where f(n) is a 2−n approximation to π, we can transform the procedure f to be

the real number π.

Any programming language that provides a primitive type for real numbers should have the prop-

erties: exact field arithmetic, partial comparison test, nondeterministic branching, and construction of

real numbers by the limits of rapid Cauchy sequences. These requirements have to be reflected through

the program’s constructs and formal semantics. Also, at the same time, it is necessary that the language

is not representation specific such that the users of the language can write their programs and reason on

their programs’ behaviours relying on their mathematical knowledge of real numbers.

One crucial reason to follow the representation approach for real number computation is reliability.

Imperative programming, not only for its wide usage in practical scientific computing, has its advantage

in verification. Its well-studied precondition-postcondition-style program specification and Hoare-style

program verification methodologies make it easier for the users to specify the behaviour of their programs

and prove the correctness of the programs [Apt81, Kle99, vO01, AO19]. Hence, in order to benefit from

the well-founded theory and from the potential applicability, it is desired to devise an imperative language

and its verification principles for real number computation.

Wrapping up the motivation thus far, in this dissertation, we devise imperative languages that pro-

vide data types and operations for real number computation. They are equipped with formal semantics

that well-reflects the characteristics of real number computation explained thus far, and verification

calculi for reasoning on the behaviours of real number computations.

The Overview and Organization of this Dissertation We want a language with a firm theoretical

background. In Chapter 2, the category of assemblies over Kleene’s second algebra is introduced, which

is a universe of continuous data and computable functions between them. The purpose of the chapter is

first to introduce the preliminary concepts of the dissertation, computable analysis, which is a foundation

for continuous computation, and to define the four important endofunctors:

1. [a functor for expressing partial functions that diverge out of their domains,

2.] a functor for expressing partial functions that eventually abort out of their domains,

3. \ a functor for expressing any partial functions whose behaviours out of their domains are not

specified, and

4. M a functor for expressing (nondeterminitsic) multifunctions.

The functors are used throughout this dissertation. Using the functors, we express various types of

computable partial multifunctions which are the atomic notions in our programming languages. In

4

Chapter 3, we devise the programming language called ERC by extending a simple imperative program-

ming language with the data type R for real numbers and their operations. Its denotational semantics

is defined using Plotkin powerdomain, which is for finite nondeterminism. We conclude the chapter by

introducing a sound verification calculus. In Chapter 4, we define an interpreter of ERC to the category

of assemblies over Kleene’s algebra. In the interpretation, the functors are intensively used. By having

the interpretation, we show that the language is implementable and the semantics is computable. How-

ever, to make the language as simple as possible, ERC does not provide a functionality to compute the

limits of (rapidly) converging sequences inside its programs. Chapter 5, we extend the language with an

explicit limit operator and define a new language called Clerical. We define its denotational semantics

and a sound and relatively complete verification calculus. Chapter 6, by interpreting Clerical in the

category of assemblies, shows that the language’s semantics is computable.

Let us go trough the organization of each chapter.

Chapter 2 In this chapter, we recap the theory of computation over continuous data. In Section 2.1,

we recap type-1 computation, that is, computation over discrete data that can be represented by N and

be processed by ordinary Turing machines. In Section 2.2, type-2 computation over NN is introduced

mostly based on [Wei00]. In the section, we classify computable partial functions from NN to NN which

is a subclass of continuous partial functions with regards to the standard topology on NN. Section 2.3

introduces the category of represented set Rep. A represented set is a pair (A, δA) of a set of Continuum

cardinality A and a partial surjective function δ : NN ⇀ A called representation. Computable functions

are defined between represented sets, and the collection of represented sets and computable functions is

Rep. In the section, we go through various represented sets, including RCauchy the standard represented

set of real numbers. In Section 2.3.2, we define two very important functors [,] : Rep → Rep which

are used to express certain classes of computable partial functions in Rep. However, we conclude that

the category Rep is not suitable to deal with general partial functions. In Section 2.4, the definitions of

applicative functors, monads, and the corresponding function liftings are briefly introduced. Then, we

analyze our functors [and] accordingly.

In Section 2.5, we study the computational structure of R. In Section 2.5.1, we define a notion

called nc and show some represented sets of real numbers are nc, which we do not want to have. In

Section 2.5.2, we show that any represented set of real numbers that makes the ordinary lim computable

is nc. Further recapping noncomputability results from computable analysis, we justify the choice of the

standard representation of real numbers.

In Section 2.6, the concept of multifunction, which is the nondeterminism we deal with in computable

analysis, is introduced. In the section, the notion of computing multifunctions is introduced. And, some

important examples, including computing the soft signs of real numbers, are demonstrated. Again, we

conclude the section that Rep is not suitable to deal with multifunctions.

With the above motivations that Rep is not suitable for general partial functions and multifunctions,

in Section 2.7, the category of assemblies over Kleene’s second algebra (the category of assemblies in

short) is introduced. The category Asm(NN) is a generalization of Rep where general computable partial

functions and computable multifunctions appear as morhpisms. In Section 2.7.1, we extend the previous

functors to [,] : Asm(NN)→ Asm(NN) and define a functor \ : Asm(NN)→ Asm(NN) which is for general

computable partial functions. In Section 2.7.2, we define a functor M : Asm(NN) → Asm(NN) which is

for computable multifunctions. Hence, we can refer to a computable partial multifunction simply by a

morhpism f : A → \M(B) in Asm(NN). In Section 2.7.3, we show that \,],M are countably applicative

5

in that for a morphism on sequence f : Aω → B, we can naturally extend it to f† : (M(A))ω → B.

Using this property, at the end of the section, we construct a morphism that computes the absolute value

function.

Chapter 3 In this chapter, we define our first imperative language ERC that stands for Exact Real

Computation. At the beginning of the chapter, we introduce its design choices. Instead of providing

Booleans as its primitive data type, ERC provides its lazy lifting whose denotation is K = {tt,ff, uk} as

its primitive type. The operations on K are that of Kleene’s three value logic. Hence, we call K Kleenean

where uk is the third truth value.

In Section 3.2, we define the formal syntax and the type system of ERC. In Section 3.3, we define

the denotational semantics of ERC. To each program in ERC, we define its denotation as a set-valued

set-theoretic function. As it is essential in real number computation, ERC provides finite nondetermistic

branchings. Therefore, we take Plotkin powerdomain P(�⊥) [Plo76] to define our denotational semantics.

By using a fixed-point theorem, we prove the well-definiteness of our denotational semantics, including

that of while loops. At the end of the section, we prove that ERC is complete in the sense that any

computable partial real function is expressible in ERC.

In Section 3.4, we define verification principles of ERC. In Section 3.4.1, we define a logical language,

which we call the logic of ERC, that is used to specify the behaviour of ERC programs. In the section, we

prove that the language is expressive enough to define the denotational semantics of the term language

of ERC. For any given programming term t, there is a formula in the logical language that defines the

denotation of t. We prove that the logical language is complete and decidable by being a safe mixture of

Presburger arithmetic and real closed field. In Section 3.4.2, we define precondition-postcondition-style

program specification for ERC, and devise Hoare-style proof rules for correct specifications. At the end

of the section, we prove that the devised proof rules are sound with regards to our denotational semantics

leaving a remark that the verification calculus cannot be complete.

Chapter 4 In this chapter, we prove the computability and implementability of ERC and suggest

extending ERC with other continuous data. In Section 4.1, we define an abstract interpreter for ERC.

The interpreter maps each ERC program to a morphism in Asm(NN). In Section 4.1.1, we construct a

monad P(�⊥) : Asm(NN)→ Asm(NN) by component-wise section of M\ : Asm(NN)→ Asm(NN) such that

for each assembly A, the underlying set of P(A⊥) is the underlying set of the powerdomain over the

underlying set of A. In Section 4.1.2, we define the interpretation by proving that the least fixed-points

of the operators corresponding to loops are computable with regards to the moand. From the definition

of the interpretation, we prove that for any ERC program, its denotation, which is a set-valued function,

is computable as a multifunction in Asm(NN).

Section 4.2, we define a framework for extending ERC with other continuous data and computable

operations. In Section 4.2.1, we define extension structure of ERC that consists of a consistent interpre-

tation in Asm(NN) hence that we automatically get the computability result of the extended language.

As examples, we define ERC(Emat) which is ERC extended with real matrices and ERC(Erfun) which is

ERC extended with continuous real functions. In Section 4.2.2, we extend the verification calculus of

ERC for a certain class of extension structures. In Section 4.3, we introduce Trisection program, which is

a functional that finds roots of real functions, as a program in ERC(Erfun). We demonstrate our extended

verification calculus by proving the correctness of the program.

6

Chapter 5 This chapter defines our second imperative language Clerical, which stands for Command-

Like Expressions for Real Infinite-precision Calculations. It is a natural extension of ERC with an explicit

limit operation which is an operator that returns the limit of a rapidly converging sequence. To make

the limit operator useful, refraining from introducing function types, we make the expression language

command-like in the sense that expressions subsume commands in Clerical. For example,

sqrt(x : R) :≡ lim n. var a := ι(0) in

var b := x+ ι(1) in

while case b− a >̂ 2−n−1 ⇒ true | 2−n >̂ b− a⇒ false end do

var c := (ι(2)×a+ b)/ι(3) in

var d := (a+ ι(2)×b)/ι(3) in

case

| ι(0) >̂ c×c− x⇒ a := c

| ι(0) >̂ d×d− x⇒ b := d

end

end; a

is an expression in Clerical that represents the square root of x : R.

Section 5.1, we go through simple example programs in Clerical and their meanings. Hence, the

readers can understand the language before going through its formal definition. In Section 5.2, the

formal syntax and the type system are defined. In Section 5.3, the denotational semantics is defined.

Clerical provides nondeterminism by Dijkstra style guarded nondeterminism. Clerical provides partial

operations whose behaviors are different: when a comparison fails, it means nontermination [, however

when computing a limit fails, it means]. Therefore, in Section 5.3.2, we define a variant Plotkin

powerdomain, distinguishing the two failures, and prove its properties, including continuity and various

domain liftings that are derived from the fact that the powerdomain construction as a functor on the

category of sets P?(�) : Set → Set is a moand. In Section 5.3.3, we define the denotational semantics

of Clerical using the poewrdomain. In Section 5.4, we define a precondition-postcondition-style program

specification and verification calculus. And, we prove that the verification calculus is sound with regards

to the denotational semantics. To demonstrate the usefulness of the verification calculus, in Section 5.5.3,

we prove the correctness of a program that computes π. In Section 5.6, we prove that the verification

calculus is relatively complete.

Chapter 6 In this short chapter, we show that the denotational semantics of Clerical is indeed com-

putable. We define an endofunctor P?(�) : Asm(NN) → Asm(NN) as a component-wise section of

\M[: Asm(NN)→ Asm(NN) such that the definition of the endofunctor is the powerdomain construction

seen as a functor P?(�) : Set → Set. By showing that the domain-theoretic properties of P?(�) are

reflected in P?(�), we show that we can construct a morphism in Asm(NN) to each program in Cler-

ical whose definition is the denotation of the program. It automatically shows that the semantics is

computable.

Chapter 7 This chapter is a little off the line. Well-known algorithms in scientific computing often

rely on the assumption that real numbers can be compared. However, in the setting of comptuable

analysis, this is not true. Hence, in the setting, the algorithms turn out to be incorrect. One example

is the QR algorithm with Wilkinson shift which is a renowned algorithm for efficiently diagonalizing

symmetric matrices with real number entries. In this chapter, we suggest a computable variant of the

7

algorithm by nondeterministically relaxing the Wilkinson shift. In Section 7.1, we explain the chapter’s

own introduction, motivation, and backgrounds. In Section 7.2, we state the problem that the chapter

considers formally. And, in Section 7.3, we define interval computation. In Section 7.4, we suggest

the nondeterministic relaxation of the Wilkinson shift and prove its correctness. In Section 7.5 and

Section 7.6, we devise computable algorithms and analyze their computational costs. It is considered an

independent chapter that consists of its own introduction and conclusion.

Main Contributions

• Chapter 2: This chapter is mostly about introducing the setting that we work on. This prelim-

inary chapter relies on [Wei00, Bau05, BHW08, VO08]. Besides other parts, Section 2.8 which

states that there is no topology on the powerset that makes the notion of continuously realizable

multifunctions intrinsic, is my contribution with the collaboration with Donghyun Lim [LP20].

Whereas, Specifying the functors [,], \,M and using them to express real computation is a minor

contribution.

• Chapter 3: We define a simple imperative programming language that provides an abstract data

type of real numbers based on computable analysis. That means the semantics of real number

operations are exact and are computable. Hence, the language users can regard a real number

variable as it is storing a real number. And, they can write a program regarding operations

performing the mathematical operations of real numbers. Its formal semantics is defined using

Plotkin powerdomain as the language provides nondeterminism, which is essential in computable

analysis. We also devise a sound verification calculus that can be used to prove the correctness of

precondition-postcondition-style program specifications. This chapter is based on the collaboration

with Franz Brauße, et al. [BCK+16].

• Chapter 4: We interpret ERC language in Asm(NN) using the monads for partiality \ and nonde-

terminism M. We devise a Asm(NN) presentation of the Plotkin powerdomain. In consequence,

we prove that the denotational semantics of ERC is indeed computable. By making the interpre-

tation a framework, we suggest extending ERC with further continuous data and operations. As

examples, we suggest ERC with real matrices and ERC with continuous real functions.

• Chapter 5: This chapter is based on the collaboration with Andrej Bauer and Alex Simpson

[ABS18]. We devise an imperative language that extends ERC by adding explicit limit operations.

Hence, real numbers can be constructed within the language. To have the limit operator, we

modified the powerdomain and formalized the denotational semantics. A sound and relatively

complete verification calculus is devised. An example program that computes π as the root of the

sine function, which essentially has nested limit operations, is written and proved.

• Chapter 6: In this chapter, we devise a presentation of the above powerdomain in Asm(NN) and

prove the computability of the order completeness. In consequence, we prove the computability of

the semantics of Clerical.

• Chapter 7: An interval QR algorithm with soft Wilkinson shift is suggested in this chapter; soft

Wilkinson shift is a nondeterministic relaxation, which supplements partiality of the comparison

in computing Wilkinson shift. An interval Gaussian algorithm is used to compute the eigenspaces.

This work analyzes and specifies a condition on widths of the input intervals that guarantees the

8

correctness of the algorithm, returning intervals of widths less than 2−p. Moreover, it analyzes the

bit-cost of the computation under the condition. From the analysis of the interval computation,

we show that the eigenproblem for a d×d matrix A can be computed when its entries are accessed

with α ' O(J(A, p)2) and the bit-cost is bounded by O
(
d · J(A, p) · M(J(A, p)2)

)
, where J(A, p) :=

d · (p+d2 +d log 1/∆(A) + |log‖A‖F |), M(n) is the bit-cost for multiplying n-bit integers, and ∆(A)

is the minimum separation between distinct eigenvalues of A relative to its Frobenius norm.

9

Notation and Conventions

We let 0 be the emptyset ∅, 1 be the singleton set {∗}, 2 be the set of two elements {tt,ff}, N be

the set of natural numbers, Z be the set of integers, Q be the set of rational numbers, and R be the set

of real numbers. For any natural number n ∈ N, we write n̄ be the set {1, 2, · · · , n}.
Given two sets X,Y , we write Y X to denote the set of (set-theoretic) functions from X to Y . The

notation f : A → B says f ∈ BA. We often write f : A ⇀ B to denote that f is a partial function

from A to B. Formally speaking, a partial function f : A ⇀ B is a datum that consists of a function

f : A′ → B and a set A such that A′ ⊆ A. We write dom(f) for A′.

For a set X, we write P(X) for the set of subsets of X, and P?(X) for the set of nonempty subsets

of X.

For a set X and an element in it x ∈ X, we write xN to denote the infinite sequence of x; i.e.,

xN = n 7→ x ∈ XN. Similarly, for a natural number n, we write xn to denote the n-length sequence

of x. If there is a possible ambiguity with it and n times repeated multiplication, it will be explicitly

mentioned which the notation refers to.

For two finite sequences x ∈ Xn and y ∈ Xm, we write x :: y to denote their concatenation; i.e.,

(x :: y)k =

xk if k < n ,

yk−n if k ≥ n .
When we have an infinite sequence ϕ ∈ XN, we write x :: ϕ to denote

appending x in front of ϕ; i.e., (x :: ϕ)(k) =

xk if k < n ,

ϕ(k − n) if k ≥ n .
For an infinite sequence of natural

numbers ϕ ∈ NN, we write ϕ̄n to denote the length n finite prefix of ϕ. And, ϕ> denotes the shifted

sequence defined by n 7→ ϕ(n) + 1. Similarly, ϕ< denotes the shifted sequence defined by n 7→ ϕ(n)− 1.

For a partial function f : A ⇀ B, we write f �c to be the total function from A to B ∪ {c} defined

by

x 7→

f(x) if x ∈ dom(f) ,

c otherwise .

For a function f : A→ B, we write f �A′ to denote the domain restriction of f on A′ ⊆ A.

When we have an expression e(x) that has a free variable x, we often write e(�) to denote the

function x 7→ e(x). For example, we write �−1 to denote x 7→ x−1. When we have an expression

e(x1, · · · , xn) that has n free variables, we write e(�1, · · · ,�n) to denote (x1, · · · , xn) 7→ e(x1, · · · , xn).

For example, we write �1 + �2 for (x, y) 7→ x+ y.

10

Chapter 2. Computable Analysis

2.1 Discrete Computation

Let us start with discrete computation that we are already familiar with. Suppose we are asked

to compute a function f : A → B. Here, A and B are some sets, and f is a datum that connects an

element of A to some element of B. To solve the problem, we need to define what it means to compute

anything. Turing machine provides a formal foundation of computing over the set of natural numbers;

given a Turing machine M, its semantics is a partial function JMK : N ⇀ N where dom(JMK) is the

set of inputs that make the machine terminate. Using natural numbers, which are data that machines

receive and return, the sets A,B can be dealt by the machines when we number them.

A numbered set is a pair (A, ηA) of a set A and a partial surjective function ηA : N ⇀ A. For

x ∈ A, if it holds that ηA(n) = x, we say n represents x as a datum that implements x with regards

to ηA. Regarding the relation, it becomes clear what it means to compute a function f : A → B by a

Turing machine: for two numbered sets (A, ηA) and (B, ηB), a Turing machine M computes a function

f : A→ B if the following holds for all x ∈ A:

ηB(JMK(n)) = f(x) for all n ∈ η−1
A [{x}].

The equation above implicitly requires that JMK(n) is well-defined. Replacing JMK with any arbitrary

partial function F : N⇀ N from above, we say F tracks or realizes the function f . And, in the case there

is a Turing machine M that computes F , i.e., JMK = F , we say f is computably tracked or realized by

F .

The only restriction on having a set be numbered is to admit a partial surjection from N. Hence,

any countable set can be numbered. Here are some examples.

Example 2.1.

1. the emptyset 0 can be trivially numbered.

2. The singleton set 1 = {∗} can be numbered by η1(n) = ∗ for any n ∈ N.

3. The set of two elements 2 = {tt,ff} can be numbered by η2 where η2(1) = tt and η2(0) = ff.

4. Any finite set n̄ can be numbered by ηn where ηn(k) = k ∈ n̄.

5. The set of natural numbers N can be numbered by ηN where ηN(n) = n for any n ∈ N.

6. The set of integers Z can be numbered by ηZ where ηZ(2× k + 1) = k and ηZ(2× k) = −k for any

k ∈ N.

7. The projections p1, p2 : N → N of Cantor pairing 〈n,m〉 = (n + m) · (n + m + 1)/2 + n such that

p1(〈n,m〉) = n and p2(〈n,m〉) = m are computable. Given two computable functions f, g : N⇀ N,

the function f × g : n 7→ 〈f(n), g(n)〉 is computable.

8. Consider any two numbered sets (A, ηA) and (B, ηB). The set-theoretic Cartesian product A×B :=

{(a, b) | a ∈ A ∧ b ∈ B} can be numbered by ηA×B := 〈n,m〉 7→ (ηA(n), ηB(m)). Note that the

projection functions πA : A×B → A and πB : A×B → B are computable.

11

9. Consider any two numbered sets (A, ηA) and (B, ηB). The set-theoretic disjoint union A + B :=

{(n, x) | (n = 0 ∧ x ∈ A) ∨ (n = 1 ∧ x ∈ B)} can be numbered by

ηA+B(〈n,m〉) = x :⇔ (n = 0 ∧ x = ηA(m)) ∨ (n = 1 ∧ x = ηB(m)).

Note that the injection functions ιA : A→ A+B and ιB : B → A+B are computable.

10. the set of rational numbers Q can be numbered by ηQ(〈n,m〉) = ηZ(q)/ηZ(m).

For a rational number q ∈ Q, let us write qQ ∈ N to denote the number of q.

11. Consider any two numbered sets (A, ηA) and (B, ηB). The set of computable functions BA := {f :

A→ B | f is computable} can be numbered by ηBA where

ηBA(n) = f :⇔ n’th Turing machine realizes f .

12. Most reasonable operations (whatever it means) are computable.

2.2 Type-2 Computability

When the set that we are interested in is beyond countable, it is impossible to make it numbered.

For example, of real numbers, having the cardinality of Continuum, it is not possible to be represented

by the set of natural numbers. Hence, classical Turing machines cannot be used. Instead, we use type-2

Turing machines for our model of computation.

Intuitively, a type-2 Turing machine is a Turing machine that reads an infinite string and writes an

infinite string in its one-way infinite output tape. The output tape is one-way in the the sense that once

it writes on its output tape, it cannot be modified later. The motivation is as follows. Though such

a machine runs forever reading and writing infinite strings, at each time frame, it only reads a finite

portion of its input and writes a finite portion of its output. And, the finite portions of its output are

what the users will observe. If we allow the machine to fix its output, it is possible that what the user

observes at a certain time frame is wrong in the sense that they get fixed later, such that they are not a

part of the infinite output any longer. Each observation of the output, though it will never be the entire

output of the machine, has to be correct finite portions of the output.

A type-2 machine’s semantics is a partial function from the set of infinite sequences of natural num-

bers to the set of infinite sequences of natural numbers; i.e., for any type-2 machineM, the interpretation

of it is a function JMK : NN ⇀ NN. We call a function F : NN ⇀ NN computable if there is a type-2

machine whose interpretation is F . As the precise definition of Turing machines does not really matter

(see [AB09, Chapter 1: The computational model - and why it doesn’t matter]), we also do not need to

define what type-2 Turing machines are in a precise form. Instead, here is an alternative definition of

computable functions:

Definition 2.1.

1. An oracle Turing machine M? is a Turing machine with an additional instruction QUERY(n).

When an oracle machineM? is equipped with an oracle ϕ ∈ NN, its QUERY(n) with a query n ∈ N
in Mϕ returns ϕ(n). See that it can be identified with a function of type JM?K : NN × N ⇀ N
where JM?K(ϕ, n) = JMϕK(n).

12

2. A partial function f : NN ⇀ NN is computable if there is an oracle machine M? such that

JM?K(ϕ, n) = f(ϕ)(n) for any ϕ ∈ dom(f) and n ∈ N.

Intuitively, a function f : NN ⇀ NN is computable by a type-2 machine if there is an ordinary

machine that can access its input ϕ ∈ NN by inquiring some of its entries such that when we feed an

additional n ∈ N, the machine prints n’th entry of f(ϕ).

Unlike N, the set NN poses interesting nontrivial structures:

Definition 2.2 (The standard topology on NN [Wei00, Definition 2.2.2]). The standard topology on

NN is the topology generated by taking {a :: NN | a ∈ N∗} as a subbase. Equivalently, when we define

a metric m(ϕ1, ϕ2) := inf{2−n | ∃a ∈ Nn. ∃ϕ′1, ϕ′2 ∈ NN. ϕ1 = a :: ϕ′1 ∧ ϕ2 = a :: ϕ′2}, the standard

topology coincides with the metric topology.

Intuitively, a function f : NN ⇀ N is continuous if and only if f(ϕ) does not depend on the infinite

information of ϕ in the sense that there is ε such that for any ϕ′ where m(ϕ,ϕ′) ≤ ε, it holds that

f(ϕ) = f(ϕ′). Similarly, a function f : NN ⇀ NN is continuous if and only if f(ϕ)(n) depends only on

some finite portion of ϕ. Further supposing that f(ϕ)(n) is decided (whatever it means) by the finite

portion of ϕ, the function f gets computable.

Theorem 2.1 ([Wei00, Theorem 2.2.3]). Any computable partial function f : NN ⇀ NN is continuous

with regards to the standard topology on NN and the subspace topology on dom(f) ⊆ NN.

Let us write C(NN,NN) to denote the set of continuous partial functions from NN to NN and

C#(NN,NN) to denote the set of computable partial functions from NN to NN. The above theorem

ensures that C#(NN,NN) (C(NN,NN) holds where being a proper subset is due to a cardinality issue.

There are only countably many machines whereas there are uncountably many continuous functions.

Lemma 2.1.

1. ([Wei00, Lemma 2.3.18]) For any computable F,G : NN ⇀ NN, the composition G ◦ F : NN ⇀ NN

is computable.

2. Consider the paring 〈�1,�2〉 : NN × NN → NN defined by the following interleaving:

〈α, β〉 = n 7→

α(k) if n = 2k ,

β(k) if n = 2k + 1 .

The projections p1, p2 : NN ⇀ NN such that p1(〈α, β〉) = α and p2(〈α, β〉) = β hold are computable.

3. Consider the embedding 〈�〉 : (NN)N → NN defined by the Cantor pairing:

〈(ϕn)n∈N〉 = 〈n,m〉 7→ ϕn(m) .

The projection p : NN ⇀ NN such that p(n :: 〈(ϕi)i∈N〉) = ϕn is computable.

And, here comes the utm and smn theorems:

Theorem 2.2 ([Wei00, § 2.2]).

1. There is a bijection η from NN to C(NN,NN). Let us write ηϕ to denote η(ϕ).

2. There is a computable partial function u : NN ⇀ NN such that u(〈ϕ1, ϕ2〉) = ηϕ1(ϕ2).

13

3. For any computable partial function p : NN ⇀ NN, there is a computable function s : NN ⇀ NN

such that p(〈α, β〉) = ηs(α)(β).

The above theorem says there are not that many continuous functions in that continuous partial

functions from NN to NN can be indexed by η : NN → C(NN,NN). And, there is an universal machine u

where when we input 〈ϕ1, ϕ2〉, it runs ϕ2 on the ϕ1’th function.

Lastly, there is an alternative characterization for computable functions.

Theorem 2.3 ([Wei00, Lemma 2.3.12]). Let us write ϕ ∈ NN be a code of f : NN ⇀ NN if ηϕ = f . A

partial function f : NN ⇀ NN is computable if and only if it has a computable code.

2.3 Rep the Category of Represented Sets

2.3.1 Representations

We represent a continuous set (a set of Continuum cardinality) using a representation. Given a

continuous set A, a representation of A is a partial surjective function δA : NN ⇀ A. For an element

x ∈ A, when an infinite sequence of natural numbers ϕ ∈ NN satisfies δA(ϕ) = x, we say ϕ represents

x with regards to δA or ϕ is a δA-name of x. An element x ∈ A is δA-computable if there is a δA-name

ϕ ∈ NN of x that is computable by a Turing machine; i.e., there is a Turing machineM where JMK = ϕ.

We often write ϕ (A,δA) x for δA(ϕ) = x.

For two represented sets (A, δA) and (B, δB), a function f : A → B is realized or tracked by

F : NN ⇀ NN if for any x ∈ A, for each δA-name ϕ of x, it holds that δB(F (ϕ)) = f(x). In other words,

the diagram commutes in the domain of δA:

A B

NN NN

f

δA

F

δB

In the case, we write F (A,δA)→(B,δB) f . When F is computable, we say f is (δA, δB)-computably

realized by F . And, when F is continuous, we say f is (δA, δB)-continuously realized by F . When it

is obvious from the context which representations underlie, we often omit the prefix (δA, δB)-. For a

represented set A, we write |A| to refer to the underlying set of A and δA to refer to the representation

of A. When there is no possible ambiguity, we often simply write A and δA to refer to |A| and δA.

Example 2.2.

1. Any numbered set A = (A, ηA) can be represented by δA : NN ⇀ A where

δA(ϕ) = ηA(ϕ(0)) .

We call a representation on a countable set A standard if there is a numbered set that generates

the representation in the above way. Let us write 0, 1, 2, N, Z, and Q to be the represented sets

of 0, 1,2,N,Z, and Q that are generated from the numberings in Example 2.1.

Computable functions in the setting of numbering are computable in the setting of represented

sets.

14

2. We call a function δCauchy : NN ⇀ R such that

δCauchy(ϕ) = x :⇔ |x− ηQ(ϕ(n))| ≤ 2−n for all n ∈ N

the standard representation of real numbers. In words, ϕ represents a real number x when it encodes

a sequence of rationals that rapidly converges to x; a sequence of real numbers (xi)i∈N ⊆ R is said

to converge rapidly if there is x ∈ N such that |x − xn| ≤ 2−n holds for all n ∈ N. Let us write

RCauchy for (R, δCauchy).

3. For any represented set A = (A, δA), the identity function idA : A→ A is trivially computable.

4. For any three represented sets A,B,C and continuously (computably) realizable functions f : A→
B, g : B → C, their composition g ◦ f : A→ C is continuously (computably) realizable.

5. For two represented sets A = (A, δA) and B = (B, δB), the set-theoretic Cartesian product A×B
can be represented by δA×B that is defined as follows:

δA×B
(
〈ϕ1, ϕ2〉

)
= (x, y) :⇔ ϕ1 A x ∧ ϕ2 `B y .

Let us write A×B be the represented set (A×B, δA×B). Let us call δA×B the product representation

of δA and δB . The projections πA : A×B → A and πB : A×B → B are computable.

6. For represented sets A,B,X and continuously (computably) realizable f : X → A and g : X → B,

the map f × g : X 3 x 7→ (f(x), g(x)) ∈ A×B is continuously (computably) realizable.

7. For two represented sets A = (A, δA) and B = (B, δB), the set-theoretic disjoint union A + B =

({0} ×A) ∪ ({1} ×B) can be represented by δA+B that is defined as follows:

δA+B

(
n :: ϕ) = (n, x) :⇔ (n = 0 ∧ ϕ A x) ∨ (n = 1 ∧ ϕ B x) .

Let us write A+B be the represented set (A+B, δA+B) and call δA+B the coproduct representation

of δA and δB . The injections ιA : A→ A+B and ιB : B → A+B are computable.

8. For represented sets A,B,X and continuously (computably) realizable f : A→ X and g : B → X,

the map

f + g : (A+B) 3 x 7→

f(y) if x = ιA(y),

g(y) if x = ιB(y),

is continuously (computably) realizable.

9. For represented sets A, the conditional function CondA : |2×A×A| → |A| defined by

CondA(tt, x, y) = x and CondA(ff, x, y) = y

is computable.

10. For a represented set A = (A, δA) and a subset B ⊆ A, a representation δB of B is a subrepresen-

tation of δA when it is defined by

δB(ϕ) = x :⇔ δA(ϕ) = x for all x ∈ B.

Let us write (B, δB) ⊆ A to denote that δB is a subrepresentation of δA. And, let us write

subB(A) to denote the represented set (B, δB) where (B, δB) ⊆ A. See that the subset inclusion

subB(A) � B is realized by id : NN → NN.

15

11. More generally, for a represented set B, a set A, and an injective function ι : A → |B|, the

subrepresented set induced by ι : A→ |B| is a represented set A on A defined by

ϕ A x :⇔ ϕ B ι(x).

See that the injective function ι : |A| → |B| is computable.

12. For two represented sets A = (A, δA) and B = (B, δB), the set of continuously realizable functions

C↓(A,B) can be represented by δBA which is defined as follows:

ϕ δBA f :⇔ ηϕ A→B f .

In words, ϕ represents f if ϕ is a code of f . Let us write BA be the represented set (C↓(A,B), δBA)

and call δBA the function representaion of δA and δB . The evaluation map evalA,B : C↓(A,B)×A→
B is computable.

13. For any represented sets A,B,C, and a computable (continuously realizable) function f : |C×A| →
|C|, its transpose f̄ : |C| → |BA| is computable (continuously realizable).

14. For a represented set A = (A, δA), define Seq(A) = (AN, δ) be a represented set of infinite sequences

based on the Cantor pairing:

δ
(
〈(ϕi)i∈N〉

)
= (xi)i∈N :⇔ ϕi A xi for all i ∈ N .

The entry access function accessA : AN × N → A is computable with regards to the standard

representation of N.

See that any infinite sequence f : N → A is continuously realizable. Hence, the set of infinite

sequences of A coincides with C↓(N,A).

The above examples suggest that when we collect represented sets and continuously (computable)

realizable functions, they form a very well structured category. Let us write Rep to be the category of

represented sets with computable functions as morphisms. And, Repcont be the category of represented

sets with continuously realizable functions as morphisms. In this dissertation, we are mostly interested

in Rep, and otherwise it is explicitly mentioned, we refer to Rep by saying the category of represented

sets.

The category Rep is Cartesian closed with 1 being a terminal object, 0 being the initial object, A×B

from Example 2.2 (5) being a product of A and B, A + B from Example 2.2 (7) being a coproduct of

A and B, and BA from Example 2.2 (12) being an exponential object of A and B.

Note that even when we take only computable functions as morphisms, the underlying set of an

exponent is the set of continuously realizable functions. Hence, a realizer of a morphism BA → C must

not assume that a name ϕ of a function f ∈ |BA| is computable.

We often write A → B instead of BA. The symbols ×,+ seen as operators are left-associative,

meanwhile→ is right-associative. That means, A→ B→ C denotes A→ (B→ C), A×B×C denotes

(A×B)×C, and A + B + C denotes (A + B) + C. The precedence of the symbol × is the highest and

the precedence of the symbol → is the lowest amongst the three. That is, we parse A + B→ B×C + B

as (A + B)→ ((B×C) + B).

Putting represented sets into the framework of category theory, it provides a natural way to define

relations between represented sets. Note that a set can admit many different representations. For

16

example, the underlying sets of Seq(A) and N → A are identical as the set of infinite sequences of

elements in A. However, they are represented in different ways. And, this leads to a very natural

question: which one is right to use?

Two represented sets A = (A, δA) and B = (B, δB) are equivalent A ∼= B if they are isomorphic in

Rep: i.e., A and B are equivalent if there are two computable functions f : A→ B and g : B → A where

f ◦ g = idA and g ◦ f = idB hold. Being equivalent is justified that when A ∼= B, there is a computable

translation back and forth. Hence, a computable function f : B→ C can be automatically transformed

to a function g : A → C. For example, we can easily see that 2 ∼= 1 + 1. The following lemma states

that it does not matter in which specific way the set of sequences is represented:

Lemma 2.2. For any represented set A, the represented sets N→ A and Seq(A) are equivalent.

In Example 2.2 (2), we defined a representation of real numbers and named it the standard repre-

sentation of real numbers. The name suggests that the representation is the representation that we are

particularly interested in. Let us conclude this subsection revealing some (but not all) properties of the

representation.

Example 2.3 (Operations using RCauchy). The constants 0, 1 ∈ R, the real number addition �1 +�2 :

R × R → R, the real number subtraction �1 − �2 : R × R → R, and the real number multiplication

�1×�2 : R× R→ R are computable.

However, the order relations �1 < �2,�1 > �2 : R × R → 2 and the identity relation �1 = �2 :

R× R→ 2 are not computable.

Proof. The computability results can be easily shown. See [Wei00, Theorem 4.3.2] for a reference.

For the noncomputability result, see that if �1 < �2 or �1 > �2 was computable, we can have

if x < y then false else if y < x then false else true to compute x = y. Hence, we only

need to show that �1 = �2 is not computable. Suppose there is a continuous realizer τ : NN ⇀ NN

of �1 = �2 : R × R → 2. See that (0Q)N is a name of 0 ∈ |RCauchy|. Hence, τ(〈(0Q)N, (0Q)N〉) =

0 :: ϕ for some ϕ ∈ NN which is a name of tt ∈ |2|. Since τ is continuous, there is m ∈ N where

for any 〈α, β〉 such that d(〈α, β〉, 〈(0Q)N, (0Q)N〉) ≤ 2−m, it holds that τ(〈α, β〉)(0) = 0. However,

when we define α := n 7→

0Q if n < m

(2−m−1)Q otherwise.
, which is a name of 2−m−1, since 2−m−1 6= 0, it

has to be that τ(〈α, (0Q)N〉)(0) = 1. It is a contradiction since by the definition of the interleaving,

d(〈α, (0Q)N〉, 〈(0Q)N, (0Q)N〉) ≤ 2−m holds.

Remark 2.1. The category of represented sets being a Cartesian closed category, we can use its internal

language, which is a typed lambda calculus, to construct various objects in the category: represented sets

and computable functions. There are two different approaches to finding a computable function. The first

classical way is to specify a set-theoretic function that we are interested in and argue its computability.

The second, more preferable approach is to use the internal language to construct computable functions

at once.

It is a typed lambda calculus where represented sets are types and morphisms are terms. The

biggest advantage is that we can use variables for defining morphisms. First, note that the function

(half : |RCauchy| → |RCauchy|) := x 7→ x/2 is computable. Using it, we simply write

2−� := nat recRCauchy
(1, λ(m : N). λ(x : RCauchy). half(x))

17

to define the mapping N 3 n 7→ 2−n ∈ R. Here, nat recA for a represented set A is a primitive recursor

nat recA : A→ (N→ A→ A)→ N→ A

that is defined by

nat recA x f 0 = x and nat recA x f (n+ 1) = f n (nat recA x f n)

where its computability is left as an exercise.

Nested lambda expression λ(x1 : A1). · · · λ(xn : An). t(x1, · · · , xn) denotes a morphism of type

A1 → A2 → · · ·An → B. For convenience in the presentation, we often convert it to a n-ary function

A1 × · · · ×An → B by implicitly uncurrying it.

2.3.2 Partial Functions

Thus far, only total functions were subject to being computed or realized. Though underlying

representations and realizers were allowed to be partial, functions that to be realized had to be total.

However, it is not always the case that we are interested in computing total functions. For example, the

multiplicative inversion of real numbers, which we obviously want to compute, is a partial function that

is not defined at zero.

An obvious choice of the definition for realizing a partial function would be as follows. Given

two represented sets A and B, a partial function f : A ⇀ B is realized by F : NN ⇀ NN if F realizes

f : dom(f)→ B with regards to subdom(f)(A) and B. And, say f is computable (continuously realizable)

if there is a computable (continuously realizable) realizer.

A downside of this definition is that for two represented sets A and B, there is no represented set,

in general, for the set of continuously realizable partial functions from A to B. Suppose F realizes a

function f : A → B. Then, for each subset S of A, its restriction f �S : A ⇀ B is realized by F . Since

any constant function can be continuously realized, the cardinality of the set of continuously realizable

partial functions is at least the cardinality of the powerset of A. Hence, when A is continuous, the set of

continuously realizable partial functions from A to B does not admit any serjection from NN.

Hence, in order to refer to a computable or continuously realizable partial function in Rep, we need

to specify the domain. That is, we cannot quantify over all continuously realizable partial functions from

a represented set to another represented set. (We cannot have λ(f : A ⇀ B).t(f) for example.)

The reason is simply that there are too many of them. A realizer F of a partial function f : A ⇀ B

is allowed to do anything when a name ϕ of an element of A not in dom(f) is given. That means, F (ϕ)

can either diverge (i.e., ϕ 6∈ dom(F)) or return anything (i.e., ϕ ∈ dom(F) but F (ϕ) does not need to

mean anything).

We can refine the set of continuously realizable functions by forcing the behaviour of their realizers

on wrong inputs as in classical computability theory. A partial function f : A ⇀ B is strongly realized by

F : NN ⇀ NN if for any x ∈ A, when x 6∈ dom(f), for any ϕ such that ϕ A x, it holds that ϕ 6∈ dom(F).

Definition 2.3. For two represented sets A and B, define C[(A,B) be a represented set of the set of

continuously and strongly realizable partial functions from |A| to |B| whose representation is as follows.

ϕ C[(A,B) f :⇔ (ηϕ subdom(f)(A)→B f) ∧ dom(ηϕ) = δ−1
A (dom(f))

See that, by definition, each f ∈ |C[(A,B)| has a name. And, each ϕ can represent at most one

f ∈ |C[(A,B)|.

18

We see if the definition is effective in that if there is a represented set B′ where A→ B′ is equivalent

to the represented set of strongly and continuously realizable partial functions from |A| to |B|.

Definition 2.4 (Lazy Lifting). Lazy lifting is an endofunctor [: Rep → Rep. The functor on a repre-

sented set A = (A, δA) is [A whose underlying set is A ∪ {[A} and representation δ[A is

0N [A [A and 0m :: ϕ> δ[A x :⇔ ϕ A x for any m ∈ N.

In words, only the infinite sequence of zeros realizes [A. And, a shifted sequence ϕ> with a prefix of

finitely many zeros realizes what ϕ realizes in A.

The functor on a morphism f : A→ B is defined to be

[(f) : x 7→

f(x) if x 6= [A ,

[B otherwise .

When F is a computable realizer of f , see that the following procedure computes [(f). Suppose ϕ is a

name of some x ∈ [A. Repeat the following with increasing n by 1 starting from n = 0.

1. when ϕ(n) = 0, append 0 in the output tape

2. when ϕ(n) 6= 0, i.e., when ϕ = 0n−1 :: ψ> for some ψ, append F (ψ)> in the output tape.

In other words, append 0 until we find a nonzero element from ϕ. If there is a nonzero entry in ϕ, it

means x is not [A, and its original name is the infinite string starting from the entry shifted back. Hence,

in this case, apply F on the name, shift the result, and print it on the output tape.

See that the above procedure only requires F to be continuous and is computable when F is seen

as an input.

Let us remove the subscript A from [A if it is clear from the context or is irrelevant which represented

set the added element belongs to. Subscript is needed to be explicitly written only when we lift a

represented set twice thus that there are two added elements [A and [[A that are distinct.

For a represented set, [in its lazy lifting denotes nontermination. See that for any ϕ, we cannot, in

a finite time, decide if ϕ represents [or not; only infinitely many consecutive zeros represent [. However,

after reading a finite portion, it is possible that consecutive zeros end. In this case, the sequence will

realize something different from [.

For a partial function f : A ⇀ B, let us say f �[: A→ B ∪ {[} the lazy extension of f .

Lemma 2.3. Consider represented sets A,B. A partial function f : |A| ⇀ |B| is continuously (com-

putably) and strongly realizable if and only if its lazy extension (f �[) : |A| → |[B| is continuously

(computably) realizable. More specifically, the mapping (f 7→ f �[) : C[(A,B) → (A → [B) is an

isomorphism.

We can refer to the set of continuously realizable partial functions by (A → [B) and a strongly

computable partial function by f : A→ [B.

After characterizing an important class of partial functions, we can think of its dual notion.

Definition 2.5 (Co-lazy lifting). Co-lazy lifting is an endofunctor] : Rep → Rep. The functor on a

represented set A = (A, δA) is]A whose underlying set is A ∪ {]A} and representation δ]A is

ϕ]A]A :⇔ ∃n. ϕ(n) = 0

ϕ>]A x :⇔ ϕ A x .

19

In words, any sequence containing 0 represents the special element]A. And, ϕ represents x 6=]A if and

only if it does not contain 0 and when we shift it by −1, it represents x in A.

The functor on a morphism f : A→ B is defined by

](f) : x 7→

f(x) if x 6=]A ,

]B otherwise.

When F is a computable realizer of f , and ϕ is a name of an input, see that computing F (ϕ<)>

while searching for 0 in ϕ and append 0 if there is, computes](f). Also, this procedure extends to all

continuously realizable functions and is computable regarding F as an input.

Similarly, we drop the subscript from] if it is clear from the context or is irrelevant.

As [classified a class of partial functions,] as well classifies another class of partial functions.

Definition 2.6. A partial function f : |A|⇀ |B| is weakly and continuously (computably) realizable if

f �] as a function from |A| to |]B| continuously (computably) realizable.

See that, by definition, any partial function that is weakly or strongly computable is computable.

Remark 2.2. A partial function is strongly computable if and only if its domain is semi-decidable and

is weakly computable if and only if its domain is co-semi-decidable. A partial function is both strongly

and weakly computable if and only if its domain is a decidable subset.

We defined the various notions of computing partial functions because we need them to analyze

some essential partial functions.

Example 2.4. Consider 2,N and RCauchy.

1. The multiplicative inversion as a partial function �−1 : R⇀ R that is not defined at 0 is strongly

computable. Hence, its lazy extension �−1�[is a morphism from RCauchy to [RCauchy.

2. Define �1<�2 : R × R ⇀ 2 be a partial approximation of the real number comparison test such

that

x< y =

tt if x < y ,

ff if x > y .

See that dom(�1<�2) = {(x, y) ∈ R2 | x 6= y}. The partial function is strongly computable. In

other words, its lazy extension �1<�[�2 is a morhpism from RCauchy ×RCauchy to [2.

3. The limit operation lim : RN ⇀ R as a partial function such that dom(lim) = {(xi)i∈N ∈ RN |
(xi)i∈N converges} is not computable.

4. Instead, define a refinement lim : RN ⇀ R by restricting the domain to {(xi)i∈N ∈ RN | ∃z. z ∈
R ∧ |z − xi| ≤ 2−n}. In words, lim is defined only at rapidly converging sequences. Then, the

partial function lim : RN ⇀ R is weakly computable. That means, its colazy extension lim �] is a

moprhism from N→ RCauchy to]RCauchy.

20

2.4 Applicative Functors and Monads

Endofunctors perform as type constructors in the internal language of a category. For example, when

A is seen as a data type, [A is another data type that is deeply relevant to A. It is deeply relevant in

the sense that for a morphism f : A→ B, we automatically get a computable mapping [(f) : [A→ [B.

For example, instead of defining a function ¬′� : [2→ [2 that maps tt to ff, ff to tt, and [to [, then

proving its computability, we can extend [(¬� : 2→ 2) : [2→ [2 which is exactly the desired function.

And, the computability comes free.

However, it is not that straightforward when the function we want to lift accepts multiple arguments.

Let us see three examples that require different ways of lifting.

�1+�2 : RCauchy×RCauchy → RCauchy, CondA : 2×A×A→ A, and �−1�[: RCauchy → [RCauchy.

Consider the first example, �1 +�2 : RCauchy×RCauchy → RCauchy. Suppose by some computation

involving partialities that we get lazy real numbers x, y : [RCauchy. We are not sure whether x, y are [

or not. However, without revealing those, we can think of adding the two lazy real numbers where the

result is also a lazy real number that happens to be [when x or y is [. Formalizing it, we desire the

function

(x, y) 7→

x+ y if x 6= [∧ y 6= [,

[otherwise.

See that this is of course not [(�1 + �2) : [(RCauchy ×RCauchy) → [RCauchy. This example illustrates

the case where we want [in the domain distributes through its products.

For the second example, CondA : 2×A×A→ A the conditional, suppose we have a lifted Boolean

b : [2 obtained by comparing two real numbers. We can think of branching according to b such that

when b = tt, we take the first branch, when b = ff, we take the second branch, and when b = [, we simply

return [. The version of lifting we require is

(b, x, y) 7→

x if b = tt,

y if b = ff,

[if b = [.

That means, we only want to lift the first argument of CondA : 2 ×A ×A → A, whereas [(CondA) :

[(2×A×A)→ [A.

The last example, �−1�[: RCauchy → [RCauchy is when we want to lift a mapping whose codomain

is already lifted. When we simply lift it [
(
�−1�[

)
, its codomain is [[RCauchy that 0[(−1�[) = [RCauchy

and

[
[(−1�[)
RCauchy

= [[RCauchy
. However, since [denotes nontermination, there is no need to have two distinct [s

in the codomain.

We can, of course, define the liftings for each endofunctor on an ad hoc. For the case of [: Rep→ Rep,

it is obvious how to define those. However, there is a remaining question if there is a natural and uniform

way to define the liftings and if the above examples follow the standard approach.

Consider any category C with a terminal object 1 and every products1. An endofunctor F : C→ C

is lax monoidal if it is equipped with a morphism ε : 1→ F (1) and a natural transformation

αA,B : F (A)× F (B)→ F (A×B)

1To be precise, C needs to be monoidal. However, the categories used in this dissertation have a terminal and products,

and we use only the monoidal structures of the categories based on those.

21

such that the coherence conditions defined by the following three diagrams are satisfied:

(F (A)× F (B))× F (C) F (A)× (F (B)× F (C))

F (A×B)× F (C) F (A)× F (A×B)

F ((A×B)×C) F (A× (B×C))

∼=

αA,B id×αB,C

αA×B,C αA,B×C

∼=

1× F (A) F (1)× F (A)

F (A) F (1×A)

ε×id

∼= α1,A

∼=

F (A)× 1 F (A)× F (1)

F (A) F (A× 1)

id×ε

αA,1

∼=

In consequence, when F is lax monoidal, for any n-ary morphism f : A1 × · · ·An → B, we can

naturally define its lifting

f† : F (A1)× · · · × F (An)→ F (B)

by consecutively precomposing appropriate α on F (f). The coherence condition ensures that it does not

matter in which specific order the α is precomposed.

See that [: Rep→ Rep is lax monoidal with ε : ∗ 7→ ∗, and αA,B : (x, y) 7→ (x, y) when x, y 6= [, and

[when x = [∨ y = [.

For an endofunctor F : C→ C, its tensorial strength is a natural transformation

βA,B : A× F (B)→ F (A×B)

that satisfies the coherence conditions defined by the following diagrams:

(A×B)× F (C) F ((A×B)×C)

A×B× F (C) A× F (A×C) F (A×B×C)

βA×B,C

id×βB,C βA,B×C

1× F (A) F (1×A)

F (A)

β1,A

In consequence, when F is equipped with a strength β, for any n-ary morphism f : A1×· · ·An → B,

we can lift a specific domain, say i’th, by precomposing the isomorphism A1× · · · ×F (Ai)× · · · ×An
∼=

A1 × · · · × An × F (Ai), the natural transformation β, and the isomorphism F (A1 × · · ·An × Ai) ∼=
F (A1 × · · ·An) on F (f). Let us write the lifted morphism by

f†i : A1 × · · · × F (Ai)× · · · ×An → F (B) .

See that in the case of [: Rep→ Rep, the natural transformation βA,B : (x, y) 7→ (x, y) when y 6= [,

and [when y = [is a strength.

An endofunctor F : C → C with natural transformations η : I → F (unit) and µ : F 2 → F

(multiplication) is a monad if the coherence conditions (i) µA ◦ ηF (A) = idF (A) = µA ◦ F (ηA) and (ii)

µA ◦ µF (A) = µA ◦ F (µA) hold. In other words, the following diagrams commute.

F (A) F 2(A)

F 2(vA) F (A)

ηF (A)

F (ηA) µA

µA

F 3(A) F 2(A)

F 2(A) F (A)

µF (A)

F (µA) µA

µA

22

When (F, η, µ) is a monad, for a mapping f : A → F (B) to a lifted codomain, we can lift only its

domain
(
µB ◦ F (f)

)
: F (A)→ F (B).

A functor that is lax monoidal and has a tensorial strength is called applicative functor. And, a

monad with a tensorial strength is called strong monad. See that a strong monad automatically is an

applicative functor that we can derive the α by

F (A)× F (B) F (F (A)×B) F (F (A×B)) F (F (A×B))
βA,B F (β′A,B) µA×B

where β′A,B : F (A) × B → F (A × B) is defined by βA,B and the commutativity of products. One

important remark is that applicative functors are composable whereas monads are not in general.

When we have an endofunctor, it is preferred to check if it is an applicative functor, a moand, or a

strong monad. Of course, the most preferred one is a strong monad.

Consider an endofunctor F : Rep → Rep whose mapping on morhpisms can be extended to con-

tinuously realizable functions. In other words, consider a functor F : Rep → Rep where there is

a mapping ζA,B : |A → B| → |F (A) → F (B)| such that ζA,B(f) = F (f) for every computable

f ∈ homRep(A,B). Let us call an endofunctor F : Rep → Rep extensible if the mapping appears as a

morphism ζA,B : (A→ B)→ F (A)→ F (B).

Lemma 2.4. An endofunctor is strong if it is extensible.

Proof. Define

βA,B := λ((x, y) : A× F (B)). ζB,A×B (λ(z : B). (x, z)) y

and check that the coherence conditions are satisfied.

Example 2.5. The lazy and co-lazy lifting functors are monads with the units and multiplications:

η[A : x 7→ x µ[A : x 7→

[A if x = [[A,

x otherwise,

and

η]A : x 7→ x µ]A : x 7→

]A if x =]]A,

x otherwise.

See that the mappings are computable. The desired coherence conditions can be verified easily.

They also are extensible that the definitions of [: f 7→ [(f) and] : f 7→](F) do not require f to be

computable, and the procedures of obtaining realizers of [(f) and](f) are computable.

See that the desired liftings from the examples at the beginning of this section are

(�1 + �2 : RCauchy ×RCauchy → RCauchy)† : [RCauchy × [RCauchy → [RCauchy,

(CondA : 2×A×A→ A)†1 : [2×A×A→ [A,

and

(�−1 �[: RCauchy → [RCauchy)† : [RCauchy → [RCauchy.

Formally speaking, a lax monoidal functor is a tuple (F, ε, α), a monad is a tuple (F, η, µ), an

applicative functor is a tuple (F, ε, α, β), and a strong monad is a tuple (F, η, µ, α, β). However, we often

write F to refer to the structure without writing all the components of the structure explicitly. And,

23

when it is needed to refer to the component, we simply write the corresponding roman alphabet. For

example, when there is a monad F in the context, we write η, for example, to refer to the unit of the

structure that F represents. When there are multiple structures in the context, for example, F and G,

we put superscripts to distinguish to which structure the components belong. For example, we write ηF

to denote the unit of F and ηG to denote the unit of G.

2.5 Real Number Computation

2.5.1 With or Without Computational Content

Not all representations are of interest. In Example 2.2, we introduced the standard representation

of real numbers. The terminology itself suggests that the representation is the one that we are interested

in amongst many different partial surjections from NN to R.

Definition 2.7. Consider a represented set A = (A, δA). The nc relation of A is a reflexive binary

relation on A defined as follows:

x vA y :⇔ ∃ϕ ∈ δ−1
A ({x}). ∀n ∈ N. y ∈ δA(ϕ̄n :: NN) .

In words, there is a name ϕ of x where with any finite prefix of it, we cannot determine if ϕ represents x

or y. An element of x ∈ A is nc or is without any computational content if x vA y holds for any y ∈ A.

A represented set A is nc or is without any computational content if every elements in |A| are.

In contrast, a represented set A is separated if x vA y holds if any only if x = y.

Example 2.6.

1. The represented empty set 0 and any represented singleton, including 1, are trivially nc.

2. The represented sets 2,N,Q are separated.

3. For any represented set A, [is an nc element in [A.

4. Consider a represented set Rnaive = (R, δnaive) where

δnaive(ϕ) = x :⇔ lim
n→∞

ηQ(ϕ(n)) = x .

In other words, ϕ is a name of a real number x when ϕ is an encoding of a sequence of rational

numbers that eventually converges to x. The represented set is nc since a finite prefix of a name

does not say anything about the number that the sequence converges to.

5. The represented set RCauchy is separated.

6. For any represented set A = (A, δA), there is a nc representation Anc = (A, δAnc) which is defined

as follows:

ϕ Anc
x :⇔ ∃ϕ′. ϕ′ A x ∧ ∃L ∈ N∗. ϕ = L :: 0 :: ϕ′> .

Intuitively, 0 is a token to reset naming. When ϕ is a δA-name of x, any sequences of natural

numbers that ends with 0 :: ϕ′> is a name of x in Anc. It is nc that any finite prefix of a sequence

does not determine anything of what the whole sequence represents.

7. For any nc represented set, its subrepresented set is nc. And for any nc represented sets, their

product representation is also nc.

24

8. In contrast, for any separated represented sets, their subrepresented sets and products are sepa-

rated.

Lemma 2.5. Any continuously realizable function f : |A| → |B| preserves the nc relation; i.e., if x vA y,

it holds that f(x) vB f(y).

Proof. Suppose any x, y ∈ A such that x vA y. There is a name ϕ of x and (ϕn)n∈N of y such that

ϕn ∈ ϕ̄n :: NN holds for all n ∈ N.

Since f is continuously realizable, there is a continuous realizer τ . Consider the name τ(ϕ) of f(x).

Since τ is continuous, there is the modulus of continuity m : N → N at ϕ such that τ(ϕm(n)) ∈ τ(ϕ)n

for all n ∈ N. Therefore, τ(ϕ) is a name of f(x) where its every cylinders contains a name of f(y).

Corollary 2.1.

1. There is no non-constant continuously realizable function from a nc represented set to a separated

represented set.

2. There is no non-constant continuously realizable partial function from an nc represented set to a

separated represented set.

3. There is no non-constant continuously realizable partial function from A to B when A contains

an nc element, and B is separated.

The above results justify our choice of the standard representation of real numbers over the naive

representation. As the naive representation is nc, it does not admit any nontrivial partial approximation

of the comparison test. We cannot do any effective reasoning on the order of real numbers using the

naive representation.

2.5.2 Effective Representation of Real Numbers

In this section, we pay more attention to the set of real numbers and its computational structure

that representations of reals provide, hoping that there is a universal structure that is less representation

specific. The set of real numbers, classically, can be characterized by the constants 0, 1 ∈ R, the field

operators �1 +�2,�1 −�2,�1×�2,�−1, the order relation �1<�2, and the completion operator lim.

Hence, seeing real numbers from a computation perspective, the ideal representation of reals makes the

constants and operators computable.

However, we already know from Example 2.4 that the standard representation fails on making

the order relation �1 < �2 and the completion lim computable. It gives a question why then the

representation is named standard. We observe that the deficiency is not due to how the standard

representation is defined.

Lemma 2.6.

1. ([Wei00, Theorem 4.1.16]) There is no representation of reals that makes the binary relations

�1<�2 and �1 =�2 computable

2. Any represented set of real numbers that makes lim computable is nc.

3. There is no represented real numbers that makes lim strongly computable.

Proof.

25

2 Consider any representation R = (R, δ) of real numbers. If lim : RN ⇀ R is continuously realizable,

due to Lemma 2.2, lim : |Seq(R)|⇀ |R| is continuously realizable.

Let τ be a continuous realizer of lim. Consider any finite sequence of natural numbers L ∈ N∗ and

the preimage τ−1(L :: NN). If δ(L :: NN) is not empty, there is ϕ where τ(ϕ) ∈ L :: NN. Due to

the continuity of τ , there is some n such that for any name ϕ′ of a converging sequence in Seq(R)

where m(ϕ,ϕ′) < 2−n, it holds that τ(ϕ′) ∈ L :: NN.

Due to the definition of the pairing, for any two sequences (ϕi)i∈N and (ϕ′i)i∈N, the encodings

〈(ϕi)i∈N〉 and 〈(ϕ′i)i∈N〉 share the first n entries when ϕi = ϕ′i holds for i ≤ n.

Therefore, for any x ∈ R, we can make a name of a converging sequence whose initial n entries

are identical to those of ϕ. I.e., there is ϕ(x) where τ(ϕ(x)) ∈ L :: NN. Hence, we can conclude

δ(L :: NN) = R.

3 Assume lim : |RN| ⇀ |R| strongly and computably realizable. Then, by Lemma 2.2, there is a

continuous realizer τ for the lazy extension lim �[: Seq(R) → [R. Consider a rapidly converging

sequence x1, x2, · · · → y. When ϕi is a name of xi, it holds that τ(〈(ϕi)i∈N〉) = 0m :: ϕ> for some

m ∈ N and ϕ which is a name of y. Due to the continuity of τ , there is some n ∈ N such that

for all (ϕ′i)i∈N where d(〈(ϕ′i)i∈N〉, 〈(ϕi)i∈N〉) ≤ 2−n, it holds that τ(〈(ϕ′i)i∈N〉)(m) = ϕ(0) + 1 6= 0.

However, due to the definition of 〈.〉, there is a name of x1, x2, · · · , xn, 0, 1, 0, 1, · · · whose encoding

is not far from 〈(ϕi)i∈N〉 by more than 2−n. On the name, τ has to print 0N, but it does not.

Regardless of how real numbers are represented, we cannot make the order relations �1<�2,�1 =�2

computable. Though there can be a representation that makes lim computable, it is an nc represen-

tation that does not admit any nontrivial partial computable function to a separated represented set.

That means, in such representations, we cannot compute any partial approximation of �1 <�2. The

observation forces us to tailor the requirement of a representation of real numbers being ideal.

Definition 2.8. A representation of reals is effective if the followings hold:

1. The constants 0, 1 ∈ R are computable.

2. The binary operators �1 + �2 : R× R→ R, �1 −�2 : R× R→ R, and �1×�2 : R× R→ R are

computable.

3. The partial unary operator �−1 : R⇀ R that is not defined at 0 is strongly computable.

4. The partial binary relation �1<�2 : R× R⇀ 2 that is not defined at {(x, x) | x ∈ R} is strongly

computable with regards to 2.

5. The partial operator lim : RN ⇀ R that is defined only at rapidly converging sequences is weakly

computable with regards to N.

Example 2.7. The standard representation of reals is effective.

In fact, there are many different representations that are also widely used, e.g., signed digit repre-

sentations, Dedekind’s cut representation, regular Cauchy representation, and so on. For example, often

used dyadic Cauchy represented set Rdyadic is a represented set of real numbers such that

ϕ Rdyadic
x :⇔ ∀n. |x− ηZ(ϕ(n))/2n| ≤ 2−n .

26

Theorem 2.4 ([Her99, Theorem 3.5]). Any effective representations of real numbers are computably

isomorphic; i.e., if δ1 and δ2 are effective representations of reals, there is a computable function τ1, τ2 :

NN ⇀ NN where for any x ∈ R, it holds that δ2(τ1(ϕ)) = x for all ϕ ∈ δ−1
1 ({x}) and δ1(τ2(ϕ)) = x for all

ϕ ∈ δ−1
2 ({x}).

In most cases, amongst the popular representations of real numbers, it does not really matter which

to use because they are all effective. That means they, including Rdyadic, are isomorphic objects in Rep

anyways.

2.6 Nondeterminism

Nondeterminism is essential in computable analysis. In the abstract level, a computation from a

set A to another set B is nondeterministic if for a same x ∈ A, there are several values in B that the

computation on x may yield. This can be identified by a nonempty set-valued function f : A → P?(B)

where f(x) denotes the set of possible outputs. However, it should be clear that such a set-valued

function is not what we are going to compute; i.e., we are not going to define a representation on the set

P?(B). In order to make this distinction, realizing a function and realizing a nondeterministic function,

clear, there is a notion of multifunction.

Definition 2.9. A multifunction f : A ⇒ B is a nonempty set-valued function f : A → P?(B). Given

representations δA of A and δB of B, the multifunction is realized by F : NN ⇀ NN if for any x ∈ A and

its realizer ϕ (A,δA) x, it holds that ∃y . F (ϕ) (B,δB) y ∧ y ∈ f(x). Similarly to the case of ordinary

functions, we say f is continuously realized by F if F is continuous and f is computably realized by F if

F is computable.

Note that the definition of realizing multifunctions above specify our notion of nondeterminism.

For any x, the set f(x) ⊆ |B| is the set of possible results that f is expected to return regarding

nondeterminism. Note that for a name ϕ of x ∈ A, the realizer F only returns one element out of the set

f(x). However, the same F on a different name ϕ′ of the same input x can possibly return a name of a

different element in f(x). Observe that in the level of implementation, nondeterminism does not occur.

It is crucial to distinguish this from the notion of nondeterminism caused by nondeterministic machines

[Zie05] that is not dealt in this dissertation.

A multifunction is partial from A to B if it is a multifunction from a subset of A to B. See that a

partial multifunction can be identified with a set-valued function which is the empty set when the input

is not in its domain. We write f :⊆ A⇒ B to denote that f is a partial multifunction from A to B. As

it was for partial functions, there are two different notions of realizing partial multifunctions.

Definition 2.10.

1. A partial multifunction f :⊆ |A| ⇒ |B| is realized by F : NN ⇀ NN if f as a multifunction from

|subdom(f)(A)| to |B| is realized by F .

2. A partial multifunction f :⊆ |A| ⇒ |B| is strongly realized by F if for any x ∈ A that is not in

dom(f), F (ϕ) diverges for any ϕ A x; i.e., dom(F) = δ−1
A (dom(f)).

Remark 2.3. Though the data that defines a multifunction f is a set-valued function, we refrain from

writing or defining a multifunction as the set-valued function in order to avoid possible misunderstanding.

When we have a set-valued function from A to nonempty subsets of B, there are two different notions

27

of realization: (1) realizing it as a function from A to P?(B) as in Subsection 2.3.1 and (2) realizing it

as a multifunction from A to B as in Definition 2.9. We write f : A ⇒ B to explicitly say that we are

interested in it to be realized in the second fashion.

Hence, instead of defining it as a function to sets, we often define a (partial) multifunction using

the notation:

f : x Z⇒

y1 if P1 ,

y2 if P2 ,

...

yd if Pd .

Here, yi is some expression in x and Pi is some proposition in x. The notation captures nondeterminism

in that when there are multiple Pi and Pj hold, the function value is yi or yj nondeterministically.

Formally, the (partial) multifunction defined by the above notation is f : x 7→ {yi | Pi} (that is defined

at {x | f(x) 6= ∅}).

Example 2.8.

1. Given any function f : |A| → |B| that is realized by some F : NN ⇀ NN, the multifunction

g : x Z⇒ f(x) is realized by F .

2. Given any multifunction f : |A| ⇒ |B| that is realized by some F : NN ⇀ NN, a multifunction

g : |A|⇒ |B| such that ∀x. f(x) ⊆ g(x) holds, is realized by F .

3. Given any multifunction f : |A| ⇒ |B| that is realized by some F : NN ⇀ NN and g : |A| ⇒ |B|
that is realized by some G : NN ⇀ NN, the multifunction g ◦ f defined by x 7→

⋃
y∈f(x) g(y) is

realized by G ◦ F .

Many essential functions are partial. For example, the order relation of real numbers can only be

partially computed under the standard representation. When a partial function is strongly computable,

the function gives us some more information on what the inputs are.

Example 2.9. For any natural number n ≥ 1, the following choice operator

choicen :⊆ |[2× · · · × [2| ⇒ |N|

:= (b1, · · · , bn) Z⇒

1 if b1 = tt,

2 if b2 = tt,

...

n if bn = tt.

is strongly computable. See that the multifunction is not defined at {(b1, · · · , bn) | ∀i. bi 6= tt}. It receives

finite lazy boolean values and nondeterministically pick the index of a lazy boolean, which happens to

be tt. If there is no lazy boolean that is tt, it returns [.

Also, its countable version

choiceN : |N→ [2| ⇒ |N|
:= (bi)i∈N 7→ {i | bi = tt}

is strongly computable. See that the countable choice function is not defined at {(bi)i∈N | ∀i. bi 6= tt}.

28

The nondeterministic choice is often used in practice; for example, we can approximate the sign of

a real number overcoming the partiality of testing the order relation of real numbers.

Example 2.10 (Operations using RCauchy.). The soft sign is a multifunction

sign : |RCauchy ×N|⇒ |2| := (x, n) Z⇒

tt if x > −2−n

ff if x < 2−n

that approximates the sign of a real number with a tolerance factor 2−n. It is computable by precom-

posing the pair of (x, n) 7→ x> �[−2−n and (x, n) 7→ x< �[2−n and postcomposing m 7→ {m = 1} to

choose2 .

Remark 2.4. With a similar reason to the case of continuously realizable partial functions, due to the

cardinality issue, the set of continuously realizable multifunctions cannot be represented in general. In

consequence, we cannot use the internal language of Rep to construct computable multifunctions. For

example, one would expect a lambda term such as

λ(x : RCauchy). lim(λ(n : N). CondRCauchy
(sign(x, n+ 1), x,−x)

to denote the absolute value function. However, since sign is not a proper morphism Rep, the above

term is not permitted. This leads us to work on a more general setting where computable multifunctions

appear as morphisms.

2.7 Asm(NN) the Category of Assemblies over NN

Assembly is defined over a Partial Combinatory Algebra (PCA) where PCA provides a model of

computation. However, since we are only interested in this specific model of computation in this disser-

tation, which is a type-2 machine over NN, instead of presenting the general definition of assemblies, let

us directly head to the category of assemblies over NN (Kleene’s second algebra).

Definition 2.11.

• An assembly over Kleene’s second algebra is a pair A := (|A|,A) of a set |A| and a relation

A ⊆ NN × |A| which is surjective in the sense that for all x ∈ |A| there is ϕ ∈ NN where

(x, ϕ) ∈ A. We write ϕ A x to denote (x, ϕ) ∈ A and say ϕ represents x or ϕ is a A-name of

x.

• For two assemblies A,B, a set-theoretic function f : |A| → |B| is said realized or tracked by

F : NN ⇀ NN if

∀x ∈ |A|. ∀ϕ ∈ NN. ϕ A x⇒ τ(ϕ) B f(x)

holds. We write F A→B f in the case. We say such f is continuously (computably) realized

or tracked by F if F is continuous (computable). A computably realizable function is called

computable

• Let us write Asm(NN) (Asm(NN)cont) for the category of assembly with computably (continuously)

realizable functions as morphisms.

We drop subscripts when they is clear from contexts.

29

Otherwise it is explicitly mentioned, we work on Asm(NN). Since we are not dealing with any other

PCAs in this dissertation, we simply say assembly to refer to assembly over NN.

Example 2.11.

1. By definition, any represented set is an assembly. And, any morphism from and to represented sets

are already a morphism in Rep. In other words, Rep is a full subcategory of Asm(NN).

2. For any set A, there is a trivial assembly ∇A defined by

∇A := (A,NN ×A) .

Any set-theoretic function f : A → B is computable as a morphism from ∇A to ∇B. In other

words, the category of sets Set is a full subcategory of Asm(NN)

3. There is a forgetful functor Γ : Asm(NN) → Set where Γ(A) is the underlying set |A| and Γ(f) is

the function f . The forgetful functor is left adjoint to ∇.

The category of assemblies Asm(NN) also satisfies the properties that we were interested in for Rep.

Remark 2.5. The category of assemblies Asm(NN) is Cartesian closed with the following properties.

1. 0 is the initial assembly and 1 is a terminal assembly.

2. For any two assemblies A,B, the assembly A×B on the set-theoretic Cartesian product |A|× |B|
where

〈α, β〉 A×B (x, y) :⇔ α A x ∧ β B y

is a category-theoretic product of A and B. For any assembly C, and morhpisms f : C→ A and

g : C→ B, let us write f × b : C→ A×B for the unique morphism.

3. For any two assemblies A,B, the assembly A + B on the set-theoretic disjoint union |A| + |B|
where

n :: ϕ A+B (n, x) :⇔ (n = 0 ∨ ϕ A x) ∨ (n = 1 ∨ ϕ B x)

is a category-theoretic coproduct of A and B. For any assembly C, and morphisms f : A → C

and g : B→ C, let us write f + g : (A + B)→ C for the unique morphism.

4. For an assembly B, a set A, and an injective function ι : A → |B|, the subassembly induced by ι

is the assembly A on A defined by

ϕ A x :⇔ ϕ B ι(x).

See that the injective function ι is trivially computable.

5. For any two assemblies A,B, let us write C↓(A,B) be the set of continuously realizable functions

from |A| to |B|. The assembly BA on the set where

ϕ BA f :⇔ ηϕ A→B f

is an exponential assembly where the evaluation map is the function evaluation.

In fact, Asm(NN) is a much nicer category. It is a quasitopos with ∇2 being a weak subobject

classifier. However, since we are not going to make use of the structure in this dissertation, we refer

[VO08] to the interested readers and stop exploring the structure of Asm(NN) further.

Similarly to Rep, we write A → B for BA. We consider → be right-associative, and +,× be

left-associative where × has the highest, and + has the lowest precedence amongst the three.

30

2.7.1 Partial Functions in Asm(NN)

In the category of represented sets Rep, we had two endofunctors [,] : Rep → Rep for classifying

partial functions; for two represented sets A,B, (A → [B) is a represented set of continuously and

strongly realizable partial functions from A to B and (A→]B) is a represented set of continuously and

weakly realizable partial functions from A to B.

Remark 2.6. The definitions of the endofunctors [,] : Rep → Rep (from Definition 2.4 and 2.5) do

not require the representations to be functions. Hence, the definitions extend to [,] : Asm(NN) →
Asm(NN). And, the endofunctors are strong monads with the same definitions of units, multiplications,

and extensions.

An advantage of working on Asm(NN) by allowing representations to be relations is that it can

also deal with sets whose cardinalities exceed the cardinality of Continuum. One example is the set of

continuously realizable partial functions.

Definition 2.12. For any two assemblies A and B, define an assembly of continuously realizable partial

functions C(A,B) = (C(A,B),C(A,B)) where

ϕ C(A,B) f :⇔ ηϕ subdom(f)(A)→B f.

See that ϕ ∈ NN can represent multiple partial functions.

The natural question is if C(A,B) appears as an exponential object such that a computable partial

function appears as a morphism where we can refer to it in the internal lambda calculus. That is, if

there is an assembly C such that B→ C ∼= C(A,B) where C is related to B somehow.

Definition 2.13 (General Partiality). Define an endofunctor \ : Asm(NN)→ Asm(NN). The endofunctor

on an assembly A is \A whose underlying set is A ∪ {\A} and representation relation is

ϕ \A x :⇔ ϕ contains infinitely many nonzero elements

and the nonzero subsequence when it is shifted by −1 represents x ∈ A

ϕ `\A \A

The functor on a morphism f : A→ B is defined to be

\(f) : x 7→

f(x) if x 6= \A,

\B if x = \A.

Suppose a computable F realizes f and ϕ is a name of x ∈ |\A|. Then, the procedure of searching

through ϕ and if the entry is 0 appending it at the output tape and if the entry is n+ 1, feeding n to F

computes \f .

Again, we omit the subscript from \ when it is clear from the context or is irrelevant.

Lemma 2.7. For any assemblies A and B, the assembly of continuously realizable partial functions

C(A,B) is isomorphic to (\B)A.

Proof. Consider F : C(A,B)→ (\B)A and G : (\B)A → C(A,B) where

F : f 7→ f �\

G : g 7→ g �{x|g(x) 6=\}

31

See that F ◦ G and G ◦ F are identity functions. Hence, we only need to show that the functions are

computable.

For a partial function f ∈ C(A,B), given its name ϕf and a name ϕx of x ∈ A, we need to compute

a name of F (f)(x). Here, we use an informal argument on type-2 machines: simulate a universal machine

to compute ηϕf (ϕx). For each computation step, append 0 in the main output tape. When ηϕf (ϕx)

appends n in its output tape, append n+ 1 in the main output tape. There are the two cases:

1. when x ∈ dom(f), the universal machine computing ηϕf (ϕx) prints n1, n2, · · · which is a name of

f(x) where each takes some finite computation step. Hence, the main output tape is of the form

0, · · · , 0, (n1 + 1), 0, · · · , 0, (n2 + 1), 0, · · · . Therefore, it is a name of f(x) in \B.

2. when x 6∈ dom(f), due to the definition of the computation, it does not fail and fill in some infinite

sequence on the main output tape. Hence, it is a name of \.

For a function g ∈ (\B)A, given its name ϕg, and a name ϕx of x ∈ A, we need to compute

some ϕ ∈ NN. The only restriction is that, due to the definition of realizing partial functions, when

x ∈ dom(G(f)), the computed ϕ has to be a name of G(f)(x).

Iterate through the result of ηϕg (ϕx). When 0 appears, ignore. When n > 0 appears, append

n − 1 in the output tape. When x ∈ dom(G(f)), which is when g(x) 6= \, it holds that ηϕg (ϕx) is

a sequence of infinitely many nonzeros. And, its subsequence of nonzeros shifted by −1 is a name of

g(x) ∈ B. Hence, the computation does not fail, produces a name of g(x) which is G(f)(x). See that

when x 6∈ dom(G(f)) and when ηϕg (ϕx) contains infinitely many zeros, this translation fails. (However,

it does not matter.)

Hence, when we want to argue the computability of a partial mapping f : |A| ⇀ |B|, we can see

if the extension f �\: |A| → |\B| is a morphism. The functor \ : Asm(NN) → Asm(NN) is also a strong

monad as the other partiality functors are. As the name suggests, general partiality is really general in

that for a restricted partial function f : A → [B or g : A →]B, we can naturally transform them into

a partial function h : A→ \B.

Remark 2.7. There are natural transformations κ[,\ : [→ \ and κ],\ :] → \ such that the diagram

commutes.

A

[A \A]A

η[A
η\A

η]A

κ[,\A
κ],\A

Their definitions are

κ[,\A (x) =

x if x 6= [

\ if x = [,
and κ],\A (x) =

x if x 6=]

\ if x =].

2.7.2 Multifunctions in Asm(NN)

One advantage of using assemblies instead of represented sets is that we can let sets whose cardi-

nalities exceed the cardinality of Continuum be subject to computation.

The definition of realizing multifunctions in Asm(NN) gets extended.

32

Definition 2.14. Suppose any assemblies A and B and a multifunction f : |A| ⇒ |B|. A map F :

NN ⇀ NN realizes f if for any x ∈ |A| and ϕ such that ϕ A x, it holds that F (ϕ) B y for some

y ∈ f(x). Moreover, when f is a partial multifunction, we say F strongly realizes f if ϕ ∈ dom(F) ⇔
∃x ∈ dom(f). ϕ A x.

1. Let M↓(A,B) be the assembly whose underlying setM↓(A,B) is the set of continuously realizable

multifunctions from A to B and representation relation is

ϕ f :⇔ ηϕ realizes f .

2. Let M↑(A,B) be the assembly whose underlying set M↑(A,B) is the set of continuously and

strongly realizable partial multifunctions from A to B and representation relation is

ϕ f :⇔ ηϕ realizes f .

Given two assemblies, A,B, in this category, we have assemblies of continuously realizable (partial)

multifunctions. Similarly to the case of general partial functions, a natural question is if they appear as

exponential objects.

Definition 2.15. Define an endofunctor M : Asm(NN)→ Asm(NN) such that for an assembly A, M A :=

(P?(|A|),M A) where

ϕ M A S :⇔ ∃x. x ∈ S ∧ ϕ A x .

In words, ϕ represents a nonempty subset S of |A| if ϕ represents an element x of S with regards to the

original A.

The functor on f : A→ B, M(f) : M A→ M B is defined by

M(f) : S 7→
⋃
x∈S
{f(x)} .

See that M(f) is realizable by the same realizer of f .

Lemma 2.8. The endofunctor M is a monad whose unit is ηA : x 7→ {x} and multiplication is µA :

S 7→
⋃
T∈S T . See that they are realizable by id : NN → NN. And, it is extensible that the mapping

f 7→ (S 7→
⋃
x∈S{f(x)} is computable defined on all continuously realizable function. Hence, M :

Asm(NN)→ Asm(NN) is a strong monad.

Proof. The coherence conditions are direct from the fact that the nonempty powerset functor on the

category of sets is a monad. And, see that f 7→ (S 7→
⋃
x∈S{f(x)} coincides with f 7→ F (f) for

computable f .

Lemma 2.9. Suppose any assemblies A and B.

1. The assembly of continuously realizable mutlifunctions M↓(A,B) is isomorphic to A→ MB.

2. The assembly of continuously and strongly realizable partial mutlifunctions M↑(A,B) is isomorphic

to A→ [MB.

Example 2.12. The multivalued choice function choicen from Example 2.9, as a partial function from

|[2|n ⇀ MN is stronlgy computable. That is, its lazy extension choicen �[which is

choicen �[: ([2)n → [MN

: (b1, · · · , bn) 7→

{i | bi = tt} if ∃i. bi = tt,

[otherwise,

33

is computable.

See that the soft comparison operator can be defined by

�1 <�3
�2 := λ(x y : RCauchy). λ(k : N). (choice2 �[)(x<�[y + 2−k, y<�[x+ 2−k) =†1 1

Here, (=: N ×N → 2)†1 : [M(N) ×N → [M(N) is the lifted mapping with regards to the applicative

functor [M : Asm(NN)→ Asm(NN). Recall Section 2.4 for this. See that

x<k y =

{tt,ff} if x < y + 2−k ∧ y < x+ 2−k,

{tt} if y ≥ x+ 2−k,

{ff} if x ≥ y + 2−k.

Similarly, the countable choice function is strongly computable. That is, its lazy extension, which is

choiceN �[: ([2)N → [MN

: (bi)i∈N 7→

{i | bi = tt} if ∃i. bi = tt,

[otherwise.

is computable.

2.7.3 Lifting Sequences

For a sequence of assemblies (Ai)i∈N, see that the assembly
∏
i∈N Ai over {(x0, x1, · · ·) | xi ∈ |Ai|}

such that

〈(ϕi)i∈N〉 (xi)i∈N :⇔ ∀i. ϕi Ai
xi

is the countable product. See that any re-indexing and splitting to A0 ×
∏
i≥1 Ai are isomorhpisms.

See also that
∏
i∈N A ∼= N→ A. We often write Aω for

∏
i∈N A.

Let us call an applicative functor (F, ε, α, β) countably applicative if for any countable product∏
i∈N Ai, there is a natural transformation θAi :

∏
i∈N F (Ai) → F (

∏
i∈N Ai) with the coherence condi-

tion: ∏
i F (Ai) F (A0)×

∏
i F (Ai+1) F (A0)× F (

∏
i Ai+1)

F (A0 ×
∏
i∈N Ai+1)

F (
∏
i Ai)

θ(Ai)i∈N

∼= id×θ(Ai)i≥1

αA0,
∏
i∈N Ai+1

∼=

Amongst the applicative functors we have used in Asm(NN),], \, and M are countably applicative

with

θ](Ai)i∈N
(xi)i∈N =

] if ∃i. xi =],

(x0, x1, · · ·) otherwise,

θ\(Ai)i∈N
(xi)i∈N =

\ if ∃i. xi = \,

(x0, x1, · · ·) otherwise,

and

θM(Ai)i∈N
(Si)i∈N =

⋃
xi∈Si

{(x0, x1, · · ·)}.

34

However, [is not countably applicative that given an infinite sequence of [lifted values, we cannot

semi-decide if there is [in the sequence or not. Hence, it is evident that strong monads can fail to be

strongly applicative in Asm(NN).

Luckily, countably applicative functors are composable.

Lemma 2.10. Suppose (F, εF , αF , βF , θF) and (G, εG, αG, βG, θG) are countably applicative functors.

Then, the composed applicative functor FG is countably applicative with

θFG = F (θG) ◦ θF

Proof. For any sequence (Ai)i∈N, we need to show that the diagram commutes (with omitting isomor-

phisms):

FG(A0)× FG(A1)× · · · FG(A0)× F (G(A1)× · · ·) FG(A0)× FG(A1 × · · ·)

F (G(A0)×G(A1)× · · ·) F (G(A0)×G(A1 × · · ·))

FG(A0 ×A1 × · · ·) FG(A0 ×A1 × · · ·)

id×θF

θF

id×F (θG)

αF

F (θG) F (αG)

By the condition of θF , the diagram commutes:

FG(A0)× FG(A1)× · · · FG(A0)× F (G(A1)× · · ·)

F (G(A0)×G(A1)× · · ·) F (G(A0)×G(A1)× · · ·)

id×θF

θF αF

Hence, the desired diagram reduces to

FG(A0)× F (G(A1)× · · ·) FG(A0)× FG(A1 × · · ·)

F (G(A0)×G(A1)× · · ·) F (G(A0)×G(A1 × · · ·))

FG(A0 ×A1 × · · ·) FG(A0 ×A1 × · · ·)

id×F (θG)

αF αF

F (θG) F (αG)

As αF is a natural transformation, the diagram commutes:

FG(A0)× F (G(A1)× · · ·) FG(A0)× FG(A1 × · · ·)

F (G(A0)×G(A1)× · · ·) F (G(A0)×G(A1 × · · ·))

id×F (θG)

αF αF

F (id×θG)

Therefore, the diagram again reduces to

F (G(A0)×G(A1)× · · ·) F (G(A0)×G(A1 × · · ·))

FG(A0 ×A1 × · · ·) FG(A0 ×A1 × · · ·)

F (θG)

F (id×θG)

F (αG)

which is the condition for θG on F .

35

In addition to other liftings, when an applicative functor F is countably applicative, for a morphism

f :
∏
i∈N Ai → B, let us define its lifting

f† :
∏
i∈N

F (Ai)→ F (B)

by precomposing θF on F (f). Morevoer, when F is a countably applicative monad, for a morphism

f :
∏
i∈N Ai → F (B), let us define its lifting

f† :
∏
i∈N

F (Ai)→ F (B)

by precomposing θF and postcomposing µF on F (f).

Let us see some examples. The most (the only to be honest) use case in the dissertation of the

liftings is when the countable product is of the form Aω. As Aω is isomorphic to N→ A, let us assume

that the isomorphism is taken implicitly and work on N → A instead. Also, let us abbreviate θA for

θ(A)i∈N in the case.

First, see that for a morhpism f : (N → A) → MB, a multifunction from sequences, its lifting

f† : (N→ MA)→ MB happens to be

g 7→
⋃

xn∈g(n)

{f((xi)i∈N)}.

That is, it unions over all applications of f on each section of g.

The first use case is the countable choice function

choiceN �[: (N→ [2)→ [N.

We can think of the situation where we want to pass a multivalued test sequence as its input. In this

case, we can simply lift it with regards to M:

(choiceN �[)
† : (N→ M[2)→ M[N .

See that the definition is

(choiceN �[)
†((Si)i∈N) =

⋃
bi∈Si

choice((bi)i∈N).

It goes through all combinations of bi ∈ Si and return the indices i such that tt ∈ Si.
The second use case is the partial limit operation

lim�]: (N→ RCauchy)→]RCauchy.

When, we lift it, (lim�])† : (N→ MRCauchy)→ M]RCauchy, it is identified as follows:

x ∈ (lim�])
†((Si)i∈N)⇔ ∃xi ∈ Si. |x−xi| ≤ 2−i and] ∈ (lim�])

†((Si)i∈N)⇔ ∃xi ∈ Si. 6 ∃x. |x−xi| ≤ 2−i .

See that when] is not in the result, the result has to be a singleton. Otherwise, if x, y ∈ (lim�])†((Si)i∈N)

such that x 6= y, it must be that] ∈ (lim�])†((Si)i∈N). Hence, there are the three cases (1) the result is

{]}, (2) the result is a single real number {x}, and (3) the result is multiple real numbers with] in it

{], x, y · · · }. This is useful when we do multivalued computation, and it is needed to compute the limit

of multivalued real numbers.

36

Also, consider a case where we feed partial real numbers in limit. Lifting the limit function with

regards to \ happens to be

(lim�])
†((xi)i∈N) =

lim(xi)i∈N if ∃x. ∀i. |x− xi| ≤ 2−i,

\ if ∃i. xi = \,

] otherwise.

Of course, we can lift lim with regards to \M, as \M also is a countably applicative functor, considering

the situation where we want to feed in multivalued partial real numbers.

However, it is not possible to directly feed in lazy real numbers as [is not countably applicative.

Hence, when we want to feed in lazy real numbers x ∈ [R, we need to convert it to a generally partial

real number x ∈ \R first.

Example 2.13. Finally! we are ready to write a term that computes the absolute value function in the

internal language. First, define the soft-sign function

Sign�2
(�1) := λ(x : RCauchy). λ(n : N). (choice2 �[)(x>−2−n, 2−n > x) =†1 1

as a morphism from RCauchy to [M(2). Then, see that

λ(n : N). Cond†1RCauchy

(
Sign(x, n+ 1), x,−x

))
assuming x : RCauchy is a morphism from N to [M(RCauchy). Hence, postcomposing κ[,\RCauchy

yields a

morhpism from N to \M(RCauchy).

κ[,\RCauchy
◦ Cond†1RCauchy

(
Sign(x, n+ 1), x,−x

)
Therefore, feeding it to lim lifted with regards to \M yields

abs := λ(x : RCauchy). (lim�])
†
(
λ(n : N). κ[,\RCauchy

◦ Cond†1RCauchy

(
Sign(x, n+ 1), x,−x

))
which is a morphism from RCauchy to \M(]RCauchy) that computes the absolute value of the input.

See that abs : RCauchy → \M(]RCauchy) is a little disappointing that we know the absolute value

function is not a (strict) multifunction or a partial function. Of course, we can prove it by reasoning

on the definition of abs that for any x, abs(x) is {|x|}. And, this should not be hard as the definition

is simple enough. However, the point is, to make sure abs is indeed what we wanted to have, we need

an extra procedure. This is what leads to the main work of this dissertation, formalizing the procedure

using the framework of imperative programming.

2.8 Further Remarks on Multifunctions

It is all about classifying functions. By studying computability theory, we classify functions that are

computable and that are not. By studying algebra, we classify functions that are homomorphic and that

are not. By studying topology, we classify functions that are continuous and that are not. The question

is if we can make the notion of computability intrinsic, the set of computable functions becomes derivable

from a natural structure of the sets. The main theorem in computable analysis [Wei00, Theorem 3.2.11]

states it is somewhat possible in the sense that there are representations on topological spaces that make

the characterizations, (i) continuously realizable and (ii) continuous, coincide.

37

Definition 2.16. A representation δ of a topological space X is continuous if it is a continuous mapping

from the domain equipped with the subspace topology of the standard topology on NN toX. A continuous

representation δ of a topological space X is (computably) admissible if for any continuous representation

γ of X, the identity function id : (X, δ)→ (X, γ) is continuously (computably) realizable.

Remark 2.8. The standard representation of reals is admissible and computably admissible.

Theorem 2.5 (The Main Theorem [Wei00]). Suppose any two topological spaces with representations

(X, δX) and (Y, δY). If the representations are admissible, for any function f : (X, δX) → (Y, δY), the

function is continuous if and only if it is continuously realizable.

Thanks to the main theorem, we do not need to talk about representations all the time. The

computational structure of a set becomes intrinsic in the sense that, for an example of real numbers,

when we want to mention continuously realizable functions, we can refer to the property by mentioning

continuous functions. Consequently, the represented set R → R for any effective represented set R, is

the represented set of continuous real functions.

Once we are interested in multifunctions, a natural question to ask is if there is a topology on P?(Y)

that makes the statement holds: a function f : X → M(Y) is continuously realizable if and only if it is

continuous.

Lemma 2.11. Let X be a nonempty set and U (P?(X). Then there exists a pair of nonempty subsets

S, T ⊆ X such that S ∈ U , T /∈ U , and S ∩ T 6= ∅.

Proof. Suppose not. Since U 6= ∅, we can pick S ∈ U . Since X ∩ S 6= ∅, we have X ∈ U . Therefore for

every nonempty subset Y ⊆ X, we have Y ∈ U . We conclude U = P?(X), a contradiction.

Theorem 2.6. Let (A,A) and (B,B) be nonempty represented sets. If every continuously realizable

f : A→ P?(B) is continuous, then either A has the discrete topology or P?(B) has the trivial topology.

Proof. Suppose that P?(B) has a nontrivial topology, so that there exists open U satisfying ∅ 6= U (
P?(B). By applying Lemma 2.11, we pick S and T such that S ∈ U , T /∈ U , and S ∩ T 6= ∅. Fix a0 ∈ A
and consider the total multifunction f : A⇒ B

f(x) :=

{
S (x = a0)

T (x 6= a0)
.

f is continuously realizable by a constant realizer mapping everything to a name of b0 ∈ S∩T . Therefore

f is continuous by one of the assumptions. By continuity of f ,

f−1[U] = {a0}

is open, which is a one-point set. Since choice of a0 was arbitrary, we conclude that A has the discrete

topology.

Corollary 2.2. When A and B are of the cardinality of continuum, for any representations of A and

B, there are no topologies on A and P?(B) that make the statement hold:

f : A⇒ B is continuous if and only if f is continuously realizable.

38

Proof. Assume that the statement holds. Then, by Theorem 2.6, every multifunctions are continuous.

By the assumption, every multifunctions are continuously realizable. For any function f : A→ B, there

is a continuous realizer τ that realizes f̄ : x 7→ {f(x)}. Note that τ realizes f as well. Hence, any function

from A to B becomes continuously realizable. However, since the cardinality of the set of continuous

functions from A to B strictly exceeds the cardinality of the set of continuous functions from NN to NN,

it is a contradiction.

39

Chapter 3. ERC: Simple Imperative Language with Real

Numbers

In this chapter, we devise the simple imperative language ERC (Exact Real Computation). The lan-

guage provides the primitive data type R for real numbers and primitive operators for its field arithmetic:

+,−,×, and �−1. Their semantics is defined to be exactly the field arithmetic of real numbers.

Of course, we want the language to be implementable. And, we know from Chapter 2 how com-

putation over real numbers needs to be performed. That is, the language has to be based on type-2

computation. But what does it mean for a language to be based on type-2 computation?

It is a typed imperative language. That is, there is a variable x of type R. It is a store that holds a

datum that represents a value in R. It means that there is a representation δ of real numbers underlies

such that in the implementation level, x is storing a datum ϕ ∈ NN, meanwhile, in the abstract level, we

see the datum as δ(ϕ) ∈ R.

In this framework, it is clear what is going on with the following instruction where x, y, z are variables

of type R.

z := x+ y

Suppose x and y are storing ϕx ∈ NN and ϕy ∈ NN in the implementation level. Then, when we execute

the above instruction, it runs a realizer of the real number addition on ϕx and ϕy, and assign the result

to the store z. In the abstract level, we see that the value δ(ϕx) + δ(ϕy) is assigned at z.

It is important that though we want an implementable language, implementation is not a part of

the definition of the language. For example, we want the user of the language to see x in the above

example as a variable that is storing a real number in R not an infinite sequence in NN. When the user

of the language writes the above program, we want it to be seen as the real number addition x+ y, not

the realizer of the addition.

We define the semantics of the language without any implementation-specific details. For example,

the semantics of a variable of type R is a store that contains real numbers, and the semantics of R oper-

ations are the real number operations. Hence, users can write a program without considering anything

about infinite sequences, and they can reason on their programs by their mathematical knowledge of

real numbers. However, at the end of the day, due to the property being implementable, realizers of the

programs which computers can simulate will be obtained.

Obviously, the language should provide an operator for real number comparisons. However, having

the ordinary total real number comparison �1<�2 : R2 → 2 is not feasible as it won’t be implementable

anyway (recall Example 2.6).

Recall from Example 2.4, that instead, the partial comparison �1<�2 : R2 ⇀ 2 which is not defined

at {(x, x) | x ∈ R} is feasible. That is, we can define z := x< y to correctly assign tt at z when x < y, ff

at z when y < x, but be unspecified when x = y. However, we can do more than this since the partial

function < is strongly computable. That is, its lazy extension �1<�[�2 : |R2| → |[2| is computable.

We equip the language with the lazy extension and the lazy lifted Boolean. Instead of writing

|[2|, in order to simplify the syntax presentation of our language, let us write K = {tt,ff, uk} where uk

corresponds to [∈ |[2|. The symbol K stands for Kleene logic where uk stands for the third truth-value

40

in Kleene logic “unknown”. Similarly, we write . instead of <�[:

x . y =

tt if x < y,

ff if y < x,

uk otherwise.

The added element uk in K denotes nontermination in a safe way. For example, when b is a variable

of type K, the data type for K, the statement b := x . y safely assigns uk at b when x = y without

diverging. However, when it comes a moment where we need to decide if it is tt or ff, it makes the

program diverge. For example, the instructions

if b then c1 else c2 and while b do c

diverge when b = uk.

Nondeterminism, which is essential in exact real number computation [Luc77], is provided by count-

ably many constructs. There is a construct choosen for each natural number n ∈ N. This iRRAM-like

[Mül00] construct choosen(b1, · · · , bn) receives n terms of type K and evaluates to the index of a term

which evaluates to tt. When there are multiple arguments that evaluate to tt, it returns any of those

indices nondeterministically. For example, choose2(true, true), where true is a programming constant

for tt, evaluates to either 1 or 2 nondeterministically. Even when one of its arguments evaluates to uk, as

long as there is an argument that evaluates to tt, the whole expression does not diverge. See Example 2.9.

Using this construct, we can construct a term for the soft comparison test with a tolerance factor ε

as follows:

choose2(x . y + ε, y . x+ ε) =̂ 1 .

Here, �1 =̂ �2 : Z× Z→ K is the integer equality test postcomposed by the subset inclusion. Similarly,

let us define �1 ≤̂ �2 : Z × Z → K. The above term evaluates to tt when x < y + ε and to ff when

y < x+ ε. When both inequalities hold, one of the two gets returned nondeterministically.

Constructing real numbers via the limits of converging sequences is only done implicitly. Suppose

we have an explicit limit operator lim for the feature. Then, the operator has to receive a function, an

infinite sequence, or something that expresses an infinite sequence of approximations. In order to make

our language as simple as possible, we take a similar approach to [TZ99, TZ04, TZ15]. When we have a

program that computes a real number from a natural number, we add a layer of interpretation in that

we regard the program as the limit of the sequence generated by altering the input natural number.

The extended language being nondeterministic, we use Plotkin powerdomain [Plo76] to interpret

our denotational semantics. Given a term, the denotation of it is defined to be the set of values that each

nondeterministic branch in the evaluation results. For example, the denotation of choose2(true, true)

on any state is the set {1, 2}.
Other than the enriched term language, commands are identical to the simple imperative language.

Hence, we use precondition-postcondition-style program specification in order to describe the property of

a program. We choose the first-order logic of the structures of Presburger arithmetic, ordered field of real

numbers, and Kleene logic connected by the accuracy embedding 2� : Z 3 p 7→ 2p ∈ R to be the logical

language expressing preconditions and postconditions. We show that the logical language is expressive

enough to express the denotations of our term language. In other words, there is a recursive translation

from the set of terms to the set of formulae such that the translated formula of a term, with regards

to the standard interpretation, defines the term’s denotation. We show that the theory of the logical

41

language is complete and decidable; i.e., any sentence in the language can be automatically proved or

disproved. (For this, the two structures being connected by the accuracy embedding is crucial.)

We devise Hoare-style proof rules for proving correct specification. We prove that the proof rules,

as a formal system, is sound with regards to the denotational semantics. However, as the inevitable

side-effect of the logical language being complete, the formal system is not complete in the sense of

[Coo78]. However, by providing an example proof of the correctness of a root-finding algorithm in the

next chapter, we demonstrate the practical usefulness of our design.

In Section 3.1, we introduce ERC as a programming language with some demonstrative examples.

In the section, we deliver the intended meaning of each construct informally. In Section 3.2, we define

the formal syntax and the type system of ERC. In Section 3.3, we define domain-theoretic denotational

semantics and prove that our language is Turing-complete. In Section 3.4, we devise a specification

language and prove that the language is complete and decidable. After seeing that the language is

expressive for the term language of ERC, we devise Hoare-style proof rules. We prove that they, as a

formal system, are sound regarding the denotational semantics. The Computability and implementabiltiy

issues are dealt with in the next chapter.

3.1 Overview of ERC with Example Programs

In this section, we overview ERC with some example programs. The intended meaning of each

construct in ERC is explained.

A program in ERC is in the following form:

function (x1 : τ1, · · · , xd : τd)

c

return t

Here, xi is an input variable of type τi, c is a command, and t is a term that to be returned.

partial abs := function (x : R)

var y : R := 0;

if x & 0 then y := x else y := −x
return y

The program, which is named partial abs receives a real number x. It first creates a new variable y

declaring its type to be R, and it initializes y to be 0. Commands get sequentially composed by ‘;’.

Hence, the program says, after creating the variable, it tests if x > 0. If x > 0 holds, the term x & 0

evaluates to tt and the first branch is taken. And, it assigns the value of x at y. If x < 0 holds, the term

x & 0 evaluates to ff and the second branch is taken. In this case, it assigns the value of −x at y. If

x = 0, since x & 0 is in the condition, the program diverges. Hence, the program partial abs computes

the absolute value of its input exactly but partially in that when the input is identical to zero, it never

terminates.

42

The use of nondeterminism enables us to make a total program for computing the absolute values:

abs := function (p : Z, x : R)

var y : R := 0;

if choose2(x & −2p−1, x . 2p−1) =̂ 1.

then y := x

else y := −x
return y

It evaluates choose2(x & −2p−1, x . 2p−1). Given an integer p, the term 2p, which is for the accuracy

embedding, evaluates to 2p of type R. And, choose nondeterministically returns the index of an argument

which evaluates to tt. See that for any x and p at least one of the arguments x & −2p−1 and x . 2p−1

evaluates to tt. Hence, the choose term evaluates to either 1 or 2 and always terminates. When 1 is

returned, it means that x > −2p−1; and, when 2 is returned, it means that x < 2p−1. Hence, whichever

nondeterministic branch is taken, at the end of the program, y stores a 2p-approximation to |x|. When

we have a program whose return type is R and the first argument is of type Z, we regard the integer

input as the precision parameter. And, we can interpret the program to computing the limit value of

the sequence generated by sending the first argument to −∞. Hence, in this case, we say the program

abs computes the absolute function.

Consider the program for computing the multivalued rounding:

round :≡ function (x : R)

var k : Z := 0;

while choose2(x . 1, x & 1/2) =̂ 2 do

k := k + 1;

x := x− 1

while choose2(x & −1, x . −1/2) =̂ 2 do

k := k − 1;

x := x+ 1;

return k

The program round returns a multivaleud integer k where x− 1 < k < x+ 1 holds.

3.2 Formal Syntax and Typing

In this section, we construct ERC as a formal programming language.

3.2.1 Formal Syntax

Programs in ERC are constructed using the three layers: terms, commands, and programs. Terms

in ERC represent mathematical values, commands in ERC represent computational instructions on how

to alter computer states, and programs in ERC represent functions with inputs and an output.

Data Types in ERC

A term in ERC represents mathematical values that to be expressed in ERC. Data types are the

domains of the values. ERC as a formal programming language provides the three data types: Z for

43

integers, R for real numbers, and K for Kleeneans. We often write τ and its variants to denote an

arbitrary data type.

Terms in ERC

The term language that ERC provides is Presburger arithmetic, Real Closed Field, and Kleene

Logic. As usual, we assume that there are unlimited supplies of variables. The terms in ERC are defined

inductively as follow:

t ::= x variable∣∣ true
∣∣ false

∣∣ undef K constant∣∣ kZ integer constant k ∈ Z∣∣ kR real number constant k ∈ Z∣∣ 2t accuracy embedding from Z to R∣∣ t1 + t2
∣∣ t1 − t2 integer arithmetic∣∣ t1 + t2
∣∣ t1×t2

∣∣ t1 − t2
∣∣ t−1 real arithmetic∣∣ t1 ≤̂ t2 ∣∣ t1 =̂ t2 integer comparison∣∣ t1 . t2 real comparison∣∣ choosen(t1, · · · , tn) multivalued choice

ERC provides countably many nondeterminism constructs; i.e., for each natural number n greater

than 1, there is choosen which accepts n arguments.

For simplicity, we write −t as an abbreviation for 0Z + (−t2), −t as an abbreviation for 0R + (−t),
and t1/t2 as an abbreviation for t1×t2−1, t1 & t2 as an abbreviation for t2 . t1, t1 ≥̂t2 as an abbreviation

for t2 ≤̂ t1.

In order to simplify presenting rules and definitions, we often write ? to denote a symbol for the

binary operations {+, ≤̂, =̂,−,−,+,×,.}.

Commands and Programs in ERC

The commands in ERC are the commands in a simple imperative language:

c ::= skip skip∣∣ x := t variable assignment∣∣ var x : τ := t variable declaration∣∣ c1; c2 sequential composition∣∣ if t then c1 else c2 branching∣∣ while t do c loop

The intended meaning of each construct is as follows. The construct skip is for the instruction of doing

nothing. The construct x := t is to assign the value of t in the place of the variable x. The construct

var x : τ := t is to introduce a τ typed new variable named x with its value initialized to t. The construct

if t then c1 else c2 is for ordinary branching instructions and while t do c is for ordinary while loops.

44

And, programs in ERC is of the form:

P ::= function (x1 : τ1, x2 : τ2, · · · , xn : τn)

c

return t

3.2.2 Typing Rules

The type system of ERC is given with typing rules for deriving well-typed terms, commands, and

programs.

Well-typed Terms

We are not interested in any term. For example, due to the definition, 4 + true is a valid term in

ERC. Instead of artificially giving meaning to those terms, we define well-typedness relation. And, those

nonsense terms will be defined to be ill-typed.

A context Γ is a function from a finite set of variables to data types where · denotes the empty

function. For a context Γ, a variable x not in dom(Γ), and a data type τ , we write Γ, x:τ to denote

the context Γ extended with the mapping x 7→ τ . For two contexts Γ and ∆, when their domains are

disjoint, we write Γ,∆ to denote the join of two functions.

Given a Γ, a term t, and a data type τ , we write Γ ` t : τ to say that t is judged to have type τ

under the context Γ. It is defined inductively with the inference rules in Figure 3.1.

Γ ` kZ : Z Γ ` kR : R Γ ` true : K Γ ` false : K Γ ` undef : K

Γ(x) = τ

Γ ` x : τ

Γ ` t1 : R Γ ` t2 : R

Γ ` t1 . t2 : K

Γ ` t1 : Z Γ ` t2 : Z

Γ ` t1 ≤̂ t2 : B

Γ ` t1 : Z Γ ` t2 : Z

Γ ` t1 =̂ t2 : K

Γ ` t1 : Z Γ ` t2 : Z

Γ ` t1 + t2 : Z

Γ ` t1 : R Γ ` t2 : R

Γ ` t1 + t2 : R

Γ ` t1 : Z Γ ` t2 : Z

Γ ` t1 − t2 : Z

Γ ` t1 : R Γ ` t2 : R

Γ ` t1 − t2 : R

Γ ` t1 : R Γ ` t2 : R

Γ ` t1 × t2 : R
Γ ` t : R

Γ ` t−1 : R

Γ ` ti : K (for i = 1, · · · , n)

Γ ` choosen(t1, · · · , tn) : Z
n ≥ 2

Γ ` t : Z
Γ ` 2t : R

Figure 3.1: The typing rules for terms in ERC

See that for each integer k ∈ Z, there is a constant kZ of type Z and a constant kR of type R. Though,

syntactically kZ and kR are different terms of different types, when there is no ambiguity, when the well-

typedness of a term containing k uniquely determines whether it is kZ or kR, we drop the subscript to

simplify the presentation in the dissertation.

45

Well-typed Commands

As commands are constructed using terms, well-typedness also affects commands. Unlike terms,

commands do not represent values but are meant to modify states. When we consider a command of

the form of variable declaration var x : τ := t, if the execution of it on some context Γ works well, it will

create another context Γ′ := Γ, x : τ . We write Γ ` c . Γ′ to denote that the command c is well-typed

under the context Γ and executing it results in a new context Γ′. The well-typedness of commands are

defined inductively using the inference rules in Figure 3.2.

Γ ` skip . Γ

Γ ` t : τ Γ(x) = τ

Γ ` x := t . Γ

x 6∈ dom(Γ) Γ ` t : τ

Γ ` var x : τ := t . Γ, x : τ

Γ ` c1 . Γ1 Γ1 ` c2 . Γ2

Γ ` c1; c2 . Γ2

Γ ` t : K Γ ` c1 . Γ Γ ` c2 . Γ

Γ ` if t then c1 else c2 . Γ
Γ ` t : K Γ ` c . Γ

Γ ` while t do c . Γ

Figure 3.2: The typing rules for commands in ERC

Notice that a new variable cannot be introduced in the body of a loop and the branches of a

conditional statement.

Well-typed Programs

A program in ERC, which composes of a list of input variables, a command, and an output term,

is well-typed if the command and the returned term are well-typed under the assumed input. We write

` P : τ1 × · · · × τn → τ to denote that a program P of the form

P = function (x1 : τ1, x2 : τ2, · · · , xn : τn)

c

return t

is judged to have type τ1 × · · · × τn → τ . It holds if and only if

x1 : τ1, · · · , xn : τn ` c . Γ and Γ ` t : τ

hold for some Γ.

3.3 Denotational Semantics

Denotational semantics is a way to describe a program its mathematical meaning, abstracting its

operational behavior away. For example, when we have a well-typed term Γ ` t : R, we wish it to

represent a real number as an element in R. We express this interpretation formally by defining the

denotational semantics of ERC. We begin with defining the most clear denotations of data types:

JZK := Z JKK := K JRK := R .

The meaning of terms and commands get decided if a state is given. For example, the value of x+y

depends on the values that the variables x and y store. For a context Γ, a state in the context is a datum

that records each variable’s value. Formally speaking, the denotation of a context Γ is defined as follows:

JΓK :=
∏

x∈dom(Γ)

JΓ(x)K

46

The denotation of a context is the set of states that are valid under the context. For a context γ ∈ JΓK, a

variable x not in dom(Γ), and a value v ∈ JΓ(τ)K, we write (γ, x 7→ v) for γ extended with the assignment

x 7→ v. For two states γ ∈ JΓK and δ ∈ J∆K whose domains are disjoint, we write (γ, δ) to denote their

joins. For a state γ ∈ JΓK, we write γ[x 7→ v] to denote the state γ whose assignment at x is updated

with x 7→ v.

3.3.1 Powerdomain for ERC

We are interested only in well-typed terms. Hence, we define the denotational semantics only for the

well-typed terms. For a well-typed term Γ ` t : τ , given a proper state γ ∈ JΓK, the term t is intended to

represent a value in JτK. The first attempt would be to make the denotation of the term be a function

of type JΓK→ JτK.
However, due to nondeterminism in ERC, a term may represent not a single value. For example,

the well-typed term · ` choose2(true, true) : Z is meant to represent 1 or 2 nondeterministically on

the empty state. To make our denotational semantics capture the nondeterministic nature of ERC, we

make it set-valued where the set denotes all possible nondeterministic outputs that the term evaluates

to. Hence, in the above case, the denotation of · ` choose2(true, true) is {1, 2} since 1 and 2 are values

that the term may evaluate nondeterministically.

In order to make the denotational semantics set-valued, we use Plotkin powerdomain which is devised

to express Dijkstra’s nondeterminism in [Plo76]:

Definition 3.1. On a flat domain A⊥ := A ∪ {⊥}, the Plotkin powerdomain P(A⊥) is the set {S ⊆ A |
S 6= ∅, S is finite or ⊥ ∈ S} endowed with the Egli-Milner ordering v characterized by

P v Q ⇐⇒ (⊥ ∈ P ∧ P ⊆ Q ∪ {⊥}) ∨ (⊥ /∈ P ∧ P = Q) .

As the name suggests, it is a ω-CPO with a least element {⊥}.

Define the rectifying operation

A ⊇ S 7→ S? :=

{⊥} if S = ∅ ,

S if S finite ,

S ∪ {⊥} otherwise.

The construction of powerdomains from flat domains as a mapping from a set A to the underlying

set of P(A⊥), is a monad [BVS93] where it on a function is defined by

P((f : A→ B)⊥) :=
⋃
x∈S

{f(x)} if x 6= ⊥,

{⊥} otherwise.

The unit is ηA : x 7→ {x} and the multiplication is

µA : S 7→
⋃
T∈S

T if T 6= ⊥,

{⊥} otherwise.

Being a monad on Set, it admits coummative tensorial strength1 βA,B : A× P(B⊥)→ P((A×B)⊥)

which happens to be

βA,B(x, S) =
⋃
y∈S

{(x, y)} if y 6= ⊥

{⊥} otherwise.

1Recall Section 2.4

47

And, it is lax monoidal where

αA,B(S, T) =
⋃

x∈S∧y∈T

{(x, y)} if x 6= ⊥ ∧ y 6= ⊥,

{⊥} otherwise.

generated by β.

Hence, we can define various types of lifting.

• When f : A1 × · · · × Ad → B, we can lift it to f† : P((A1)⊥) × · · · × P((Ad)⊥) → P(B⊥) by

consecutively precomposing appropriate α on P(f⊥). It happens to be

f†(S1, · · · , Sd) =
⋃

(x1,··· ,xd)∈S1×···×Sd

{f(x1, · · · , xd)} if ∀i. xi 6= ⊥,

{⊥} otherwise.

• When f : A1 × · · · × Ad → P(B⊥), we can lift it to f† : P((A1)⊥) × · · · × P((Ad)⊥) → P(B⊥) by

consecutively precomposing appropriate α on µB ◦ P(f⊥). It happens to be

f†(S1, · · · , Sd) =
⋃

(x1,··· ,xd)∈S1×···×Sd

f(x1, · · · , xd) if ∀i. xi 6= ⊥,

{⊥} otherwise.

• When f : A1 × · · · × Ad → B, we can lift it to f†i : A1 × P((Ai)⊥) × · · · × Ad → P(B⊥) by

precomposing appropriate β on P(f⊥). It happens to be

f†(x1, · · · , Si, · · ·xd) =
⋃
xi∈Si

{f(x1, · · · , xi, · · ·xd)} if xi 6= ⊥,

{⊥} otherwise.

• When f : A1 × · · · × Ad → P(B⊥), we can lift it to f†i : A1 × P((Ai)⊥) × · · · × Ad → P(B⊥) by

precomposing appropriate β on µB ◦ P(f⊥). It happens to be

f†(x1, · · · , Si, · · ·xd) =
⋃
xi∈Si

f(x1, · · · , xi, · · ·xd) if xi 6= ⊥,

{⊥} otherwise.

Thus far, though P(A⊥) was a domain, we worked on only of its underlying set. The purpose was to

simplify the presentation. However, as we need to use the domain-theoretic knowledge sooner or later,

we need to show the operations revealed here satisfies the desired domain-theoretic conditions.

Lemma 3.1. The Kleisli composition is continuous in both arguments; i.e., for any fi, g : S → P(S⊥)

where (fi)i∈N is a chain,(⊔
i∈N

fi

)†
◦ g =

⊔
i∈N

(
f†i ◦ g

)
and g† ◦

⊔
i∈N

fi =
⊔
i∈N

g† ◦ fi

hold.

Proof. The mappings forming chains are easy to see. Let f =
⊔
i∈N fi. Suppose any x ∈ S. See that

⊥ ∈ f†(g(x)) if and only if ⊥ ∈ g(x) or there is y ∈ g(x) such that for all i, ⊥ ∈ fi(y).

Also, ⊥ ∈
⊔
i∈N
(
f†i ◦ g

)
(x) if and only if for all i, ⊥ ∈ f†i (g(x)). See that this happens if and only if

either ⊥ ∈ g(x) or there is y ∈ g(x) such that for all i, ⊥ ∈ fi(y).

Hence, ⊥ ∈ f ◦ g(x) if and only if ⊥ ∈
⊔
i∈N
(
f†i ◦ g

)
(x).

48

See that for any y such that y 6= ⊥, y ∈ f†(g(x)) if and only if there is non bottom z ∈ g(x) such

that there is i where y ∈ f(z).

And, for a non bottom y, y ∈
⊔
i∈N
(
f†i ◦ g

)
(x) if and only if there is i such that y ∈ f†i (g(x)). This

holds if and only if there is non bottom z ∈ g(x) such that y ∈ fi(z).
Therefore, f(x) =

⊔
i∈N
(
f†i ◦ g

)
(x) holds for all x ∈ S.

The other equation can be proven similarly.

For a mapping f : A→ B⊥, let us define the axiliary codomain lifting f‡ : A→ P(B⊥) by

f‡(x) = {f(x)}.

3.3.2 Denotations of Terms

When A is the denotation of the type of a term t, the denotation of the term on a state will be

defined as an element of the powerdomain S ∈ P(A⊥). The case ⊥ ∈ S denotes the case where the term

is semantically ill-definite. Otherwise, S is the set of the values that t nondeterministically evaluates to.

The denotation of an expression is recursively defined naturally to the intended meaning of each

operation lifted properly to the monad P(�⊥). Let us recall the definitions of some operations. The

function . for real comparison test is defined as follows:

�1 . �2 : R× R → K

:= (x, y) 7→

tt if x < y,

uk if x = y,

ff if x > y.

The integer comparisons =̂, ≤̂ are functions to K such that the subset inclusion 2 ⊆ K is postcomposed

to the ordinary integer comparisons =,≤.

Let us define operations that are not defined thus far. The multiplicative inversion �−1 used here

is a function to R⊥, ⊥ extension of the partial mapping x 7→ x−1 that is not defined at x = 0. That is,

x−1 =

x−1 if x 6= 0,

⊥ otherwise.

And, define choosen by

choosen : Kn → P(Z⊥)

:= (b1, · · · , bn) 7→

{i | bi = tt} if ∃i. bi = tt,

{⊥} otherwise.

Given a well-typed term t such that Γ ` t : τ , we define the function JΓ ` t : τK : JΓK → PJτK⊥
recursively as in Fig. 3.3.

Though the definition of the denotational semantics looks a little complicated, considering the defini-

tion of the liftings, they are defined in a quite natural way. For example, the denotation JΓ ` t1 + t2 : RKγ
is defined to be

JΓ ` t1 + t2 : RKγ =
⋃

x∈JΓ`t1:RKγ,x∈JΓ`t1:RKγ

{x+ y} if x 6= ⊥ ∧ y 6= ⊥,

{⊥} otherwise.

49

JΓ ` true : KKγ := ηK(tt)

JΓ ` false : KKγ := ηK(tt)

JΓ ` undef : KKγ := ηK(uk)

JΓ ` kZ : ZKγ := ηZ(k)

JΓ ` kR : RKγ := ηR(k)

JΓ ` x : τKγ := ηJτK(γ(x))

JΓ ` t1 ? t2 : τKγ := JΓ ` t1 : τ ′Kγ ?† JΓ ` t2 : τ ′Kγ (for ? ∈ {+, ≤̂, =̂,−,−,+,×,.})

JΓ ` t−1 : τKγ := (JΓ ` t : τ ′Kγ)−1�‡†⊥

JΓ ` choosen(t1, · · · , tn) : ZKγ := choose†n(JΓ ` t1 : KKγ, · · · , JΓ ` tn : KKγ)

Figure 3.3: The denotations of ERC terms.

That is, the denotation is the real number additions over all possible values of t1 and t2 with a condition

that it includes ⊥ if and only if ⊥ is encountered.

Remark 3.1.

1. A term is semantically ill-defined when (i) its subterm is, (ii) we try to obtain the multiplicative

inversion of zero, and (iii) there is no argument that choose can choose. See the ill-definiteness

propagates in the sense that when the denotation of a subterm contains ⊥, the term’s denotation

must contain ⊥ as well.

2. Of course, the denotation of a real number comparison x . y is partial in the sense that it contains

uk when there is a real number r that is contained both in the denotation of x and the denotation

of y.

3. The only possible type conversion from Z to R is done by 2� : n 7→ 2n called accuracy embedding.

4. An infinite set cannot be constructed with the definition. However, we use the powerdomain to

be the domain of our denotational semantics since infinite sets become necessary in defining the

denotations of commands.

3.3.3 Denotations of Commands

Since the intended meaning of a command is a state transformer, it is most natural to define the

denotation of a well-typed command JΓ ` S . Γ′K as a function of type JΓK → P(JΓK⊥) considering the

nondeterminism in ERC. Given a state γ ∈ JΓK, executing S on γ will yields states in Γ′ nondetermin-

istically. Hence, intuitively, the denotation of S on γ is the set of all possible nondeterministic resulting

states of executing S on γ. For example, the denotation of x : Z ` x := choose(true, true) . x : Z on a

state (x 7→ 42) is {(x 7→ 1), (x 7→ 2)}.
What ⊥ represents here is a little different. Semantical ill-definiteness still gets represented by ⊥.

For example, the denotation of JΓ ` x := t . ΓK on a state γ contains ⊥ if JΓ ` t : Γ(x)Kγ contains ⊥.

Having loops and making the programming language expressive, infinite loops are always possible to

50

occur. For example, · ` while true do skip . · is a well-typed command, whose denotation has to be

defined. In the case, we let the denotation of it contains ⊥.

Define KondP(A⊥) : K× P(A⊥)× P(A⊥)→ P(A⊥) by

KondP(A⊥)(b, S, T) =

S if b = tt,

T if b = ff,

{⊥} otherwise.

Let LFPA(F) be the least fixed-point of F : (A → P(A⊥)) → (A → P(A⊥)) when F is continuous with

regards to the point-wise ordering. For any set S, maps b : S → P(K⊥), and c : S → P(S⊥), define the

map

Wb,c : (f : S → P(S⊥)) 7→ Kond†P(A⊥) ◦ (b× (f† ◦ c)× ηS) .

Note that Wb,S is continuous by Lemma 3.1.

Given a well-typed command c such that Γ ` c . Γ′, we define the denotation JΓ ` c . Γ′K : JΓK →
P(JΓ′K⊥) recursively as in Fig. 3.4.

JΓ ` skip . ΓKγ := ηJΓKγ

JΓ ` x := t . ΓKγ := (v 7→ γ[x 7→ v])† ◦ JΓ ` t : τKγ

JΓ ` var x : τ = t . Γ′Kγ := (v 7→ (γ, (x 7→ v)))† ◦ JΓ ` t : τKγ

JΓ ` c1; c2 . Γ′Kγ := J∆ ` c2 . Γ′K† ◦ JΓ ` c1 .∆Kγ

JΓ ` if t then c1 else c2 . ΓKγ := Kond†1P(JΓK⊥)(JΓ ` t : KKγ, JΓ ` c1 . ΓKγ, JΓ ` c2 . ΓKγ)

JΓ ` while t do c . ΓKγ := LFP(WJΓ`t:KK,JΓ`c . ΓK)

Figure 3.4: The denotations of ERC commands.

For most constructs, their denotations are defined naturally with regards to the lifting by the moand

P(�⊥). Also, notice that ⊥ propagates throughout its superterms. When a command S has a subterm

or a subcommand that executes to ⊥, the command executes to ⊥. For example, when JΓ ` b : KKγ
contains ⊥, the denotation JΓ ` if b then c1 else c2 . ΓKγ contains ⊥. When JΓ ` b : KKγ contains tt

and JΓ ` c1 . ΓKγ contains ⊥, the denotation JΓ ` if b then c1 else c2 . ΓKγ contains ⊥.

Let us put some comments on the while loops:

Remark 3.2.

1. The denotation of a while loop while b do S is defined in the way that it satisfies the recurrence

equation:

JΓ ` if b then c; (while b do c) else skip . ΓK = JΓ ` while b do c . ΓK.

2. Due to the fixed-point theorem, the denotation JΓ ` while b do c . ΓKγ is the limit of the chain

{⊥} v WJΓ`b:KK,JΓ`c . ΓK(δ 7→ {⊥})γ v W2
JΓ`b:KK,JΓ`c . ΓK(δ 7→ {⊥})γ v · · · .

3. The chain above can be seen as a possibly infinite sequence of unrolling the loop. When we

define A
(m+1)
b,c := if b then c;A

(m)
b,c else skip and A

(0)
b,c := while true do skip, it holds that

Wm
JΓ`b:KK,JΓ`c . ΓK(δ 7→ {⊥}) = JΓ ` A(m)

b,c . ΓK for all natural number m.

51

3.3.4 Denotations of Programs

Let the following ERC program

P := function (x1 : τ1, x2 : τ2, · · · , xn : τn)

S

return t

be well-typed such that Γ ` S . Γ′ and Γ′ ` t : τ for some context Γ′ and data type τ where Γ := x1 :

τ1, x2 : τ2, · · · , xn : τn. Then P denotes the function

JPK : Jτ1K× · · · × JτnK→ P(JτK⊥)

defined by

JPK(v1, · · · , vn) := JtK† ◦ JSK((x1 7→ v1), · · · , (xn 7→ vn))

Consider a well-typed program

P : τ1 × · · · × τd → τ.

For a partial multifunction f :⊆ Jτ1K× · · · × JτdK⇒ JτK, we say the program P expresses f when

∀(x1, · · · , xd) ∈ dom(f). ⊥ 6∈ JPK(x1, · · · , xd) ∧ JPK(x1, · · · , xd) ⊆ f(x1, · · · , xd)

holds. For a partial function f : Jτ1K × · · · × JτdK ⇀ JτK, we say the program P expresses f when it

expresses the partial multifunction (x1, · · · , xd) 7→ {f(x1, · · · , xd)} that is defined on dom(f).

In a special case when τ = R and τ1 = Z, we say the program (approximately) expresses a partial

function f : Jτ2K× · · · × JτdK⇀ R when

∀(x1, · · · , xd) ∈ dom(f). ∀p ∈ Z. ∀y ∈ JPK(x1, · · · , xd). y 6= ⊥ ∧ |f(x2, · · · , xd)− y| ≤ 2p

holds. In other words, seeing the first integer argument x1 : Z as the precision parameter, the program

computes 2p approximation of f(x2, · · · , xd).
We conclude this section with the following completeness property of ERC:

Theorem 3.1 (Turing-Completeness over the Reals). Every partial function f : R ⇀ R computable

with regards to any effective representation of real numbers is expressible in ERC.

Proof. Consider a while programming language based on Peano arithmetic which provides integer mul-

tiplication. Let us call the language while(PA) and identify a program in the language with a partial

function f : N⇀ N where for any natural number n, the program on n diverges if and only if n 6∈ dom(f)

and returns m if and only if m = f(n).

Our claim starts with that ERC can express any program in the language. When a program in

while(PA) computes multiplication, for example, x := y × z, we can replace it with

var x′ : Z := 0Z; var y′ : Z := y;(
while y′ ≥̂ 1Z do x′ := x′ + z; y′ := y′ − 1Z

)
;(

while y′ ≤̂ −1Z do x′ := x′ − z; y′ := y′ + 1Z
)
;

x := x′

Of course, when a multiplication happens inside of a loop or the branches of a conditional statement, we

need to declare the auxiliary variables in advance.

52

Since while(PA) is Turing-complete, ERC also is in the sense that for any computable partial

function f : N⇀ N, there is a ERC program Pf : Z→ Z whose denotation restricted on N is f .

Now, consider while(PA) equipped with oracle. A program P ? in the oracle while language

while(PA)
?

is a program in while(PA) with the additional command construct

QUERY(v, n).

When an oracle ϕ ∈ NN is equipped, the semantics of the above command is to assign ϕ(n) at v when

n ≥ 0. The language while(PA)
?

is oracle Turing-complete.

By definition, (recall Section 2.5.2), a partial function f : Rdyadic ⇀ Rdyadic is computable if and

only if there is a program P ? in while(PA)
?

such that

∀x ∈ dom(f). ∀ϕ ∈ NN.
(
∀n. |x− ϕ(n)/2n| ≤ 2−n

)
⇒ ∀n. |f(x)− Pϕ(n)/2n| ≤ 2−n

holds. Here, 2k + 1 = −k and 2k = k. Hence, by definition, for each computable partial function, there

is a oracle program P ? satisfying the above.

Now consider any computable partial function f : R ⇀ R and an oracle program P ? whose input

variable is p in while(PA)
?

corresponding to f . Suppose a ERC program whose input variables are

p : Z and x : R. In the very begeinning of the ERC program, we flip the sign of p by p := −p. The body

of the ERC program is that translated from P ? by unrolling integer multiplications and translating each

oracle query by

QUERY(v, n) =⇒

//translate n and store the value at n′ : Z

x′ : R := x×2n
′
;

k : Z := 0;

while choose2(x′ . 1, x′ & 1/2) =̂ 2 do

k := k + 1;

x := x′ − 1

while choose2(x′ & −1, x′ . −1/2) =̂ 2 do

k := k − 1;

x := x′ + 1;

if k ≥̂ 0 then v := k + k else v := (−k) + (−k) + 1

See that for any real number x ∈ dom(f), the two commands do basically the same thing. Both assign

a natural number 2k to v where k/2n is a 2−n approximation of x or assign a natural number 2k + 1 to

v where −k/2n is a 2−n approximation of x.

At the last stage, suppose that the oracle program is returning a term t. We translate the term

and store it to a variable r : Z. We check if r is odd or even. If r = k + k for some k, by repeatedly

adding 1 : R, we obtain a real number variable x : R storing k. Otherwise, if r = k + k + 1 for some k,

by repeated addition of −1 : R, we obtain a real number variable x : R storing −k. We return the term

x×2p.

By the assumption, k is an integer such that |f(x) − k2p| ≤ 2p. (since we flipped the sign of p).

Hence, the returned term is 2p approximation of f(x) for any x. The translated program expresses f .

53

3.4 The Logic of ERC

Term evaluations being done precisely, reasoning on the behaviours of programs in ERC get sim-

plified; there is no need to do tedious rounding-off analysis. For example, when we have a term t of

an arithmetical expression, the term evaluates exactly to the value that t mathematically represents.

The goal is to make a framework where we can use the mathematical structure SERC of Presburger

arithmetic, real closed field, and Kleene logic, to reason the properties of programs in ERC .

Nonetheless, there are terms in ERC which are not arithmetical. For example, choose(t1, t2, · · · , tn),

the construct generating nondeterminism, is not an arithmetical expression; i.e., there is no function in the

mathematical structure that corresponds to choose. Hence, it is non-trivial how to use the mathematical

structures SERC to describe and reason about the behaviours of ERC programs.

The task is divided into two tasks at different levels. The first is to show how we can use the

structure SERC to describe the properties of ERC programs. For the task, we study the structure and

define a logical language LERC , which is the first-order logic on SERC in Section 3.4.1. In Section 3.4.2,

we show how the property of a program in ERC can be described using LERC . We define spcifications

formally. The next task is to devise a framework where we can reason on the behaviours of programs.

When we have a specification written for a program, we should either accept the specification by proving

it or reject the specification by disproving it.

3.4.1 Assertion Language L

Definition 3.2. The Structure of ERC S is the three-sorted structure combining the Kleene logic

(K,ff, tt, uk) with Presburger arithmetic (Z, 0, 1,+,−,≤, 2Z, 3Z, 4Z, . . .) and ordered field

(R, 0, 1,+,−,×, <). They are connected via the binary accuracy mapping 2� : Z 3 p 7→ 2p ∈ R and its

partial half-inverse blog2 ◦absc : R \ {0} → Z. Here kZ denotes the predicate on Z which is precisely all

integer multiples of k ∈ N. The Logic of ERC L is the first-order language of S; the Theory of ERC T
is the complete first-order theory of the structure. Of course, the equality predicate is implicitly included

in each sort.

It should not be confused with the informal language which we used to define the denotational

semantics in 3.3. For example, ⊥ is a symbol that does not appear in S. Also, the predicates ≤, <,=
above are logical predicates that are not the functions ≤̂, =̂,. to K.

We say a formula is well-formed under an ERC context Γ if it is a well-formed formula in L when

each variable x in dom(Γ) is of the sort JΓ(x)K. We write Γ φ to say that φ is a well-formed formula

under Γ and wf(Γ) to be the set of well-formed formulae under Γ. Similarly, for an assignment γ ∈ JΓK,
we write γ � φ to say that γ validates φ under the standard interpretation. We define the semantics of

a well-formed formula to be JΓ φK := {γ ∈ JΓK | γ � φ} the set of assignments that validate φ.

The following lemma shows that L is expressive enough to express the term language of ERC .

Lemma 3.2. The logic of ERC is expressive for the term language. To each well-typed term Γ ` t : τ

and variable y 6∈ dom(Γ), there is a well-formed formula Γ, y:τ LΓ ` t : τMy such that

(γ, y 7→ v) � LΓ ` t : τMy if and only if v ∈ JΓ ` t : τKγ and ⊥ 6∈ JΓ ` t : τKγ

holds. In other words, if there is (γ, y 7→ v) that validates LΓ ` t : τMy, it implies that the term is

semantically well-defined under γ and the denotation contains v. For the opposite direction, if the term

is semantically well-defined having v in its denotation, γ, y 7→ v � LΓ ` t : τMy holds.

54

Proof. Suppose a function f : A1 × · · · × Ad → P(B⊥) where Ai, B ∈ {K,Z,R} is definable in the sense

that there is a well-formed formula x1 : A1, · · · , xd : Ad, y : B LfM such that for any γ ∈ ΠxiAi and

v ∈ B,

(γ, y 7→ v) � LfM⇔ ⊥ 6∈ f(γ(x1), · · · , γ(xd)) ∧ v ∈ f(γ(x1), · · · , γ(xd)) .

And, suppose Si : A1×· · ·×Ad → P((Ai)⊥) is definable by LSiM as the above sense. Then, f†◦(S1×· · ·×Sd)
is definable as well by

Lf† ◦ (S1 × · · · × Sd)M(y) = ∃y1, · · · , yd. LfM ∧ LS1M[y1/y] ∧ · · · ∧ LSdM[yd/y].

Suppose f : A1 × · · · × Ad → B where Ai, B ∈ {K,Z,R} is definable in that there is a well-formed

formula x1 : A1 · · · , xd : Ad, y : B LfM such that for any γ ∈ ΠxiAi and v ∈ B

(γ, y 7→ v) � LfM⇔ v = f(γ(x1), · · · , γ(xd)) .

And, suppose Si : A1 × · · · ×Ad → P((Ai)⊥) is definable by LSiM. Then, f† ◦ (S1 × · · · × Sd) is definable

as well since ηB ◦ f is definable by the same formula LfM.
See that all atomic operations are definable. For example,

LchoosenM(b1, · · · , bn, b) = (b = 1 ∧ b1 = tt) ∨ · · · (b = n ∧ bn = tt),

L.M(x, y, b) = (b = tt ∧ x < y) ∨ (b = uk ∧ x = y) ∨ (b = ff ∧ y < x),

and

L�−1�‡⊥M(x, y) = (y × x = 1) .

Hence, the denotation of the term language is definable as the denotation of a term is defined by Kleisli

compositions of atomic operations.

For a well-typed term Γ ` t : τ , and for any term x in L, let us write LΓ ` t : τM(x) to denote

LΓ ` t : τMy[x/y].

The following theorem shows that T is decidable; every first-order sentence in L can be formally

either verified or refuted. This applies, for example, to pre/post conditions or loop invariants of ERC pro-

grams. It differs significantly from traditional programming languages for discrete data: Recall that, for

example, classical WHILE programs over integers with multiplication do suffer from Gödel undecidability

[Coo78, §6].

Theorem 3.2 (Decidability of the Logic of ERC).

a) The Theory T of ERC is decidable.

b) It is also ‘model complete’ in that it admits elimination of quantifiers up to one (either existential

or universal) block.

c) However, replacing 2� with the ‘unary accuracy’ embedding N+ 3 n 7→ 1/n ∈ R destroys decid-

ability.

Proof. c) Including a unary predicate Z, or (any total extension of) the unary accuracy embedding,

allows to express integer multiplication via the reals, since m × n = /
(
(1/m) × (1/n)

)
hence recovers

Gödel undecidability via Robinson’s Theorem.

55

a)+b) A celebrated result of van den Dries [Dri86] asserts quantifier elimination for the expanded first-

order theory of real-closed fields

(R, 0, 1,+,−,×, <, 2kZ : k ∈ N, 2blog2 ◦absc) (3.1)

with axiomatized additional predicates 2kZ, k ∈ N, and truncation function to binary powers 2blog2 ◦absc,

see also [AY07].

Note that both the real-closed field (R, 0, 1,+,−,×, <) and Presburger Arithmetic can be embedded

into the expanded structure from Equation (3.1); the latter interpreted as its multiplicative variant

(2Z, 1, 2,×, <, 2kZ : k ∈ N) is called Skolem Arithmetic [Bés02b]:

• Replace quantifiers over Skolem integers with real quantifiers subject to the predicate 2kZ for k := 1;

• Consider 2� : Z→ R as the restricted identity id2Z in R.

Then every formula ϕ with or without parameters in our two-sorted structure translates signature by

signature to an equivalent one ϕ̃ over the expanded theory where quantifiers can be eliminated, yielding

equivalent decidable ψ̃ (which may involve binary truncation 2blog2 ◦absc).

To translate this back to some equivalent ψ over the two-sorted structure, while re-introducing only

one type of quantifiers, observe that for real x:

x ∈ 2kZ ⇔ ∃z ∈ Z. z ∈ kZ ∧ x = 2z;

x 6∈ 2kZ ⇔ ∃z ∈ Z. z ∈ kZ ∧ 2z < x < 2z+k .

Similarly, replace real binary truncation 2blog2 ◦abs(x)c with “2z” for some/every z ∈ Z s.t. 2z ≤ |x| <
2z + 1 in case x > 0, with 0 otherwise.

The Kleene Algebra K is finite and does not affect decidability.

3.4.2 Reasoning Principles

We use precondition-postcondition-style program specifications. We use the specification language

L to specify the properties of a program. Recall that the denotation of a well-typed command JΓ ` c . Γ′K
is s state transformer. Given an initial state γ ∈ JΓK, it gives us a set JΓ ` c . Γ′Kγ. It contains ⊥ when

the command is semantically ill-defined: i.e., if there is a nondeterministic branch in the execution of S

that results in an error. Otherwise, it is the set of all resulting states that the nondeterministic branches

in the execution of c yield.

Considering that the semantics of a well-formed formula Γ ` φ in L is a subset of states JΓK, we can

use formulae to describe the behaviour of a command. Informally, we can pick two formulae φ and ψ

where φ is well-formed under Γ and ψ is well-formed under Γ′ to say that for any execution of c under

a state in JΓ φK results states in JΓ′ ψK. In this scenario, the formula φ is a precondition and the

formula ψ is a postcondition. We can formalize this as follows:

Definition 3.3. A (total correctness) specification of a well-typed command Γ ` c . Γ′ is of the form

Γ `
[[[
φ
]]]
c
[[[
ψ
]]]
. Γ′ where φ ∈ wf(Γ) and ψ ∈ wf(Γ′). Its meaning is that for any initial state satisfying

γ ∈ JΓ φK, the command is semantically well-defined ⊥ 6∈ JΓ ` S . Γ′Kγ and each resulting state

γ′ ∈ JΓ ` c . Γ′Kγ satisfies γ′ ∈ JΓ′ ψK.

We use specifications to describe the property of a command. And, we need a tool to reason

on if the specification is correct. We devise proof rules, an axiomatic semantics, to enable reasoning

56

on specifications without referring to the denotational semantics. Let us simplify JΓ ` t : τK to JtK,
JΓ ` c . Γ′K to JcK, and LΓ ` t : τM to LtM when it is obvious what the omitted items are from the context.

We take Hoare-style proof rules to derive correct specifications that are defined as follows.

Definition 3.4. The verification calculus of ERC is a formal system which consists of the proof rules

and axioms for deriving correct specifications defined in Figure 3.5.

Γ `
[[[
φ′
]]]
c
[[[
ψ′
]]]
. Γ′

Γ `
[[[
φ
]]]
c
[[[
ψ
]]]
. Γ′

φ⇒ φ′ and ψ′ ⇒ ψ
Γ `

[[[
ψ
]]]

skip
[[[
ψ
]]]
. Γ

Γ `
[[[
(∃y . LtM(y)) ∧ ∀y . LtM(y)⇒ ψ[y/x]

]]]
x := t

[[[
ψ
]]]
. Γ

Γ `
[[[
(∃y. LtM(y)) ∧ ∀y. LtM(y)⇒ ψ[y/x]

]]]
var x : τ := t

[[[
ψ
]]]
. Γ, x : τ

Γ `
[[[
φ
]]]
c1
[[[
θ
]]]
. Γ1 Γ1 `

[[[
θ
]]]
c2
[[[
ψ
]]]
. Γ2

Γ `
[[[
φ
]]]
c1; c2

[[[
ψ
]]]
. Γ2

Γ `
[[[
φ ∧ LtM(tt)

]]]
c1
[[[
ψ
]]]
. Γ Γ `

[[[
φ ∧ LtM(ff)

]]]
c2
[[[
ψ
]]]
. Γ

Γ `
[[[
φ ∧ (LtM(tt) ∨ LtM(ff)) ∧ ¬LtM(uk)

]]]
if t then c1 else c2

[[[
ψ
]]]
. Γ

Γ, ξ : R, ξ′ : R `
[[[
LtM(tt) ∧ I ∧ V = ξ ∧ L = ξ′

]]]
c
[[[
I ∧ V ≤ ξ − ξ′ ∧ L = ξ′

]]]
. Γ, ξ : R, ξ′ : R

Γ `
[[[
I
]]]

while t do c
[[[
I ∧ LtM(ff)

]]]
. Γ

The rule for while loop has the side-conditions:

• I ∧ LtM(tt)⇒ L > 0

• I ⇒ (LtM(tt) ∨ LtM(ff)) ∧ ¬LbM(uk)

• I ∧ V ≤ 0⇒ ∀k. LtM(k)⇒ k = ff

• ξ, ξ′ does not appear free in I, V, L

Figure 3.5: The verification calculus of ERC .

Let us put some remarks:

Remark 3.3.

1. When we execute x := t on a state γ ∈ JΓK, any correct precondition should ensure that ⊥ 6∈ JxKγ
which is precisely when ∃y . LxM(y) holds. The postcondition ψ holds after after replacing x with

for any y ∈ JtKγ. The values in JtKγ are defined by y that satisfies LtM(y). Hence, when γ satisfies

∀y. LtM(y)⇒ ψ[y/x], it holds that γ[x 7→ y] satisfy ψ for any y ∈ JtKγ.

2. (Conditional) When a state γ validates LtM(tt), we can guarantee two things: ⊥ 6∈ JtKγ and tt ∈ JtKγ.

Similarly, γ satisfying LtM(ff) ensures that ⊥ 6∈ JtKγ and ff ∈ JtKγ; and γ satisfying LtM(uk) ensures

57

that ⊥ 6∈ JtKγ and uk ∈ JtKγ. Therefore, γ satisfying (LtM(tt) ∨ LtM(ff)) ∧ ¬LtM(uk) ensures that JtKγ
is either one of {tt}, {ff}, or {tt,ff}.

For any state γ that makes the first branch to be taken, it satisfies LtM(tt). Hence, by the first

premise, the execution satisfies ψ, similarly for the second branch.

3. (While) The formula I is a loop invariant, the term V is a loop variant, and the term L is a

lower bound on decrement of V . The premise ensures that I is indeed a loop invariant and V is a

quantity that decreases throughout iterations by at least L, which is a positive invariant quantity

throughout iterations. The side-conditions ensure that as long as I holds, the evaluation of t is

never uk, when V gets less than or equal to zero, the evaluation of t must be ff.

The variables ξ, ξ′ does not appear in Γ; they are so-called ghost variables.

Having a formal system, the question arises on whether it is sound and complete. Our Hoare logic

is sound but not complete. The remaining of this subsection is about the issues.

Proof of the Soundness

Let us start with the statement:

Theorem 3.3. The verification calculus of ERC is sound. In other words, if Γ ` c . Γ′ is derivable by

the proof rules in Definition 3.4, its meaning according to Definition 3.3 holds.

We start the proof with proving the lemma which is a characterization of the denotations of while

loops:

Lemma 3.3. For a well-typed command Γ ` while t do c . Γ, define the sequences of set-valued

functions on JΓK:

• B0
t,cγ := {γ}

• C0
t,cγ := ∅

• Bn+1
t,c γ :=

⋃
δ∈Bnt,cγ

⋃
l∈JtKδ
δ′∈JSKδ

{δ′} if l = tt ∧ δ′ 6= ⊥,

∅ otherwise.

• Cn+1
t,c γ := Cnt,cγ ∪

⋃
δ∈Bnt,cγ

⋃
l∈JbKγ
δ′∈JcKδ

{δ} if l = ff,

∅ if l = tt ∧ δ′ 6= ⊥,

{⊥} otherwise.

Then, for all n ∈ N, it holds that JAnt,cKγ = Cnt,cγ ∪ {⊥ | ∃x ∈ Bnt,cγ}.
Intuitively, Bnt,cγ is the set of states that requires further execution after running the while loop

on γ for n times. Cnt,cγ is the set of states that have escaped from the loop (either because ff has been

evaluated or ⊥ has occurred) during running the loop for n times.

Proof. Let us drop the subscripts t, c for the convenience of the presentation. We first prove the following

alternative characterization of the sequence of sets:

Bn+1γ =
⋃

`∈JtKγ
δ∈JcKγ

Bn(δ) if ` = tt ∧ δ 6= ⊥,

∅ otherwise.

58

It is trivial when n = 0. Now, suppose the equation holds for all γ and for all n up to m. Then the

following derivation shows that the characterization is valid for n = m+ 1 as well.

Bm+2γ =
⋃

γ∈Bm+1γ

⋃
`∈JtKγ
δ∈JcKγ

{δ} if ` = tt ∧ δ 6= ⊥,

∅ otherwise.

=
⋃

γ∈
⋃
`′∈JtKγ
δ′∈JcKγ

Bm(δ′) if `′ = tt ∧ δ′ 6= ⊥,

∅ otherwise.

⋃
`∈JtKγ
δ∈JcKγ

{δ} if ` = tt ∧ δ 6= ⊥,

∅ otherwise.

=
⋃

`′∈JtKγ
δ′∈JcKγ

⋃
γ∈Bm(δ′)

⋃
`∈JtKγ
δ∈JcKγ

{δ} if ` = tt ∧ δ 6= ⊥,

∅ otherwise.
if `′ = tt ∧ δ′ 6= ⊥,

∅ otherwise.

=
⋃

`′∈JtKγ
δ′∈JcKγ

Bm+1(δ′) if `′ = tt ∧ δ′ 6= ⊥,

∅ otherwise.

We now show the following characterization:

Cn+1γ =
⋃

`∈JtKγ
δ∈JcKγ

Cn(δ) if ` = tt ∧ δ 6= ⊥,

{γ} if ` = ff,

{⊥} otherwise.

It is easy to show that the equation holds for n = 0. Now, assume the equation holds for all n up to m.

Then,

Cm+2γ = Cm+1γ ∪
⋃

δ∈Bm+1γ

⋃
`′∈JtKδ
δ′∈JcKδ

{δ} if `′ = ff,

∅ if `′ = tt ∧ δ′ 6= ⊥,

{⊥} otherwise.

= Cm+1γ ∪
⋃

δ∈
⋃
`∈JtKγ
γ∈JcKγ

Bmγ if ` = tt ∧ γ 6= ⊥,

∅ otherwise.

⋃
`′∈JtKδ
δ′∈JcKδ

{δ} if `′ = ff,

∅ if `′ = tt ∧ δ′ 6= ⊥,

{⊥} otherwise.

= Cm+1γ ∪
⋃

`∈JtKγ
γ∈JcKγ

⋃
δ∈Bmγ

⋃
`∈JtKδ
δ′∈JcKδ

{δ} if `′ = ff

∅ if `′ = tt ∧ δ′ 6= ⊥,

{⊥} otherwise.

if ` = tt ∧ γ 6= ⊥,

∅ otherwise.

59

=
⋃

`∈JtKγ
γ∈JcKγ

Cmγ ∪
⋃
δ∈Bmγ

⋃
`∈JtKδ
δ′∈JcKδ

{δ} if `′ = ff

∅ if `′ = tt ∧ δ′ 6= ⊥,

{⊥} otherwise.

if ` = tt ∧ γ 6= ⊥,

{γ} if ` = ff,

{⊥} otherwise.

=
⋃

`∈JtKγ
γ∈JcKγ

Cm+1γ if ` = tt ∧ γ 6= ⊥,

{γ} if ` = ff,

{⊥} otherwise.

Now, using the suggested characterization, we prove JAnt,cKγ = Cnt,cγ∪{⊥ | ∃x ∈ Bnt,cγ} for all n ∈ N.

When n = 0, both are {⊥}. Suppose the equation holds for n = m. Then,

JAm+1Kγ =
⋃

`∈JtKγ
δ∈JcKγ

JAmKδ if ` = tt ∧ δ 6= ⊥,

{γ} if ` = ff,

{⊥} otherwise.

=
⋃

`∈JtKγ
δ∈JcKγ

Cm(δ) if ` = tt ∧ δ 6= ⊥,

{γ} if ` = ff,

{⊥} otherwise.

∪
⋃

`∈JtKγ
δ∈JcKγ

{⊥|∃γ ∈ Bm(δ)} if ` = tt ∧ δ 6= ⊥

∅ if ` = ff,

∅ otherwise.

= Cm+1γ ∪

⊥
∣∣∣∣∣∣∣∣∃γ ∈

⋃
`∈JbKγ
δ∈JcKγ

Bm(δ) if ` = tt ∧ δ 6= ⊥,

∅ otherwise.

= Cm+1γ ∪ {⊥ | ∃γ ∈ Bm+1γ}

We prove the soundness of our verification calculus by checking the soundness of each proof rule.

The above lemma is used when we prove the soundness of the rule for loops.

1. (Assignment):

Consider any state γ which validates ∃y. LtM(y) ∧ ∀y. LtM(y)⇒ ψ[y/x]. Then, ⊥ 6∈ JtKγ and for any

y ∈ JtKγ, ψ[y/x] holds.

Now, see that Jx := tKγ =
⋃
y∈JtKγ{γ[x 7→ y]} since ⊥ 6∈ JtKγ and for all y ∈ JtKγ, γ[x 7→ y] validates

ψ.

2. The rule variable declarations and the rule of array assignments can be verified in a very similar

manner as above and the rules of pre/postcondition strengthening/weakening, skip, and sequential

compositions can be verified quite trivially.

3. (Conditional):

Consider any state γ which validates φ ∧ (LtM(tt) ∨ LtM(ff)) ∧ ¬LtM(uk). Then, JtKγ = {tt,ff}, {tt}, or

{ff}. Let us check the three cases:

(a) when JtKγ = {tt,ff}:

60

Then, γ validates φ ∧ LtM(tt) and φ ∧ LtM(ff). Therefore, (i) ⊥ 6∈ Jc1Kγ, (ii) for all δ ∈ Jc1Kγ it

holds that δ � ψ, (iii) ⊥ 6∈ Jc2Kγ, and (iv) for all δ ∈ Jc2Kγ it holds that δ � ψ.

Since ⊥ 6∈ JtKγ and uk 6∈ JtKγ, the denotation becomes Jif t then c1 else c2 Kγ = Jc1Kγ ∪
Jc2Kγ. Hence, the denotation does not contain ⊥, and any resulting state δ validates ψ.

(b) when JtKγ = {tt}:

Then, γ validates φ ∧ LbM(tt). Hence, (i) ⊥ 6∈ Jc1Kγ, (ii) for all δ ∈ Jc1Kγ it holds that δ � ψ.

Since JtKγ = {tt}, the denotation becomes Jif t then c1 else c2 Kγ = Jc1Kγ. Therefore, ⊥
is not in the denotation and any resulting state δ validates ψ

(c) when JtKγ = {ff}, it can be done very similarly to the above item.

4. (Loop):

Consider any state γ that validates I. Then, by the side-conditions, it also validates (LtM(tt) ∨
LtM(ff)) ∧ ¬LtM(uk). Hence, JtKγ = {tt,ff}, {tt}, or {ff} for any state γ that validates I. Now, we fix

a state γ which validates I hence satisfies the precondition.

The core part of the proof is the statement: for any natural number n, it holds that (i) ⊥ 6∈ Bnt,cγ,

(ii) ⊥ 6∈ Cnt,cγ, (iii) all δ in either Bnt,cγ or Cnt,cγ validates I, and (iv) all δ in Cnt,cγ validates LtM(ff).

At the moment, suppose that the above statement is true. Then, all we have to show is that Bmt,cγ

becomes empty as m ∈ N increases. Let us define `n := max{V (δ) | δ ∈ Bnt,cγ} and show that `n

is strictly decreasing by some quantity that is bounded below, as n increases. See that if it holds,

there will be some m that for all δ ∈ Bmt,cγ, JtKδ = {ff} and hence Bm+1
t,c γ = ∅.

In order to prove it, we take the two steps:

(a) If B1
t,cγ 6= ∅, then for all n ∈ N and for all δ ∈ Bnt,cγ, it holds that L(δ) = Lγ > 0. In this

case, let us write `0 = Lγ.

(b) If Bm+1
t,c γ 6= ∅, it holds that `m+1 ≤ `m − `0.

Now, we prove each statement:

(a) B1
t,cγ 6= ∅ only if tt ∈ JtKγ and there is some non-bottom δ ∈ JcKγ. Therefore, by the side-

condition, Lγ > 0.

Suppose any δ ∈ Bm+1
t,c γ for any m ∈ N. See that it happens only if there is δ′ ∈ Bmt,cγ such

that tt ∈ JtKδ′ and δ ∈ JcKδ′. Together with Item (iii), δ′ validates I and LtM(tt). Let us define

δ̂′ := δ′ ∪ (ξ 7→ V (δ′)∪ ξ′ 7→ L(δ′). Since δ̂′ validates the precondition in the premise, we have

that for any δ̂ ∈ JcKδ̂′, δ̂ validates I and V ≤ ξ − ξ′ and L = ξ′. Hence, L(δ̂) = L(δ′). Since

ξ′, ξ are ghost variables, L(δ̂) = L(δ) = L(δ′). In conclusion, for any δ ∈ Bm+1
t,c γ, the quantity

L(δ) is identical to the quantity L(δ′) for some δ′ ∈ Bmt,cγ. Since, B0
t,cγ = {γ}, we conclude

that they are all identical to Lγ.

(b) Suppose any δ ∈ Bm+1
t,c γ for any m ∈ N. See that it happens only if there is δ′ ∈ Bmt,cγ such

that tt ∈ JbKδ′ and δ ∈ JcKδ′. Together with Item (iii), δ′ validates I and LtM(tt). Consider

δ̂′ := δ′ ∪ (ξ 7→ V (δ′) ∪ ξ′ 7→ L(δ′) which validates the precondition of the premise. Hence,

δ ∪ (ξ 7→ V (δ′) ∪ ξ′ 7→ L(δ′) validates the postcondition. Hence, V (δ) ≤ V (δ′) − L(δ) =

V (δ′)− `0. Hence, `m+1 ≤ `m − `0.

Now, we need to prove the aforementioned statement on Bmt,c and Cmt,c

61

(a) (Base case): Recall that B0
t,cγ = {γ} 6= {⊥} and C0

t,cγ = {}. Hence, the four conditions are

all satisfied.

(b) (Induction step): Recall Bn+1
t,c γ :=

⋃
δ∈Bnt,cγ

⋃
l∈JbKδ
δ′∈JcKδ

{δ′} if l = tt ∧ δ′ 6= ⊥

∅ otherwise.
. Since all

δ ∈ Bnt,cγ validates I, JtKδ = {tt}, {ff}, or {tt,ff}. In the case of tt ∈ JtKδ, δ validates the

precondition of the premise. Hence, for all δ′ ∈ JtKδ, δ′ is not ⊥ and also validates I. The

case of JtKδ = {ff} is not of interest.

Recall Cn+1
t,c γ := Cnt,cγ ∪

⋃
δ∈Bnt,cγ

⋃
l∈JtKγ
δ′∈JcKδ

{δ} if l = ff

∅ if l = tt ∧ δ′ 6= ⊥

{⊥} otherwise.

.

Since all γ ∈ Cnt,cγ validates I and LtM(ff), we only need to care the rightmost part of the

construction. Since all δ ∈ Bnt,cγ validates I, by the side-condition, uk and ⊥ are not in JtKδ.
The δ is added to Cn+1

t,c γ only if ff ∈ JtKδ. Therefore, δ validates both I and LtM(ff).

Also, in the case of tt ∈ JtKδ, since δ validates the precondition in the premise, ⊥ 6∈ JcKδ.
Therefore, ⊥ 6∈ Cn+1

t,c .

Issues on the Completeness

The only remaining concern for a sound formal system is completeness. Namely, if we have a

correct specification Γ `
[[[
φ
]]]
S
[[[
ψ
]]]
. Γ′, can we derive it using our proof rules? And, this is not

the case for ERC. The Hoare logic of a simple imperative language based on Presburger arithmetic is

known to be incomplete. The proof first appears in [Coo78] and again together with other structures in

[BT82b, BT82a].

62

Chapter 4. ERC in Asm(NN) and its Extension

In the previous chapter, the imperative programming language ERC is defined. It provides the

data type R for real numbers and exact operations. Its denotational semantics is defined as set-theoretic

functions. Given a well-typed program Γ ` P : τ1 × · · · × τd → τ , its semantics is defined as a function

from Jτ1K × · · · × JτdK to the powerdomain P(JτK⊥). Though, it is clear from the computability of the

atomic operations that was seen in Chapter 2 that the semantics is computable, we have not formalized

it yet.

We want the language to be implementable in that there should be an interpreter that maps con-

structions of well-typed programs to type-2 machines that realize the semantics of the programs. Having

an interpreter automatically asserts that our semantics is computable.

However, constructing an explicit interpreter requires making too many implementation-specific

artificial decisions. For example, in order to interpret x + y explicitly, we need to choose a specific

realizer F : NN ⇀ NN of the real number addition function. This is meaningless that we already know

the real number addition function is computable, and various realizers are already there. Hence, instead

of choosing one specific realizer, we let actual developers of the language choose their favourite realizers.

That means our somewhat abstract interpreter maps programs to morphisms in Asm(NN). Recall that

a morphism in Asm(NN) admits computable realizers but does not specify one.

In this chapter, we devise an interpreter that maps well-typed terms, commands, and programs to

morphisms in Asm(NN) such that the denotational semantics coincide with the definitions of the mapped

morphisms. After that, we propose a rigorous way to extend ERC.

4.1 Interpretation of ERC in Asm(NN)

We can summarize the activity of defining the denotational semantics in Chapter 3 as follows.

• For each data type τ , we defined its denotation JτK ∈ Ob(Set) as a set.

• For each context Γ, we defined its denotation JΓK ∈ Ob(Set) as a set.

• For each well-typed term Γ ` t : τ , we defined its denotation JΓ ` t : τK : JΓK→ P(JτK⊥) ∈ Mor(Set)

as a set-theoretic function.

• For each well-typed command Γ ` c . Γ′, we defined its denotation JΓ ` c . Γ′K : JΓK→ P(JΓ′K⊥) ∈
Ob(Set) as a set-theoretic function.

• For each well-typed program ` P : τ1×· · ·×τd → τ , we defined its denotation J` P : τ1 × · · · × τd → τK :

Jτ1K×· · ·×JτdK→ P(JτK⊥) ∈ Mor(Set) as a set-theoretic function (though we used domain-theoretic

properties).

The interpreter of ERC is a mapping J�KAsm(NN).

• For each data type τ , its interpretation JτKAsm(NN) is an object in Asm(NN) such that

Γ(JτKAsm(NN)) = JτK.

63

• For each context Γ, its interpretation JΓKAsm(NN) is an object in Asm(NN) such that

Γ(JΓKAsm(NN)) = JΓK.

• For each well-typed term Γ ` t : τ , its interpretation JΓ ` t : τKAsm(NN) is a morhpism in Asm(NN)

such that

Γ(JΓ ` t : τKAsm(NN)) = JΓ ` t : τK.

• For each well-typed command Γ ` c . Γ′, its interpretation JΓ ` c . Γ′KAsm(NN) is a morhpism in

Asm(NN) such that

Γ(JΓ ` c . Γ′KAsm(NN)) = JΓ ` c . Γ′K.

• For each well-typed program ` P : τ1×· · ·×τd → τ , its interpretation J` P : τ1 × · · · × τd → τKAsm(NN)

is a morhpism in Asm(NN) such that

Γ(J` P : τ1 × · · · × τd → τKAsm(NN)) = J` P : τ1 × · · · × τd → τK.

In consequence, by defining the interpretation, we automatically get the fact that the denotational

semantics of ERC is computable.

Given a data type, we interpret it as an assembly. The interpretation of data types are defined as

follows:

JRKAsm(NN) := R JZKAsm(NN) := Z JKKAsm(NN) := K

Here, R is any effective represented real numbers in Asm(NN), and K is the represented set [2 from

Definition 2.3 where [2 ∈ |[2| is renamed as uk.

For a context Γ, the interpretation of it is an assembly JΓKAsm(NN) of JΓK where the following opera-

tions are computable for any Γ:

1. assignment assignxi : Jx1 : τ1, · · · , xd : τdKAsm(NN) × JτiKAsm(NN) → Jx1 : τ1, · · · , xd : τdKAsm(NN) such

that assignxi(γ, x) = γ[xi 7→ x],

2. extension extendx:τ : Jx1 : τ1, · · · , xd : τdKAsm(NN) × JτKAsm(NN) → Jx1 : τ1, · · · , xd : τd, x : τKAsm(NN)

such that extendx:τ (γ, y) = (γ, (x 7→ y)), and

3. evaluation valuexi : Jx1 : τ1, · · · , xd : τdKAsm(NN) → JτiKAsm(NN) such that valuexiγ = γ(xi).

This can be done in various ways. For example, we can use a fixed enumeration on the set of variables.

We omit the detail here.

4.1.1 Powerdomain in Asm(NN)

Let us define an endofunctor P(�⊥) : Asm(NN)→ Asm(NN) for the powerdomain construction. That

is, for any assembly A, P(A⊥) is an assembly whose underlying set is P(|A|⊥). We let the representation

relation P(A⊥) be induced from the injection:

ιA : |P(A⊥)| → |M(\A)|

: S 7→
⋃
x∈S

{\} if x = ⊥,

{x} otherwise.

64

That is,

ϕ P(A⊥) S ⇔ ϕ M(\A) ι(S) .

See that ι is simply the subset inclusion identifying ⊥ with \. And, by how the representation relation

of P(A⊥) is defined, ιA is computable by the identity function id : NN → NN.

There is a retraction of ιA which is the rectifying operation

rA : |M(\A)| → |P(A⊥)|

: S 7→

S ∪ {⊥} if \ 6∈ S ∧ S infinite,

⋃
x∈S

{⊥} if x = ⊥,

{x} otherwise,
otherwise.

The function rA renames \ to ⊥. And, when it receives an infinite set not containing \, it adds ⊥ in the

set. See that this can be trivially done that any ϕ ∈ NN represents ⊥. Hence, rA is also computable. In

consequence, they form a section-retraction pair.

The endofunctor on a morphism is defined by

P((f : A→ B)⊥) = S 7→
⋃
x∈S

{f(x)} if x 6= ⊥,

{⊥} otherwise.

See that P((f : A→ B)⊥) is computable as it can be identified with rB ◦M(\(f))◦ ιA : P(A⊥)→ P(B⊥).

Consider two natural transformations

ηA : A → P(A⊥) and µA : A → P(A⊥)

: x 7→ {x} : S 7→
⋃
T∈S

T if T 6= ⊥,

{⊥} otherwise.

The triple (P(�⊥), η, µ) is a monad that their definitions form a monad in Set. I.e., Γ is a faithful

functor. Hence, the coherence conditions can be verified in Set.

Moreover, from

ζA,B : (A→ B) → (P(A⊥)→ P(B⊥))

: f 7→
(
S 7→

⋃
x∈S{f(x)}

)
which is

λ(f : A→ B). λ(x : P(A⊥)). rB ◦ ζM(\·)
A,B f (ιA x) ,

we can confirm that the endofunctor is a strong moand where

αA,B(S, T) =
⋃

x∈S∧y∈T

{(x, y)} if x 6= ⊥ ∧ y 6= ⊥,

{⊥} otherwise,
βA,B(x, S) =

⋃
y∈S

{(x, y)} if y 6= ⊥

{⊥} otherwise.

Note that the definitions of the endofunctor, the unit, the multiplication, tensorial strength, and α

coincide with those of P(�⊥) : Set→ Set. That means liftings satisfy the following properties.

• When f : A1 × · · · ×Ad → B, its lift f† : P((A1)⊥) × · · · × P((Ad)⊥) → P(B⊥) by consecutively

precomposing appropriate α on P(f⊥) satisfies

f† = Γ(f)†.

65

• When f : A1×· · ·×Ad → P(B⊥), its lift f† : P((A1)⊥)×· · ·×P((Ad)⊥)→ P(B⊥) by consecutively

precomposing appropriate α on µB ◦ P(f⊥) satisfies

f† = Γ(f)†.

• When f : A1×· · ·×Ad → B, its lift it to f†i : A1×P((Ai)⊥)×· · ·×Ad → P(B⊥) by precomposing

appropriate β on P(f⊥) satisfies

f†i = Γ(f)†i .

• When f : A1×· · ·×Ad → P(B⊥), its lift f†i : A1×P((Ai)⊥)×· · ·×Ad → P(B⊥) by precomposing

appropriate β on µB ◦ P(f⊥) satisfies

f†i = Γ(f)†i .

Also, for a morhpism f : A→ \B, the codomain lifting f‡ which is defined by

f‡(x) =

{f(x)} if f(x) 6= \,

{⊥} otherwise,

is a morhpism from A to P(B⊥).

4.1.2 Interpretation of Terms, Commands, and Programs

To each well-typed term Γ ` t : τ we interpret it as a morhpism JΓ ` t : τKAsm(NN) from JΓKAsm(NN)

to P((JτKAsm(NN))⊥) such that

Γ(JΓ ` t : τKAsm(NN)) = JΓ ` t : τK

holds in Set.

The constants tt,ff, uk of K are computable with regards to K. And, each k ∈ Z is computable

with regards to Z and R. The integer arithmetic +,− : Z × Z → Z is computable as well. And, the

integer comparisons ≤̂, =̂ are computable by postcomposing the inclusion 2→ K on the ordinary integer

comparisons.

Recall from Definition 2.8 that the field arithmetic operations +,−,× : R×R→ R are computable.

And, the partial function �−1 : R ⇀ R is computable1. That means, its \ extension �−1�\ : R→ \R is

computable. Since< : R×R→ 2 is strongly computable, its lazy extension<�[, which is .: R×R→ K

is computable.

Recall that the multivalued choice function from Example 2.12 is computable that its natural ex-

tension choicen �\ is computable. See that

rN ◦ \M(η\Z) ◦ ιN,Z ◦ choicen �\: Kn → P(Z⊥)

identifying [2 with K and where ιN,Z : N → Z is the subset inclusion. See that the definition of

rN ◦ \M(η\N) ◦ ιN,Z ◦ choicen �\ is choosen.

Considering the above computable functions as morphisms in Asm(NN), we can interpret well-typed

terms in ERC as in Figure 4.1.

1we do not use the fact that it is strongly computable here.

66

JΓ ` t : τKAsm(NN) : JΓKAsm(NN) → P⊥(JτKAsm(NN))

JΓ ` true : KKAsm(NN) := λ(γ : JΓKAsm(NN)). tt

JΓ ` false : KKAsm(NN) := λ(γ : JΓKAsm(NN)). ff

JΓ ` undef : KKAsm(NN) := λ(γ : JΓKAsm(NN)). uk

JΓ ` kZ : ZKAsm(NN) := λ(γ : JΓKAsm(NN)). kZ

JΓ ` kR : RKAsm(NN) := λ(γ : JΓKAsm(NN)). kR

JΓ ` x : τKAsm(NN) := λ(γ : JΓKAsm(NN)). value†x

JΓ ` t1 ? t2 : τKAsm(NN) := λ(γ : JΓKAsm(NN)). Jt1KAsm(NN)γ ?
† Jt2KAsm(NN)γ

JΓ ` t−1 : RKAsm(NN) := λ(γ : JΓKAsm(NN)). (JtKAsm(NN)γ)−1�‡†\

JΓ ` choosen(t1, · · · , tn) : ZKAsm(NN) := λ(γ : JΓKAsm(NN)).

(rN ◦ \M(η\N) ◦ ιN,Z ◦ choicen �\)
†(Jt1KAsm(NN)γ, · · · , JtnKAsm(NN)γ)

Figure 4.1: The interpretation of ERC terms in Asm(NN).

Similarly, to each well-typed command Γ ` c . ∆ we interpret it as a morphism JΓ ` c .∆KAsm(NN)

from JΓKAsm(NN) to P(J∆KAsm(NN)⊥
) such that

Γ(JΓ ` c .∆KAsm(NN)) = JΓ ` c .∆K

in Set.

First, observe that KondP(A⊥) : K × P(A⊥) × P(A⊥) → P(A⊥) where KondP(A⊥)(tt, S, T) = S,

KondP(A⊥)(ff, S, T) = T , and KondP(A⊥)(uk, S, T) = {⊥} is computable and its definition is KondP(|A|⊥)

from Section 3.3.3.

Given b : A→ P(K⊥) and c : A→ P(A⊥), the definition of the mapping

Wb,c := λ(f : A→ P(A⊥)). Kond†1P(A⊥) ◦ (b× (f† ◦ c)× ηA)

coincides with

WΓ(b),Γ(c) : (|A| → |P(A⊥)|)→ |A| → |P(A⊥)|.

Therefore, by the fixed-point theorem, for each b : A → P(K⊥) and c : A → P(A⊥), there is the least

fixed-point f : |A| → |P(A⊥)| of WΓ(b),Γ(c). The question is if this operation of obtaining the least

fixed-point appears as a morphism in Asm(NN).

Lemma 4.1. For any assembly A, b : A→ P(K⊥), and s : A→ P(A⊥), the fixed point of the operator

Wb,c is uniformly computable. In other words, there is computable

WHILEA : (A→ P(K⊥))× (A→ P(A⊥)) → (A→ P(A⊥))

: (b, c) 7→ the least fixed-point ofWΓ(b),Γ(c)

Proof. Let ϕb be a name of b, ϕs be a name of c, and ϕx be a name of any x ∈ |A|.
Initialize ϕ := ϕx and regard y as a value represented by ϕ.

1. While reading ηϕb(ϕ), append 0 in the output tape.

67

2. If 1 is encountered while reading ηϕb(ϕ), (that is, when ff ∈ b(y) or ⊥ ∈ b(y)), end the procedure

by appending ϕ> in the output tape.

3. If 2 is encountered while reading ηϕb(ϕ), (that is, when tt ∈ b(y) or ⊥ ∈ b(y)), let ϕ := ηϕs(ϕ) and

repeat the procedure (1).

Verify that this procedure computes the least-fixed point.

The well-typed commands are interpreted as in Fig. 4.2.

JΓ ` c .∆KAsm(NN) : JΓKAsm(NN) → P⊥(J∆KAsm(NN))

JΓ ` skip . ΓKAsm(NN) := ηJΓKAsm(NN)

JΓ ` x := t . ΓKAsm(NN) := update†x ◦ JtKAsm(NN)

JΓ ` var x : τ := t . Γ′KAsm(NN) := extend†x ◦ JtKAsm(NN)

JΓ ` c1; c2 . Γ′KAsm(NN) := Jc2KAsm(NN)
† ◦ Jc1KAsm(NN)σ

JΓ ` if t then c1 else c2 . ΓKAsm(NN) := Kond†1P(JΓKAsm(NN)⊥
) ◦ (JbKAsm(NN) × Jc1KAsm(NN) × Jc2KAsm(NN))

JΓ ` while t do c . ΓKAsm(NN) := WHILEA(JtKAsm(NN), JcKAsm(NN))

Figure 4.2: The interpretation of ERC commands in Asm(NN).

For a well-typed program

P := function (x1 : τ1, · · · , xd : τd)

c

return t

we interpret it as

JPKAsm(NN) := λ(v1 : Jτ1KAsm(NN)). · · · λ(vd : JτdKAsm(NN)). JtKAsm(NN)
† ◦ JcKAsm(NN)(x1 7→ v1, · · · , xn 7→ vn)

Theorem 4.1. The denotational semantics is computable in the sense that for well-typed terms t,

commands c, and programs P, it holds that Γ(JtKAsm(NN)) = JtK, Γ(JcKAsm(NN)) = JcK, and Γ(JPKAsm(NN)) =

JPK.

It is direct from how we defined the interpretation.

4.2 Extending ERC

4.2.1 Extension Structure

Having the categorical interpretation of ERC, it becomes clear how the language can be extended

with additional data types and operations. We take the opposite way. When we introduce a data type

τ , we declare its interpretation JτKAsm(NN) ∈ Ob(Asm(NN)) which automatically decides the denotation

JτK := Γ(JτKAsm(NN)) ∈ Ob(Set).

68

A term construct is introduced as a symbol with arity f : τ1 × · · · × τd → τ where τ, τi are data

types in the language including the newly introduced ones. The arity implies the extension of the type

system with the rule
Γ ` ti : τi (for i = 1, · · · , d)

Γ ` f(t1, · · · , td) : τ

To the introduced term construct, we assign a morphism f : Jτ1KAsm(NN)×· · ·×JτdKAsm(NN) → P(JτKAsm(NN)⊥
).

Then, it implies the extension of the categorical interpretation by

JΓ ` f(t1, · · · , td) : τKAsm(NN) := f
† ◦
(
Jt1KAsm(NN) × · · · × JtdKAsm(NN)

)
.

And, the denotational semantics gets extended by

JΓ ` f(t1, · · · , td) : τK := Γ(Jf(t1, · · · , td)KAsm(NN)).

Putting this formally, let us call E = (D,F , I) a structure of ERC extension where D is a set of

new data types, F is a set of new operation symbols attached with their arities, and I is a mapping

from D to Ob(Asm(NN)) and from F to Mor(Asm(NN)) that are consistently defined. That is, when

f : τ1 × · · · × τd → τ , I(f) has to be a morphism from Ī(τ1) × · · · × Ī(τd) to P((Ī(τ))⊥) where Ī is I
extended with the assignments Z 7→ Z,R 7→ R and K 7→ K.

Let us see some interesting extension structures. (Recall that when there are multiple monads in

the context, e.g., A, B, we write ηA to refer to the unit of A and ηB to refer to the unit of B.)

Example 4.1.

1. (ERC with Lazyness Elazy) For each data type τ , let lazy(τ) ∈ D. For each data type τ , let

sτ : τ → lazy(τ), rτ : lazy(τ)→ τ ∈ F . Define I as follows.

• I(lazy(τ)) = [JτKAsm(NN)

• I(sτ) = η
P(�⊥)
[JτKAsm(NN)

◦ η[JτKAsm(NN)

• I(rτ) = x 7→

{x} if x 6= [,

{⊥} otherwise.

2. (ERC with products Eprod) Let D be the smallest set such that prod(τ1, τ2) ∈ D if τ1, τ2 ∈ D ∪
{L,R,Z}. And, F = {fstτ1,τ2 : prod(τ1, τ2)→ τ1, sndτ1,τ2 : prod(τ1, τ2)→ τ2, pairτ1,τ2 : τ1 × τ2 →
prod(τ1, τ2) | τ1, τ2 ∈ D ∪ {K,Z,R}}. Define I as follows.

• Jprod(τ1, τ2)KAsm(NN) = Jτ1KAsm(NN) × Jτ2KAsm(NN),

• Jfstτ1,τ2KAsm(NN)
:= η

P(�⊥)
Jτ1K ◦ π1

• Jsndτ1,τ2KAsm(NN)
:= η

P(�⊥)
Jτ2K ◦ π2

• Jpairτ1,τ2KAsm(NN)
:= η

P(�⊥)
Jτ1KAsm(NN)

×Jτ2KAsm(NN)

Recall that π1, π2 are the projection mappings.

3. (ERC with matrices Emat) Let D = {Mat}, F = {col : Mat → Z, row : Mat → Z, assign :

Mat× Z× Z× R→ Mat, value : Mat× Z× Z→ R, E : Z× Z→ Mat}. Define I as follows.

69

• I(Mat) is the assembly Mat(R) of the set of real matrices whose representation relation is

induced from the injection

X ∈ Rn×m 7→ (n,m,X1,1, X1,2, · · · , Xn,m, 0, 0 · · ·) ∈ |Z× Z× (N→ R)|.

See that the following functions are computable:

col : Mat(R) → P(Z⊥)

: X 7→ {the number of columns in X}
row : Mat(R) → P(Z⊥)

: X 7→ {the number of rows in X}
assign : Mat(R)× Z× Z×R → P(Z⊥)

: (X, i, j, x) 7→

{copy of X with Xi,j = x} if X ∈ Rn×m

∧1 ≤ i, j ≤ n,

{⊥} otherwise.

value : Mat(R)× Z× Z → P(R⊥)

: (X, i, j) 7→

{Xi,j} if X ∈ Rn×m ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m,

{⊥} otherwise.

E : Z× Z → P(Mat⊥)

: (i, j) 7→

{the i× j identity matrix} if 0 < i, j,

{⊥} otherwise.

For each f ∈ F , define I(f) = f.

4. (ERC with continuous real functions Erfun) Let D = {C(R, R)}. And, F = {eval : C(R, R)× R→
R}. Define I as follows.

• I(C(R, R)) := (R→ R) and

• I(eval) := η
P(�⊥)
R ◦ eval : (R → R) ×R → P(R⊥) where eval : (R → R) ×R → R is the

evaluation map in Asm(NN).

4.2.2 Extended Reasoning Principles

Note that our extended Hoare logic is for commands, and the term language has been dealt with by

the translation function L�M. Hence, when we extend our specification language thus that it makes the

extended term-language definable, we still have a sound verification calculus.

Definition 4.1.

1. A ERC extension structure is single-valued total if for each added operation f : τ1 × · · · × τd → τ ,

its interpretation is given by I(f) = η
P(�⊥)
JτKAsm(NN)

◦ f̂ for some f̂ : Jτ1KAsm(NN) × · · · × JτdKAsm(NN) →
JτKAsm(NN). See that Elazy and Emat are not single-valued total but Eprod and Erfun are single-valued

total.

2. Given a single-valued total extension E = (D,F , I), define a structure S(E) by extending S with

sorts Γ(JτKAsm(NN)) for each τ ∈ D and functions Γ(Jf̂KAsm(NN)) for each f ∈ F . Let T (E) be the first

order theory over the extended structure and L(E) be the first order language over the extended

structure.

70

Then, the translation function L−M can easily get extended to the extended-term language:

Lf(t1, · · · , td)M(x) = ∃x1, · · · , xd. Lt1M(x1) ∧ · · · ∧ LtdM(xd) ∧ x = f̂(x1, · · · , xd)

Remark 4.1. The decidability property of course does not get preserved. For example, E = ({}, {× :

Z × Z → Z}, I) where I(×) is the integer multiplication function makes the extended logical language

expressive for Peano arithmetic.

Definition 4.2. Given a single-valued total extension E , the verification calculus of ERC(E) is the

verification calculus of ERC with L�M extended.

4.3 Root Finding in ERC Extended with Continuous Real Func-

tions

The problem of finding a root to a real function f occurs frequently in numerical practices. Here,

we provide a program for the problem in the case where f is continuous and admits a single root in a

given interval (a, b) with a promise that f(a) < 0 < f(1); i.e., we consider an algorithmic version of the

Intermediate-Value Theorem. This case is commonly treated using Bisection method. By testing the

sign of f(x) where x is the mid point x = (a + b)/2, refine the interval to (a, x) or (x, b) accordingly.

However, this method fails in the case when f(x) is exactly the root of f . Instead, Trisection [Her96,

p. 336] tests the signs of f(x) and f(y) in parallel where x = (2a + b)/3 and y = (a + 2b)/3. With the

promise that f admits a single root in (a, b), at least one of the two parallel tests succeeds. Hence, we

can safely refine the interval to either (a, y) or (x, b). Repeating this refinement until the width of the

interval gets small than 2−p, we get a 2−p approximation to the root of f . See Fig. 4.3 where f(t) is an

abbreviation for (f, t) for any term t.

trisection := function (f : C(R,R), p : Z)

var a : R := 0;

var b : R := 1;

while choose2(b− a . 2p, 2p−1 . b− a) =̂ 2 do

if choose2(f(2×a/3 + b/3)×f(b) . 0, f(a)× f(a/3 + 2×b/3) . 0) =̂ 1 then

a := 2×a/3 + b/3

else

b := a/3 + 2×b/3

return a

Figure 4.3: A root finding program in ERC(Erfun).

See that the loop continues until b−a < 2p and it is promised that the loop ends when b−a ≤ 2p−1.

In each iteration, it tests if f(x)× f(b) < 0 or f(a)× f(y) < 0 in parallel where x is the one-third point

(2a + b)/3 and y is the two-third point (a + 2b)/3. And, it refines the interval accordingly. Therefore,

when the loop exits, one endpoint, a, is 2p approximation to the root of f .

Let us prove the correctness of trisection to illustrate formal verification in ERC. To emphasize,

our purpose here is not to actually establish correctness of the long-known Trisection method, but to

71

demonstrate our proof rules using a toy example. Since Trisection relies on the Intermediate Value

Theorem, any correctness proof must make full use of real (as opposed to, say, floating-point, rational,

or algebraic) numbers.

Let us define some abbreviations such that the algorithm in Figure 4.3, for any continuous real

function f having a simple root in (0, 1) becomes of the form function (f : C(R,R), p : Z) c1; c2 return a.

t̃1 := b− a . 2p , t̃2 := 2p−1
. b− a

t1 := f(2×a/3 + b/3)×f(b) . 0 , t2 := f(a)×f(a/3 + 2×b/3) . 0

b1 := choose2(t̃1, t̃2) =̂ 2, b2 := choose2(t1, t2) =̂ 1

c1 := var a : R := 0; var b : R := 1

c2 := while b1 do c3

c3 := if b2 then c4 else c5

c4 := a := 2×a/3 + b/3

c5 := b := a/3 + 2×b/3

We want the program to realize a real functional that computes a root of f , provided that f has a

unique root in (0, 1) and that the signs of f(0), f(1) are different. In order to verify that the program

meets the desired property, we need to show that under the condition, the following hold: (i) ⊥ 6∈ Jc1; c2Kσ
and (ii) for all resulting states δ ∈ Jc1; c2Kσ, δ(a) is a 2p

′
approximation of the unique root of f , for any

p′ ∈ Z where σ(p) = p′.

The specification language we use is the logic of ERC extended with Erfun. That is, in the language

it has the additional sort C(R,R) which is the set of continuous real functions. It contains the evaluation

map eval : C(R,R) × R → R. As we did for the programming language, let us abbreviate eval(f, x) by

f(x). Let uniq(f, x, y) be the predicate

uniq(f ∈ C(R,R), x ∈ R, y ∈ R) ≡ f(x)× f(y) < 0 ∧ ∃!z ∈ (x, y). f(z) = 0.

Here, ∃!x. P (x) is an abbreviation for ∃x. P (x) ∧ ∀y z. P (x) ∧ P (y)⇒ x = y.

The specification we wish to have is as follows:

Γ `
[[[
p = p′ ∧ uniq(f, 0, 1)

]]]
c1; c2

[[[
∃!z. f(z) = 0 ∧ 0 < z < 1 ∧ |a− z| ≤ 2p

′]]]
. Γ′

where Γ = p, p′ : Z, Γ′ = p, p′ : Z, a, b, ε : R. Here, p′ is an auxiliary variable that stores the initial value

of p considering that the value p stores may vary (though it does not in this specific example) at the end

state. The post condition says, when c1; c2 terminates, the return value a is a 2p
′

approximation of the

unique root of f . Hence, the specification ensures that the program that computes the root.

Implicitly replacing . with<, the terms t1, t2, t̃1, t̃2 can be interpreted as formulae in our specification

language. See that Lb1M(tt) ⇔ t̃2, Lb1M(ff) ⇔ t̃1, ¬Lb1M(uk) ⇔ >, Lb2M(tt) ⇔ t1, Lb2M(ff) ⇔ t2, and

¬Lb2M(uk) = > hold.

Let us define I := p = p′ ∧ 0 ≤ a < b ≤ 1 ∧ uniq(f, a, b) ∧ uniq(f, 0, 1) as a candidate for the loop

invariant, V := b − a − 2p−1 as a candidate for the loop variant, L := 2p−2 be a candidate for a lower

bound decrement, P̃ := t̃2 ∧ I ∧ V = ξ ∧ L = ξ′, and Q̃ := I ∧ V ≤ ξ − ξ′ ∧ L = ξ′ in our specification

language with variables ξ, ξ′ of the sort R. Let ∆ := p, p′ : Z, a, b, ξ, ξ′ : R.

From the axiom for assignments, we have the triples:

∆ `
[[[
∃ω. L2× a/3 + b/3M(ω) ∧ ∀ω. L2× a/3 + .b/3M(ω)⇒ Q̃[ω/a]

]]]
c4
[[[
Q̃
]]]
.∆

72

∆ `
[[[
∃ω. La/3 + 2× b/3M(ω) ∧ ∀ω. La/3 + 2× b/3M(ω)⇒ Q̃[ω/b]

]]]
c5
[[[
Q̃
]]]
.∆

See that we can apply the rule of precondition weakening to get the following triples derived:

∆ `
[[[
Q̃[(2× a/3 + b/3)/a]

]]]
c4
[[[
Q̃
]]]
.∆, ∆ `

[[[
Q̃[(a/3 + 2× b/3)/b]

]]]
c5
[[[
Q̃
]]]
.∆.

When we unwrap the abbreviations, we have

Q̃[(2× a/3 + b/3)/a] ≡

p = p′ ∧ 0 ≤ (2× a/3 + b/3) < b ≤ 1 ∧ uniq(f, (2× a/3 + b/3), b) ∧ uniq(f, 0, 1)

∧ b− (2× a/3 + b/3)− 2p−1 ≤ ξ − ξ′

∧ 2p−2 = ξ′

and

P̃ ∧ t1 ≡

2p−1 < b− a.

∧ p = p′ ∧ 0 ≤ a < b ≤ 1 ∧ uniq(f, a, b) ∧ uniq(f, 0, 1)

∧ b− a− 2p−1 = ξ

∧ 2p−2 = ξ′

∧ f(2× a/3 + b/3)× f(b) < 0

See that P̃ ∧ t1 ⇒ Q̃[(2 × a/3 + b/3)/a] holds using intermediate value theorem that if an interval

(a, b) contains a root of f uniquely, and if f(x) × f(y) < 0 for a ≤ x < y ≤ b, then (x, y) also contains

the root of f uniquely. And, similarly, P̃ ∧ t2 ⇒ Q̃[(a/3 + 2× b/3)/b] holds.

After having the implications proven, we can use the rule of precondition strengthening on the triples

of c4, c5, and apply the rule for conditionals to get the triple:

∆ `
[[[
t̃2 ∧ I ∧

(
V = ξ

)
∧ L = ξ′

]]]
c3
[[[
I ∧ (V ≤ ξ − ξ′) ∧ L = ξ′

]]]
.∆

The side-conditions of the rule for while loops are quite trivial. Hence, assuming that they are proven,

we apply the rule of while loops, apply the rules of assignments and sequential compositions, and we get

the following triple:

Γ `
[[[
I[0/a, 1/b]

]]]
c1; c2

[[[
I ∧ t̃2

]]]
. Γ′

Using the rule of pre/postcondition strengthening/weakening, we can get the originally desired specifi-

cation.

73

Chapter 5. Clerical: Expression-based Language with Limit

Operator

Our work began as an attempt to fill a lacuna in Chapter 3. Our goal is to make an imperative

programming language that supports the functionality of constructing real numbers via limit operations

while it remains simple in the sense that it does not introduce functions as first-class citizens.

Refraining from introducing function types in the language can be achieved by interpreting an

expression with a free integer variable as a sequence. Our limit operation is of the form lim(n, e). Here,

e is a real typed expression containing a free integer variable n. If the induced function n 7→ e defines a

rapid Cauchy sequence, the limit expression defines the real number that the sequence converges to.

In order to be able to define a useful class of limits in the above way, the expression-language must

be rich enough for e to be able to define interesting functions n 7→ e. To achieve this, it is inevitable to

make expressions command-like, in that they are allowed to contain loops performing much-complicated

computation. In general, such command-like expressions, which subsume commands, may have side

effects. Nevertheless, we distinguish between uses of expressions in which side-effects are allowed (e.g.,

when they are used as commands) and uses in which purity (i.e., side-effect-free) is required. For example,

the expression e in lim(n:Z, e) is required to be pure, as the value of the expression e, on different values

of n, must not depend on the strategy for evaluating such approximating expressions, which is considered

implementation-specific.

In this chapter, we propose Clerical (Command-Like Expressions for Real Infinite-precision Calcu-

lations) as a streamlined imperative language for real number computation that combines real-valued

variables with a limit operation.

Having a limit operation explicitly, our denotational semantics has to care about limits of non-

converging sequence. Basically, Clerical provides five different operations that cause partialities: i)

comparing real numbers, ii) division by 0, iii) infinite loop, and iv) non-converging limit. Recall from

Chapter 2 that the partial functions (i) and (ii) are strongly computable that their [extensions are

computable. Also, the partiality caused infinite loop is by definition [kind of partiality. On the other

hand, the partiality of the limit operator is totally different in that it is a weakly computable partial

function. That is, its] extension is computable. Hence, in our denotational semantics, we strictly

distinguish the two partialities. We denote ⊥ for [, thus that it indicates nontermination. Meanwhile,

we introduce a new symbol e for \ that indicates general failure. (As]→ \ and [→ \ hold.) Hence, we

make a limit operation’s denotation to be e when it receives an invalid sequence; and the denotations of

comparing the same real number, dividing by zero, and infinite loop are ⊥. 1

5.1 Overview of Clerical with Example Programs

Before going through the formal construction of the language in Section 5.2, let us see how programs

in Clerical look like, intuitively, by seeing through some examples.

Clerical is an expression-based imperative programming language where expressions subsume com-

mands. For example, variable assignments (x := e), loops (while e do c end), and conditional statements

1Note that in ERC, we only distinguished comparing the same real number by uk, and let all partialities be indicated

by ⊥. This is the core difference between the denotational semantics of the two languages.

74

(if e then c1 else c2 end) all belong to the set of expressions. In Clerical, expressions, in general, do

not only represent values but also modify states.

However, we do not want every expression to be side-effecting. For example, when we have an

expression of the form e1 + e2, it makes the language overly complicated when it is possible that the

evaluation of e1 and the evaluation of e2 both modify the same variable. In this case, we have to specify

the protocol on reading and writing to shared memory.

We call an expression pure if it is side-effect-free. We enforce expressions that ought to purely

represent values pure. For example, in an arithmetical expression e1 � e2, the sub-expressions e1 and e2

have to be pure, where � is one of the operators +,−,× of the integer arithmetic or +,−,× of the real

arithmetic. (Hence, any arithmetical expression is also pure.) In consequence, we do not need to specify

in which order the sub-expressions evaluate; the evaluations of e1 and e2 are independent. Similarly, the

expressions in assignments and the conditions in loops and conditionals must be pure as well.

Alongside enforcing some expressions side-effect-free, we still want those pure expressions to be

expressive. We allow expressions to create their own mutable local variables. As long as an expression

assigns values only to its local variables, it is not side-effecting. By allowing it, a pure expression still

can be expressive. As an example, the below expression named pos prec is pure since it only assigns to

its local variables x and m:
pos prec(n : Z) := var x := ι(1) in

var m := n in

while m > 0 do

x := x×ι(2);

m := m− 1

end;x

Here, 0, 1, 2 are integer constants. And, ι is the coercion operations such that ι(2) represents the real

number 2 ∈ R. When e1 and e2 are expressions, e1; e2 is the expression that represents the sequential

composition of e1 and e2: execute e1 then execute e2. The value of e1; e2 is the value of e2. The parameter

n : Z refers to an arbitrary expression of type Z for integers. The intended meaning of pos prec(n : Z) is

2n for a non-negative integer n.

We can write an expression that works on all integers as follows:

prec(k : Z) := if k > 0 then pos prec(k) else ι(1)/pos prec(−k) end

Though pos prec(n) is written as a function call, it is simply an abbreviation. The expression pos prec(n)

means to copy the definition of pos prec with the free occurrences of the variable n substituted by m.

Note that this is not a functionality of Clerical.

Limit operations in Clerical are given by a construct of the form lim n . e where e is a pure expression

of type R for real numbers, that contains a free integer variable n. When the value of e forms a rapid

Cauchy sequence as n grows to∞, the value of the limit expression is defined to be the real number that

the sequence converges to. As an example, lim n . prec(−n) evaluates to 0.

75

Of course, we can define more complicated limits:

partial sqrt(x : R) := lim n. var a := ι(0) in

var b := x+ ι(1) in

while prec(−n) >̂ b− a do

var m := (b+ a)/ι(2) in

if m×m− x >̂ ι(0) then b := m else a := m end

end; a

The expression inside of the limit in partial sqrt performs Bisection method to find the root of f(y) = y2−x
in the interval [0, 1 + x]. Throughout the iterations, the interval [a, b] gets refined until the width of the

interval gets less than 2−n. Hence, when the loop is escaped, one endpoint of the interval, a, is 2−n

approximation of
√
x. Therefore, for a real number x which ensures the loop to be escaped for every

positive integer n, the expression partial sqrt(x) evaluates to the positive square root of x.

However, the expression partial sqrt is not totally defined. As it is necessary for real number compu-

tation, comparison tests are defined partially also in Clerical; i.e., testing e1 >̂ e2, which is of type B for

Booleans, where e1, e2 are expressions of type R, does not terminate when they represent the same real

number. Depending on the values that n and x represent, the expression in the limit diverges; i.e., for

certain x, the sequence that the limit gets provided is not a proper Cauchy sequence. Hence, for such x,

the limit is not well-defined. (For example, when x = 1, for any positive n, at the first iteration, m = 1.

Hence, the evaluation of the condition 0 >̂ 0 will never terminate.)

Nondeterminism in Clerical, which is essential to make partial comparison tests useful, is provided

by Dijkstra-style guarded commands:

case

| b1 ⇒ c1

| b2 ⇒ c2

end

where b1, b2 are pure Boolean expressions and c1, c2 are (possibly side-effecting) expressions. The intended

meaning is that c1 may execute if e1 is true, and c2 may execute if b2 is true. When b1 and b2 both hold,

either branch may execute nondeterministically. Even when one of the evaluations of the guards does not

terminate, if the other holds, the corresponding branch executes. For example, we can write a program for

an approximate test x > y with precision 2−n by case x > y+ 2−n ⇒ true | y > x+ 2−n ⇒ false end.

See that the following expression correctly computes the maximum of two real expressions x, y:

max(x y : R) := lim n. case

| x >̂ y− prec(−n)⇒ x

| y >̂ x− prec(−n)⇒ y

end

When x ≥ y, even if the second branch is taken as y > x − 2−n, since |x − y| < 2−n, we can ensure

that y approximates the maximum, which is x, by 2−n. Using max, we can also define expressions for

computing min(x y : R) := −max(−x,−y) and abs(x : R) := max(x,−x).

Now, back to the problem of finding the root of a quadratic polynomial. We know already from

Section 4.3 that Trisection replaces Bisection. The following expression correctly computes the positive

76

square root of x:

sqrt(x : R) := lim n. var a := ι(0) in

var b := x+ ι(1) in

while case b− a >̂ prec(−n− 1)⇒ true | prec(−n) >̂ b− a⇒ false end do

var c := (ι(2)×a+ b)/ι(3) in

var d := (a+ ι(2)×b)/ι(3) in

case

| ι(0) >̂ c×c− x⇒ a := c

| ι(0) >̂ d×d− x⇒ b := d

end

end; a

5.2 Formal Syntax and Typing

In this section, we introduce the grammar of Clerical including the typing rules.

5.2.1 Formal Syntax

Clerical provides the following data types: Z for the set of integers, B for the set of Booleans, R for

the set of real numbers, and U for the singleton set {∗}. We write τ , σ and their variants to refer to

arbitrary data types. As usual, we assume there is unlimited supplies of variables and write them using

alphabets x, y, v, · · · and their variants.

Clerical is an expression-based language where an expression stands for both a computational in-

struction and a value. We write small alphabets e, c and their variants to refer to arbitrary expressions.

Although they are all just expressions, we make some (typing-level) distinctions: an expression is pure if

the expression only assigns to its local variables; i.e., an expression is pure if it is side-effect-free. Though

the purity of an expression is dealt with in typing rules, in the definition of expressions, we write e and

its variants to denote expressions that ought to be pure, and c and its variants to denote expressions

that are possibly side-effecting. See Fig. 5.1 for the definition.

We abbreviate e1/e2 for e1×e2
−1, −e for 0− e, −e for ι(0)− e, e1 > e2 for e2 < e1, and e1 >̂ e2 for

e2 <̂ e1.

5.2.2 Typing Rules

Not all expressions are of interest; i.e., not every expression has a meaning. We are interested only in

well-typed expressions and an expression being well-typed is dependent on contexts which is a structure

that memorizes in which data type that a variable has been declared.

A typing context is a function from a finite set of variables to their data types where · denotes the

empty function. For a typing context Γ, a variable x not in dom(Γ), and a data type τ , we write Γ, x:τ

to denote the function Γ extended with the mapping x 7→ τ . For typing contexts Γ and ∆, when their

domains are disjoint, we write Γ,∆ to denote the join of the two functions. A typing context being a

function from a finite set, we often write it as a list of assignments: x1 : τ1 · · ·xn : τn.

A read-only context Γ is a typing context. And, a read-write context is a pair of typing contexts

Γ; ∆ where Γ is a typing context of read-only variables and ∆ is a typing context of read-write variables.

Of course, the domains of Γ and ∆ have to be disjoint.

77

Expression e, c ::= x variable∣∣ true
∣∣ false boolean constant∣∣ k integer constant∣∣ skip unit∣∣ ι(e) coercion from Z to R∣∣ e1 � e2 integer arithmetic � ∈ {+,−,×}∣∣ e1 � e2

∣∣ e−1 real arithmetic � ∈ {+,−,×}∣∣ e1 < e2

∣∣ e1 = e2 integer comparison∣∣ e1 <̂ e2 real comparison∣∣ lim x . e limit (x bound in e)∣∣ c1; c2 sequencing∣∣ var x := e in c local variable (x bound in c)∣∣ x := e assignment∣∣ if e then c1 else c2 end conditional∣∣ case e1 ⇒ c1 | · · · | en ⇒ cn end guarded cases∣∣ while e do c end loop

Figure 5.1: The formal syntax of Clerical expressions.

78

Having two different types of contexts, we define two different judgement forms accordingly:

Γ ` e : τ e has type τ in read-only context Γ

Γ; ∆ c : τ c has type τ in read-write context Γ; ∆

The typing rules are defined in Fig. 5.2.

See that as we demand e to be pure and c be not in var x := e in c, the rule for deriving

Γ; ∆ var x := e in c : τ requires Γ,∆ ` e : σ and Γ; ∆, x : σ c : τ . In words, e has to be a pure

expression of type σ and c has to be a read-write expression of type τ assuming x : σ.

There are two notable typing rules:

Γ; · e : τ

Γ ` e : τ

Γ,∆ ` e : τ

Γ; ∆ e : τ

The first one enables us to make a pure expression from a read-write expression if the read-write expres-

sion does not mutate any global variable. For example, though if e then c1 else c2 end is primarily

considered as a read-write variable, if c1 and c2 do not assign to global variables, and it can be judged

to be a pure expression. The second rule is obvious: it says we can regard a pure expression as a

state-changing expression hence that the latter is a broader class of expressions. In other words, any

expression is a state-changing expression.

The rules make it possible to judge the following expression, for example, be judged well-typed pure

expression under Γ = x : R:

42 +
(
if x >̂ 0 then var y := 42 in y := 12; y else 42

)
.

Γ; · e : τ

Γ ` e : τ

Γ,∆ ` e : τ

Γ; ∆ e : τ

Γ(x) = τ

Γ ` x : τ Γ ` false : B Γ ` true : B Γ ` k : Z

Γ ` skip : U
Γ ` e : Z

Γ ` ι(e) : R

Γ ` e1 : Z Γ ` e2 : Z

Γ ` e1 � e2 : Z

Γ ` e1 : R Γ ` e2 : R

Γ ` e1 � e2 : R

Γ ` e : R
Γ ` e−1 : R

Γ ` e1 : Z Γ ` e2 : Z

Γ ` e1 < e2 : B

Γ ` e1 : Z Γ ` e2 : Z

Γ ` e1 = e2 : B

Γ ` e1 : R Γ ` e2 : R

Γ ` e1 <̂ e2 : B

Γ, x:Z ` e : R

Γ ` (lim x. e) : R

Γ; ∆ c1 : U Γ; ∆ c2 : τ

Γ; ∆ (c1; c2) : τ

Γ,∆ ` e : σ Γ; ∆, x:σ c : τ

Γ; ∆ (var x := e in c) : τ

∆ ` x : τ Γ,∆ ` e : τ

Γ; ∆ (x := e) : U

Γ,∆ ` e : B Γ; ∆ c1 : τ Γ; ∆ c2 : τ

Γ; ∆ (if e then c1 else c2 end) : τ

Γ,∆ ` ei : B Γ; ∆ ci : τ (i = 1, . . . , n)

Γ; ∆ (case e1 ⇒ c1 | · · · | en ⇒ cn end) : τ

Γ,∆ ` e : B Γ; ∆ c : U

Γ; ∆ (while e do c end) : U

Figure 5.2: The typing rules of Clerical.

5.3 Denotational Semantics

5.3.1 Denotations of Data Types and Contexts

Denotational semantics provides a way of interpreting each part of a programming language by

mapping it to a familiar mathematical object which is what we want to see it as ideally. For example,

79

we have R as a data type. However, what we really want to see from it is the set of real numbers R. The

denotations of data types in Clerical are defined as follows:

JUK := {∗} JBK := {tt,ff} JZK := Z JRK := R

The denotation of a context is the set of a mapping from each variable that is defined in the context

to an actual mathematical value that the variable stores. Using the dependent product notation, the

denotation of a typing context is defined by

JΓK :=
∏

x∈dom(Γ)

JΓ(x)K.

For states γ ∈ JΓK and δ ∈ J∆K, we write (γ, δ) ∈ JΓ,∆K for the join of the functions. And, we write

() ∈ J·K for the empty function. And, for a state γ ∈ JΓK, a variable x ∈ dom(Γ), and a value v ∈ JΓ(x)K,
we write γ[x 7→ v] to denote to the state whose function value at y is γ(y) if y 6= x and is v when y = x.

5.3.2 Semantic Construction

For a set S, define Se
⊥ be a poset on S ∪ {⊥, e} with the ordering

x ≤ y :⇔ x = ⊥ ∨ x = y .

We consider ⊥ as nontermination and e as invalid computation2. We define a slightly modified Plotkin’s

powerdomain

P?(S) := {X ⊆ Se
⊥ | X 6= ∅ ∧ (X infinite⇒ ⊥ ∈ X) ∧ (e ∈ X ⇒ X = Se

⊥)}

which is ordered by Elgi-Milner ordering

X v Y :⇔ (∀x ∈ X. ∃y ∈ Y. x ≤ y) ∧ (∀x ∈ Y. ∃x ∈ X. x ≤ y) .

See that the order can be characterized by

X v Y ⇐⇒ (⊥ ∈ X ∧X ⊆ Y ∪ {⊥}) ∨X = Y .

Let us write b = {⊥} and e = Se
⊥ ∈ P?(S). We use the powerdomain to interpret our denotational

semantics based on Kleene’s fixed-point theorem. Hence, it is crucial to note the following.

Lemma 5.1. For any set S, the powerdomain (P?(S),v) is a ω-CPO with a least element; any increasing

chain in P?(S) has its limit in P?(S), and there is the least element in P?(S) which is b.

Proof. For any set S, P?(S) is exactly the Plotkin powerdomain except for e, which is above any element

containing ⊥. Suppose a chain in P?(S) does not encounter e. Then, the limit is the limit of the chain

in the ordinary powerdomain. Suppose a chain contains e. Then, the limit of the chain is e. Since e is

above b, b is the bottom element of P?(S).

There is a rectifying operation ? : {X ⊆ Se
⊥} → P?(S) defined by

X? =

e if e ∈ X,

X ∪ {⊥} if X infinite,

b if X = ∅,

X otherwise.

2See that e and ⊥ were dealt as ⊥ in Chapter 3.

80

For an indexed set f : I → P?(S), define the join operation

⊎
x∈I

f(x) :=

(⋃
x∈I

f(x)

)
?

where
⊎
x∈I f(x) ∈ P?(S).

To use this domain to interpret our denotational semantics, we need to define various lifting opera-

tions. Of course, instead of defining that ad hoc, we see that our powerdomain construction S 7→ P?(S)

is a moand in Set by taking a small detour:

Lemma 5.2. Consider an endofunctor P : Set→ Set defined on sets and functions as follows.

P(A) := {S ⊆ A ∪ {⊥} | S infinite ⇒ ⊥ ∈ S}

P(f : A→ B) : S 7→
⋃
x∈S

{f(x)} if x 6= ⊥

{⊥} otherwise.

(Note that the difference from the Plotkin powerdomain construction from Section 3.3 is that P allows

the empty set.) The endofunctor with the collection of functions ηA, µA for each set A is a monad where

they are defined by

ηA : x 7→ {x}

µA : S 7→
⋃
· T∈S

T if T 6= ⊥ ,

{⊥} otherwise .

Here,
⋃
· x∈I f(x) :=

∅ if ∃i ∈ I. f(i) = ∅ ,⋃
i∈I f(i) otherwise ,

for an indexed set f : I → P(B).

Proof. We first need to show that η : I → P and µ : P2 → P are indeed natural transformations. That

is, the following diagrams commute:

A P(A) P2(A)

B P(B) P2(B)

ηA

f P(f)

µA

P2(f)

ηB µB

The left diagram is easy to verify that for any x ∈ A, (ηB ◦ f) (x) = {f(x)} and (P(f) ◦ ηA) (x) =

P(f)({x}) = {f(x)}.
To verify the right diagram, for any S ∈ P2(A), see that

P2(f)(S) =
⋃
T∈S

⋃x∈T

{f(x)} if x 6= ⊥ ,

{⊥} otherwise ,

 if T 6= ⊥ ,

{⊥} otherwise .

We can characterize the set as follows:

∅ = P2(f)(S) ⇐⇒ ∅ = S ,

⊥ ∈ P2(f)(S) ⇐⇒ ⊥ ∈ S ,

X 6= ⊥ ∧X ∈ P2(f)(S) ⇐⇒ ∃T ∈ S. X =
⋃
x∈T

{f(x)} if x 6= ⊥ ,

{⊥} otherwise .

81

Using the characterization, we can characterize µB(P2(f)(S)) as follows:

µB(P2(f)(S)) = ∅ ⇐⇒ S = ∅ ∨ ∃T ∈ S. ∅ =
⋃
x∈T

{f(x)} if x 6= ⊥

{⊥} otherwise

⇐⇒ S = ∅ ∨ ∅ ∈ S ,

y ∈ µB(P2(f)(S)) ⇐⇒ (¬(S = ∅ ∨ ∅ ∈ S)) ∧
(
(y = ⊥ ∧⊥ ∈ S) ∨ ∃X ∈ P2(f)(S). y ∈ X

)
⇐⇒ ∅ 6∈ S ∧

(y = ⊥ ∧⊥ ∈ S) ∨ ∃T ∈ S. y ∈
⋃
x∈T

{f(x)} if x 6= ⊥ ,

{⊥} otherwise ,

⇐⇒ ∅ 6∈ S ∧ ((y = ⊥ ∧ (⊥ ∈ S ∨ ∃T ∈ S. ⊥ ∈ T)) ∨ ∃T ∈ S. ∃x ∈ T. y = f(x)) .

Now, see that (P(f) ◦ µA)(S) is

⋃
x∈

⋃
· T∈S

T if T 6= ⊥ ,

{⊥} otherwise ,

{f(x)} if x 6= ⊥ ,

{⊥} otherwise .

It can be the emptyset if and only if
⋃
· T∈S

T if T 6= ⊥ ,

{⊥} otherwise ,
is the emptyset, and this happens exactly

when S = ∅ or ∅ ∈ S.

In the other case, assuming ∅ 6∈ S, the set P(f)(µA(S)) contains ⊥ if and only if⋃
· T∈S

T if T 6= ⊥ ,

{⊥} otherwise ,
contains ⊥. That is, when ⊥ ∈ S or there is T ∈ S such that ⊥ ∈ T .

Again assuming ∅ 6∈ S, see that y which is not ⊥ is in (P(f) ◦ µA)(S) if and only if there is

x ∈
⋃
· T∈S

T if T 6= ⊥ ,

{⊥} otherwise ,
such that y = f(x). That is, if and only if there is T ∈ S such that they

x is in T .

We just observed that the two characterizations coincide, and that the collections of functions are

indeed natural transformations.

Coherence Conditions

In order to confirm that the endofunctor P with two natural transformations η : I → P and µ : P2 →
P is a monad, we need to verify the monad laws which are the coherence conditions: (i) µA ◦ ηP(A) =

idP(A) = µA ◦ P(ηA) and (ii) µA ◦ µP(A) = µA ◦ P(µA) illustrated in the following diagrams.

P(A) P2(A)

P2(A) P(A)

ηP(A)

P(ηA) µA

µA

P3(A) P2(A)

P2(A) P(A)

µP(A)

P(µA) µA

µA

For the left diagram, see that for any S ∈ P(A),

(µA ◦ ηP(A))(S) =
⋃
·

T∈{S}

T if T 6= ⊥ ,

{⊥} otherwise ,

82

is simply S. And, for any S ∈ P(A), the set (µA ◦ P(ηA))(S) is defined as follows.

(µA ◦ P(ηA))(S) = µA

⋃
x∈S

{{x}} if x 6= ⊥ ,

{⊥} otherwise ,

=

⋃
·

T∈

⋃
x∈S

{{x}} if x 6= ⊥ ,

{⊥} otherwise ,

T if T 6= ⊥ ,

{⊥} otherwise .

It can be the emptyset if and only if S = ∅. In the other case, when S 6= ∅, see that

T ∈
⋃
x∈S

{{x}} if x 6= ⊥

{⊥} otherwise
if and only if T = ⊥∧⊥ ∈ S or T = {x}∧x ∈ S. Hence, again, the above

is precisely S.

For the second coherence condition, the diagram on the right, consider any S ∈ P3(A). See that

µP(A)(S) =
⋃
·

T∈S

T if T 6= ⊥ ,

{⊥} otherwise ,

µA(µP(A)(S)) =
⋃
·

R∈

⋃
· T∈S

T if T 6= ⊥ ,

{⊥} otherwise ,

R if R 6= ⊥ ,

{⊥} otherwise .

and

P(µA)(S) =
⋃
T∈S

⋃· R∈T

R if R 6= ⊥ ,

{⊥} otherwise ,

 if T 6= ⊥ ,

{⊥} otherwise ,

µA(P(µA)(S)) =
⋃
·

P∈

⋃
T∈S

⋃· R∈T
R if R 6= ⊥ ,

{⊥} otherwise ,

 if T 6= ⊥ ,

{⊥} otherwise ,

P if P 6= ⊥ ,

{⊥} otherwise .

To ease the presentation, let us write X := µA(µP(A)(S)) and Y := µA(P(µA)(S)).

See that X = ∅ if and only if (i) S = ∅, (ii) ∅ ∈ S, or (iii) ∅ ∈
⋃
· T∈S

T if T 6= ⊥ ,

{⊥} otherwise .
The third

condition holds if and only if ∃Q ∈ S s.t. ∅ ∈ Q and ∅ 6∈ S.

On the other hand, Y = ∅ if and only if (i) S = ∅,

or (ii) ∅ ∈
⋃
T∈S

⋃· R∈T

R if R 6= ⊥ ,

{⊥} otherwise ,

 if T 6= ⊥ ,

{⊥} otherwise .

The second condition holds if and only if

there is T ∈ S such that
⋃
· R∈T

R if R 6= ⊥ ,

{⊥} otherwise .
is the emptyset. And, this condition holds if and

only if T = ∅ or ∅ ∈ T . Therefore, X = ∅ if and only if Y = ∅.

83

From this point, assume X,Y 6= ∅.

See that ⊥ ∈ X if and only if ⊥ ∈
⋃
· T∈S

T if T 6= ⊥ ,

{⊥} , otherwise
or there is R such that ⊥ ∈ R and

R ∈
⋃
· T∈S

T if T 6= ⊥ ,

{⊥} otherwise .
This holds if and only if ⊥ ∈ S, there is T ∈ S such that ⊥ ∈ T , or there

is R, T such that ⊥ ∈ R, R ∈ T , and T ∈ S.

And, ⊥ ∈ Y holds if and only if ⊥ ∈
⋃
T∈S

⋃· R∈T

R if R 6= ⊥ ,

{⊥} otherwise ,

 if T 6= ⊥ ,

{⊥} otherwise ,

or there is

P such that ⊥ ∈ P and P ∈
⋃
T∈S

⋃· R∈T

R if R 6= ⊥ ,

{⊥} otherwise ,

 if T 6= ⊥ ,

{⊥} otherwise .

The first holds if and

only if ⊥ ∈ S. And, the second holds if and only if there is T ∈ S such that there is ⊥ ∈ T or there is R

such that R ∈ T and ⊥ ∈ R. Therefore, ⊥ ∈ X if and only if ⊥ ∈ Y .

Now, suppose any x that is not ⊥. See that x ∈ X if and only if there is R such that x ∈ R and

R ∈
⋃
· T∈S

T if T 6= ⊥ ,

{⊥} otherwise .
This holds if and only if there is R, T such that x ∈ R, R ∈ T , and T ∈ S.

And, x ∈ Y holds if and only if there is P such that x ∈ P and

P ∈
⋃
T∈S

⋃· R∈T

R if R 6= ⊥ ,

{⊥} otherwise ,

 if T 6= ⊥ ,

{⊥} otherwise .

This holds if and only if there is T ∈ S such that there is R such that R ∈ T and x ∈ R. Therefore,

x ∈ X if and only if x ∈ Y .

Now we conclude µA ◦ µP(A) = µA ◦ P(µA) holds. Satisfying the coherence conditions, (P, η, µ) is a

monad.

Corollary 5.1. The powerdomain construction S 7→ P?(S) as an endofunctor in Set whose action on

functions is defined by

P?(f : A→ B) := S 7→
⋃
x∈S

e if x = e,

{⊥} if x = ⊥,

{f(x)} otherwise,

is a monad with the unit ηA : x 7→ {x} and the multiplication

µA : S 7→
⊎
T∈S

{e} if T = e,

{⊥} if T = ⊥,

T otherwise.

Proof. For any S, see that P(S)→ P?(S) by

(fS : P(S)→ P?(S)) : X 7→

X if X 6= ∅

e otherwise.

84

is an isomorphism where

(gS : P?(S)→ P(S)) : Y 7→

∅ if Y 6= e

Y otherwise

is its inverse. Hence, P? also is a moand with the unit

fS ◦ ηPS : S → P?(S),

and the multiplication

fS ◦ µP
S ◦ P(gS) ◦ gP?(S) : P?(P?(S))→ P?(S)

The construction P? being a monad on Set, it is a strong monad with the tensorial strength:

βS,T : S × P?(T) → P?(S × T)

: (x, Y) 7→
⊎
y∈Y

{e} if y = e,

{⊥} if y = ⊥,

(x, y) otherwise.

And, the natural transformation is obtained from the strength:

αS,T : P?(S)× P?(T) → P?(S × T)

: (X,Y) 7→
⊎
x∈X∧y∈Y

e if x = e ∨ y = e,

{⊥} if x = ⊥ ∨ y = ⊥,

(x, y) otherwise.

Also, it is countably applicative with θ defined by

θS : (N→ P?(S)) → P?(N→ S)

: (n 7→ Xn) 7→
⊎
xi∈Xi

{e} if ∃i. e = xi,

{⊥} if ∃i. ⊥ = xi,

{n 7→ xn} otherwise.

Hence, we can define various types of lifting.

• When f : A1×· · ·×Ad → B, we can lift it to f† : P?(A1)×· · ·×P?(Ad)→ P?(B) by consecutively

precomposing appropriate α on P?(f). It happens to be

f†(S1, · · · , Sd) =
⊎

(x1,··· ,xd)∈S1×···×Sd

{e} if ∃i. xi = e,

{⊥} if ∃i. xi = ⊥,

{f(x1, · · · , xd)} otherwise.

• When f : A1 × · · · × Ad → P?(B), we can lift it to f† : P?(A1) × · · · × P?(Ad) → P?(B) by

consecutively precomposing appropriate α on µB ◦ P?(f). It happens to be

f†(S1, · · · , Sd) =
⊎

(x1,··· ,xd)∈S1×···×Sd

{e} if ∃i. xi = e,

{⊥} if ∃i. xi = ⊥,

f(x1, · · · , xd) otherwise.

85

• When f : A1×· · ·×Ad → B, we can lift it to f†i : A1×P?(Ai) · · ·×Ad → P?(B) by precomposing

appropriate β on P?(f). It happens to be

f†(x1, · · · , Si, · · ·xd) =
⊎
xi∈Si

{e} if xi = e,

{⊥} if xi = ⊥,

{f(x1, · · · , xi, · · ·xd)} otherwise.

• When f : A1 × · · · × Ad → P?(B), we can lift it to f†i : A1 × P?(Ai) · · · × Ad → P?(B) by

precomposing appropriate β on µB ◦ P?(f). It happens to be

f†(x1, · · · , Si, · · ·xd) =
⊎
xi∈Si

{e} if xi = e,

{⊥} if xi = ⊥,

f(x1, · · · , xi, · · ·xd) otherwise.

• When f : (N → A) → B, we can lift it to f† : (N → P?(A)) → P?(B) by precomposing θA on

P?(f). It happens to be

f†((Si)i∈N) =
⊎
xi∈Si

{e} if ∃i. xi = e,

{⊥} if ∃i. xi = ⊥,

{f((xi)i∈N)} otherwise.

• When f : (N → A) → P?(B), we can lift it to f† : (N → P?(A)) → P?(B) by precomposing θA on

µB ◦ P?(f). It happens to be

f†((Si)i∈N) =
⊎
xi∈Si

{e} if ∃i. xi = e,

{⊥} if ∃i. xi = ⊥,

f((xi)i∈N) otherwise.

For a mapping f : A1 × · · · ×Ad → B and a set X ∈ P?(Si), define

(let xi � X in f) := f†i |Si:=X : A1 × · · ·Ai−1 ×Ai+1 × · · ·Ad → P?(B).

Similarly, for a mapping f : A1 × · · · ×Ad → P?(B) and a set X ∈ P?(Si), define

(let xi � X in f) := f†i |Si:=X : A1 × · · ·Ai−1 ×Ai+1 × · · ·Ad → P?(B).

For a function valued function f : A1 → · · · → Ad → B, let us define f† and f†i by curry((uncurry(f))†)

and curry((uncurry(f))†i).

Let us define an auxiliary lifting. For a mapping f : S → T e
⊥, define its codomain lifting f‡ : S →

P?(T) by

f‡(x) = {f(x)}?.

Now, we see their domain-theoretic properties.

Lemma 5.3. Lifting is monotone in both arguments that

1. for any f : S → P?(T) and X,Y ∈ P?(S), if X v Y , then f†(X) v f†(Y), and

2. for any f, g : S → P?(T) and X ∈ P?(S), if ∀x ∈ X. f(x) v g(x) then f†(X) v g†(X).

86

Proof. (Proof of 1). Suppose e ∈ X. Then, f†(X) = f†(Y) = e. Hence, assume e 6∈ X. If e ∈ Y , in

order to make X v Y hold, ⊥ ∈ X holds. Hence, ⊥ ∈ f†(X) v e = f†(Y) = e. Further suppose e 6∈ Y
too. If ⊥ ∈ X and ⊥ ∈ Y , X ′ ⊆ Y ′ where X = X ′ ∪ {⊥}, Y = Y ′ ∪ {⊥}, and X,Y ⊆ S. In the case,

f†(X ′) ⊆ f†(Y ′) and f†(X) = f†(X ′) ∪ {⊥} and f†(Y) = f†(Y ′) ∪ {⊥}. Therefore, f†(X) v f†(Y).

Now, suppose ⊥ 6∈ Y . In the case, f†(X) = f†(X ′) ∪ {⊥} ⊆ f†(Y) ∪ {⊥}. Hence, f†(X) v f†(Y). If

⊥ 6∈ X, X = Y .

(Proof of 2). If e ∈ X, f†(X) = g†(X). Hence, suppose e 6∈ X.

See that for each x ∈ X, f(x) \ {⊥} ⊆ g(x) \ {⊥} holds. And, if ⊥ ∈ f†(X), it holds that

f†(X) = {⊥} ∪
⋃
x∈X f(x) \ {⊥}. And, similarly. g†(X) = {⊥} ∪

⋃
x∈X g(x) \ {⊥} if ⊥ ∈ g†(X). Hence,

due to the monotonicity of the set union, we have f†(X) v g†(X).

Suppose ⊥ 6∈ f†(X). It holds only if for each x ∈ X, it holds that ⊥ 6∈ f(x). As f(x) v g(x), it

holds that f(x) = g(x) for all x.

Now suppose ⊥ ∈ f†(X) and ⊥ 6∈ g†(x). Then, f†(X) = {⊥} ∪
⋃
x∈X f(x) \ {⊥} and g†(X) =⋃

x∈X g(x). And, for each x ∈ X, it holds that f(x) \ {⊥} ⊆ g(x) \ {⊥} = g(x). Hence, we have

f†(X) v g†(X).

Lemma 5.4. Lifting is continuous in both arguments that

1. for any f : S → P?(T) and Xi ∈ P?(S) where (Xi)i∈N is a chain with regards to the point-wise

ordering, ⊔
i∈N

f†(Xi) = f†
(⊔
i∈N

Xi

)
.

holds. And,

2. for any fi : S → P?(T) and X ∈ P?(S) where (fi)i∈N is a chain with regards to the point-wise

ordering, ⊔
i∈N

f†i (X) =
(⊔
i∈N

fi

)†
(X).

holds.

Proof. (Proof of 1): The fact that (f†(Xi))i∈N is a chain is direct from Lemma 5.3.1. Let us write X for

the limit of (Xi)i∈N.

See that e ∈
⊔
i∈N f

†(Xi) if and only if ∃i. e ∈ f†(Xi) if and only if ∃i. e ∈ Xi ∨ ∃x ∈ Xi. e ∈ f(x).

And, e ∈ f†(X) if and only if e ∈ X∨∃x ∈ X. e ∈ f(x) if and only if (∃i. e ∈ Xi)∨(∃i. x ∈ Xi. e ∈ f(x)).

And, the two conditions are equivalent.

Similarly, assuming e is not in the both sides, ⊥ ∈
⊔
i∈N f

†(Xi) if and only if ∀i. ⊥ ∈ f†(Xi) if and

only if ∀i. ⊥ ∈ Xi ∨ ∃x ∈ Xi. ⊥ ∈ f(x). And, ⊥ ∈ f†(X) if and only if ⊥ ∈ X ∨ ∃x ∈ X. ⊥ ∈ f(x) if and

only if (∀i. ⊥ ∈ Xi) ∨ ∃i. ∃x ∈ Xi. ⊥ ∈ f(x).

If (∀i. ⊥ ∈ Xi), we immediately have ∀i. ⊥ ∈ Xi ∨ ∃x ∈ Xi. ⊥ ∈ f(x). Suppose ∃i. ∃x ∈ Xi. ⊥ ∈
f(x). Then, since Xi is a chain all Xj with j ≥ i contains x. Therefore, f†(Xj) for all j ≥ i contains ⊥.

Hence, ⊥ ∈
⊔
i∈N f

†(Xi).

If ∀i. ⊥ ∈ Xi ∨ ∃x ∈ Xi. ⊥ ∈ f(x), if there is at least one i such the right term ∃x ∈ Xi. ⊥ ∈ f(x)

holds, then since the x such that ⊥ ∈ f(x) is in X, ⊥ ∈ f†(X). Hence, suppose there is no such i. That

is, ∀i. ⊥ ∈ Xi holds. Then, ⊥ ∈ f†(X) as well.

87

Now, suppose ⊥ is not in the both sides as well. Then, for any y ∈ T , see that y ∈
⊔
i∈N f

†(Xi) if

and only if there is x ∈ T in Xi where y ∈ f(x). And, y ∈ f†(X) if and only if there is x ∈ T in X where

y ∈ f(x). See that the two conditions are equivalent.

(Proof of 2): The fact that (f†i (X))i∈N is a chain is direct from Lemma 5.3.2. Let us write f for the

limit of (fi)i∈N with regards to the point-wise ordering.

Observe that e ∈
⊔
i∈N f

†
i (X) if and only if ∃i. e ∈ f†i (X) if and only if e ∈ X∨∃x ∈ X. ∃i. e ∈ fi(x).

On the other hand, e ∈ f†(X) if and only if e ∈ X ∨ ∃x ∈ X. e ∈ f(x) if and only if e ∈ X ∨ ∃x ∈
X. ∃i. e ∈ fi(x).

Now, suppose e is not contained in the both sides. Then, ⊥ ∈
⊔
i∈N f

†
i (X) if and only if ∀i. ⊥ ∈ f†i (X)

if and only if ∀i. ⊥ ∈ X ∨ ∃x ∈ X. ⊥ ∈ fi(x) if and only if ⊥ ∈ X ∨ ∀i. ∃x ∈ X. ⊥ ∈ fi(x). And,

⊥ ∈ f†(X) if and only if ⊥ ∈ X ∨ ∃x ∈ X. ⊥ ∈ f(x) if and only if ⊥ ∈ X ∨ ∃x ∈ X. ∀i. ⊥ ∈ fi(x).

Since the case ⊥ ∈ X is obvious, suppose ⊥ 6∈ X. Then, ⊥ ∈
⊔
i∈N f

†
i (X) if and only if ∀i. ∃x ∈

X. ⊥ ∈ fi(x). Let xi ∈ X satisfies ⊥ ∈ fi(xi) for all i. Since X is finite, there is x ∈ X that is xi

for infinitely many i. Since ⊥ ∈ fi(x) implies ⊥ ∈ fj(x) for all j ≤ i, ⊥ ∈ fi(x) for all i. Therefore,

⊥ ∈
⊔
i∈N f

†
i (X) if and only if ∃x ∈ X. ∀i. ⊥ ∈ fi(x) if and only if ⊥ ∈ f†(X).

Now, suppose ⊥ also is not contained in the both sides. For any y ∈ T , see that y ∈
⊔
i∈N f

†
i (X)

if and only if ∃i. y ∈ f†i (X) if and only if ∃i. ∃x ∈ X. y ∈ fi(x). And, y ∈ f(X) if and only if

∃x ∈ X. y ∈ f(x) if and only if ∃x ∈ X. ∃i. y ∈ fi(x). Hence, we conclude that the desired equation

holds.

Lemma 5.5. Set union is continuous in that for any Xi, Y ∈ P?(S) where (Xi)i∈N is a chain, the

following holds: ⊔
i∈N

(Xi ∪ Y) =
(⊔

i∈N
Xi

)
∪ Y.

Proof. The fact that (Xi ∪ Y) is also a chain is direct from the definition of the Egli-Milner ordering.

Let us write X for the limit of (Xi)i∈N.

See that e ∈ X ∪ Y if and only if e ∈ X ∨ e ∈ Y if and only if (∃i. e ∈ Xi) ∨ e ∈ Y if and only if

∃i. (e ∈ Xi ∨ e ∈ Y) if and only if e ∈
⊔
i∈N(Xi ∪ Y).

Now, assume e is not in the both sides. Then, ⊥ ∈ X ∪ Y if and only if ⊥ ∈ X ∨⊥ ∈ Y if and only

if (∀i. ⊥ ∈ Xi) ∨ ⊥ ∈ Y . And, ⊥ ∈
⊔
i∈N(Xi ∪ Y) if and only if ∀i. (⊥ ∈ Xi ∨ ⊥ ∈ Y) if and only if

(∀i. ⊥ ∈ Xi) ∨ ⊥ ∈ Y .

For the last case, assuming ⊥ is also not in the both sides, for any x ∈ S, x ∈ X ∪ Y if and

only if x ∈ X ∨ x ∈ Y if and only if (∃i. x ∈ Xi) ∨ x ∈ Y . And, x ∈
⊔
i∈N(Xi ∪ Y) if and only if

∃i. (x ∈ Xi ∨ x ∈ Y) if and only if (∃i. x ∈ Xi) ∨ x ∈ Y .

Lemma 5.6. The Kleisli composition are continuous in both arguments that for any fi, g : S → P?(S)

where (fi)i∈N is a chain with regards to the point-wise ordering, the following equations holds:

1.
(⊔

i∈N fi

)†
◦ g =

⊔
i∈N
(
f†i ◦ g

)
,

2. g† ◦
⊔
i∈N fi =

⊔
i∈N g

† ◦ fi .

Proof. They are direct from Lemma 5.5.

88

5.3.3 Denotations of Expressions

For a well-typed pure expression Γ ` e : τ , its denotation on a state γ ∈ JΓK is the set of values that

e evaluates to regarding nondeterminism. The case ⊥ ∈ JΓ ` e : τKγ denotes that a nondeterministic

branch in evaluating e under γ leads nontermination. And, e ∈ JΓ ` e : τKγ denotes that there is a

nondeterministic branch facing total failure.

Similarly, for a well-typed read-write expression Γ; ∆ c : τ , its denotation on γ, δ is a set of

(δ′, v) ∈ J∆K × JτK representing that there is a nondeterministic branch in the execution that leads to

new read-write state δ′ with v being evaluated. There also are other cases that e and ⊥ are in the

denotation which denotes the same cases for pure expressions.

Hence, the meaning of a pure expression Γ ` e : τ is a map

JΓ ` e : τK : JΓK→ P?(JτK)

and the meaning of a read-write expression Γ; ∆ c : τ is a map

JΓ; ∆ c : τK : JΓK→ J∆K→ P?(J∆K× JτK) .

Let us recall and define some auxiliary functions. The first is conditional:

CondS : 2× S × S → S

:= (b, x, y) 7→

x if b = tt

y otherwise.

The second is to interpret guarded nondeterminisms:

GuardS : 2× P?(S) → P(Se
⊥)

:= (b,X) 7→

X if b = tt

∅ otherwise.

In order to interpret lim, we take e extension of the partial limit function lim. That is,

lim((xi)i∈N)�e=

lim((xi)i∈N) if ∃x. ∀k ∈ Z. |x− xk| ≤ 2−k

e otherwise.

a function from Rω → Re
⊥. And, define ES : P?(S)→ P?(S) by

ES(X) :=

e if ⊥ ∈ X,

X otherwise.

See that

ER ◦ (lim�e)
‡†(Xi)i∈N =

{x} if ∀i. Xi ⊆ R ∧ ∀y ∈ Xi . |x− y| ≤ 2−i,

e otherwise.

For the real number comparison <̂, we consider the ⊥ extension of the partial comparison <:

�1<�⊥ �2 : (x, y) 7→

tt if x < y,

ff if y < x,

⊥ otherwise,

89

Similarly for −1, we take ⊥ extension of the partial function �−1:

�−1�⊥ : R 3 x 7→

x−1 if x 6= 0,

⊥ otherwise.

For a set T , let us write j : T × {∗} → T for the projection map and k : T → T × {∗} for the map

x 7→ (x, ∗). For any b : T → P?(2) and c : T → P?(T × {∗}), let us define

W(b, c) : (f : T → P?(T × {∗})) 7→ Cond†1P?(T×{∗}) ◦
(
b× (f† ◦ j† ◦ c)× k†

)
.

Lemma 5.7. For any b : T → P?(2) and c : T → P?(T × {∗}), the mapping W(b, c) is continuous; i.e.,

for any chain (fi)i∈N w.r.t. the point-wise ordering,⊔
i∈N

W(b, c)(fi) = W(b, c)
(⊔
i∈N

fi

)
.

Proof. For any mapping b̄ : T → P?(2) and c̄ : T → P?(T), define the mapping

W̄b̄,c̄ : (f̄ : T → P?(T)) 7→ Cond†1P?(T) ◦ (b̄× f̄† ◦ c̄× η).

and see that

Wb,c(f) = k† ◦ W̄j†◦b,j†◦c(j
† ◦ f)

holds. The mapping W̄ is continuous by the definition of Cond, Lemma 5.4, and Lemma 5.5.

Hence, it holds that

Wb,c

(⊔
i∈N

fi

)
= k† ◦ W̄j†◦b,j†◦c

(
j† ◦

⊔
i∈N

fi

)
= k† ◦ W̄j†◦b,j†◦c

(⊔
i∈N

j† ◦ fi
)

= k† ◦
⊔

i∈N
W̄j†◦b,j†◦c(j

† ◦ fi)

=
⊔

i∈N
k† ◦ W̄j†◦b,j†◦c(j ◦ fi)

=
⊔

i∈N
Wb,c(fi).

using the continuity of Kleisli compositions from Lemma 5.6.

Using the auxiliary functions, we define the denotational semantics of Clerical as in Figure 5.3.

In order to simplify the presentation, let us write JeK instead of JΓ; ∆ e : τK or JΓ ` e : τK when it

is obvious from the context what are missing.

Remark 5.1.

1. For a well-typed expression Γ ` e : τ , its denotation on a state γ is a subset of JτK ∪ {e,⊥} of the

values that e can evaluates to considering the nondeterminism in the evaluation. There are two

special cases. The first is when ⊥ ∈ JeKγ. The case denotes that there is a nondeterministic branch

in the evaluation which leads to nontermination. The other case is when e ∈ JeKγ. It denotes the

case where an error is occurred in the evaluation of e. See that due to the construction, in the case,

JeKγ = e.

90

The denotations of read-only expressions

JΓ ` c : τK γ = π†1 ◦ JΓ; · c : τK γ ()

Jx1:τ1; . . . , xn:τn ` xi : τiK γ = ηJτiK γi

JΓ ` false : BK γ = {ff}

JΓ ` true : BK γ = {tt}

JΓ ` k : ZK γ = {k}

JΓ ` skip : UK γ = {∗}

JΓ ` ι(e) : RK γ = ι†(JΓ ` e : ZK γ)

JΓ ` e1 � e2 : ZK γ = JΓ ` e1 : ZKγ �† JΓ ` e2 : ZKγ

JΓ ` e1 � e2 : RK γ = JΓ ` e1 : RKγ �† JΓ ` e2 : RKγ

JΓ ` e−1 : RK γ = (JΓ ` e : RKγ)(−1�⊥)‡†

JΓ ` e1 = e2 : BK γ = JΓ ` e1 : ZKγ =† JΓ ` e2 : ZKγ

JΓ ` e1 < e2 : ZK γ = JΓ ` e1 : ZKγ <† JΓ ` e2 : ZKγ

JΓ ` e1 <̂ e2 : RK γ = JΓ ` e1 : RKγ(<�⊥)‡†JΓ ` e2 : RKγ

JΓ ` (lim x. e) : RK γ = ER ◦ (lim�e)
‡†(N 3 k 7→ JΓ, x:Z ` e : RK (γ, (x 7→ k))).

The denotations of read-write expressions

JΓ; ∆ e : τK γ δ = let v � JΓ,∆ ` e : τK (γ, δ) in (δ, v)

JΓ; ∆ c1; c2 : τK γ δ = let (∗, δ′) � JΓ; ∆ c1 : UK γ δ in JΓ; ∆ c2 : τK γ δ′

JΓ; ∆ (var x := e in c) : τK γ δ = let v � JΓ,∆ ` e : σK (γ, δ) in

let (δ′, v′) � JΓ; ∆, x:σ c : τK γ (δ, (x 7→ v)) in

(δ′ �dom(∆), v
′)

JΓ; ∆ (x := e) : UK γ δ = let v � JΓ,∆ ` e : τK (γ, δ) in ηJ∆K×1(δ[x 7→ v], ∗)

JΓ; ∆ (if e then c1 else c2 end) : τK γ δ = let b � JΓ,∆ ` e : UK (γ, δ) in

CondP?(J∆K×JτK)(b, JΓ; ∆ c1 : τK γ δ, JΓ; ∆ c2 : τK γ δ)

The denotation of guarded nondeterminism

JΓ; ∆ (case e1 ⇒ c1 | · · · | en ⇒ cn end) : τK γ δ =(⋃n

i=1

⋃
b∈JΓ,∆`ei:BK (γ,δ)

GuardJτK(b, JΓ; ∆ ci : τK γ δ)
)
?

The denotation of a loop

JΓ; ∆ (while e do c end) : UK γ = LFP(WJΓ,∆`b:BK|γ ,JΓ;∆c:UKγ)

Figure 5.3: The denotational semantics of Clerical.

91

2. The two failures, nontermination ⊥ and error e, are strictly distinguished in the semantics. It is

because nontermination can be meaningful when it is an argument of our guarded nondeterminism.3

The source of ⊥ is (i) division by 0, (ii) comparing an identical real number, and (iii) infinite while

loop. On the other hand, the source of e is an ill-defined limit.

3. For a well-typed case expression Γ; ∆ case e1 ⇒ c1 | e2 ⇒ c2 end : τ , even when e1 is

nontermination, if e2 evaluates to tt, c2 executes. When both e1 and e2 evaluate to tt, the denotation

of the case expression contains the both branches. When both e1 and e2 evaluate to ff, the

denotation of the case expression contains ⊥.

4. The denotation of a while loop is defined in the way that it satisfies the recurrence equation:

Jwhile e do c endK = Jif e then c; while e do c end else skip endK

5. Define a sequence of expressions:

An+1
e,c := if e then c;Ane,c else skip end

A0
e,c := while true do skip end.

Then, the sequence of denotations
(
JAne,cK

)
n∈N forms a chain whose limit is the denotation of the

while loop.

6. For a well-typed expression c′ := while e do c end and a state (γ; δ), the following holds:

Jc′Kγ δ = e if and only if there is m ∈ N s.t. JAme,cKγ δ = e

If it is not the case, (δ′, ∗) ∈ Jc′Kγ δ holds if and only if there is n ∈ N such that (δ′, ∗) ∈ JAne,cKγ δ.

5.4 Reasoning Principles

5.4.1 Assertion Language

We consider a many-sorted first order logic over the sorts U,B,Z,R. Its term language includes the

subset of read-only expressions of Clerical by taking (1) constants true, false, skip, k, (2) arithmetical

operations e1�e2, e2�e2, e−1, (3) coercion ι(e), and (4) variables. We let its well-typedness be inherited

from the well-typedness of Clerical expressions. Furthermore, we suppose Z 3 p 7→ 2p ∈ R is expressible

in the logical language that there is a typing rule

Γ ` p : Z

Γ ` 2p : R

For a context Γ, we define the well-formed judgement of formulae:

Γ True Γ False

Γ t1 : τ Γ t2 : τ

Γ t1 = t2

Γ t1 : Z Γ t2 : Z

Γ t1 < t2

Γ t1 : R Γ t2 : R

Γ t1 < t2

Γ φ Γ ψ

Γ φ⇒ ψ

Γ φ Γ ψ

Γ φ ∧ ψ
Γ φ Γ ψ

Γ φ ∨ ψ
Γ, x : τ ψ

Γ ∃x : τ . ψ

Γ, x : τ ψ

Γ ∀x : τ . ψ

Familiar formulae are considered to be defined as abbreviations. For example, ¬φ is an abbreviation for

φ⇒ False, x ≤ y is an abbreviation for x = y ∨ x < y, and so on.

3In ERC from Chapter 3, we identified both with ⊥.

92

We take the standard interpretation and write JΓ φK for the set of states γ ∈ JΓK that validate φ.

Though we do not specify derivation rules of the assertion language, let us write Γ ` φ to denote that

the well-formed formula Γ φ is derivable in the language. Of course, we assume the assertion language

is sound.

5.4.2 Specifications

We use precondition-postcondition-style program specification. Given a well-typed read-only ex-

pression Γ ` e : τ , we say a context Ξ to be a context of auxiliary variables if its domain is disjoint to

Γ. Similarly, for a well-typed read-write expression Γ; ∆ e : τ , we say a context Ξ to be a context of

auxiliary variables if its domain is disjoint to Γ,∆.

We define the four kinds of specifications.

1. Partial correctness specification for read-only expressions For a well-typed read-only expression Γ `
e : τ , a context of auxiliary variables Ξ, a precondition Ξ,Γ φ, and a postcondition Ξ,Γ, y:τ ψ,

Ξ . Γ `
{{{
φ
}}}
e
{{{
y : τ | ψ

}}}
denotes that

∀(ξ, γ) ∈ JΞ,Γ φK . e 6∈ JΓ ` e : τK γ ∧ ∀v ∈ JΓ ` e : τK γ . (ξ, γ, y 7→ v) ∈ JΞ,Γ, y:τ ψK .

2. Partial correctness specification for read-write expressions For a well-typed read-write expression

Γ; ∆ e : τ , a context of auxiliary variables Ξ, a precondition Ξ,Γ,∆ φ, and a postcondition

Ξ,Γ,∆, y:τ ψ,

Ξ . Γ; ∆
{{{
φ
}}}
e
{{{
y : τ | ψ

}}}
denotes that

∀(ξ, γ, δ) ∈ JΞ,Γ,∆ φK .

e 6∈ JΓ ` e : τK γ δ ∧ ∀(δ′, v) ∈ JΓ ` e : τK γ δ . (ξ, γ, δ′, y 7→ v) ∈ JΞ,Γ,∆, y:τ ψK .

3. Total correctness specification for read-only expressions For a well-typed read-only expression Γ `
e : τ , a context of auxiliary variables Ξ, a precondition Ξ,Γ φ, and a postcondition Ξ,Γ, y:τ ψ,

Ξ . Γ `
{{{
φ
}}}
e ↓

{{{
y : τ | ψ

}}}
denotes that

∀(ξ, γ) ∈ JΞ,Γ φK .⊥ 6∈ JΓ ` e : τK γ ∧ ∀v ∈ JΓ ` e : τK γ . (ξ, γ, y 7→ v) ∈ JΞ,Γ, y:τ ψK .

4. Total correctness specification for read-write expressions For a well-typed read-write expression

Γ; ∆ e : τ , a context of auxiliary variables Ξ, a precondition Ξ,Γ,∆ φ, and a postcondition

Ξ,Γ,∆, y:τ ψ,

Ξ . Γ
{{{
φ
}}}
e ↓

{{{
y : τ | ψ

}}}
denotes that

∀(ξ, γ, δ) ∈ JΞ,Γ,∆ φK .

⊥ 6∈ JΓ ` e : τK γ δ ∧ ∀(δ′, v) ∈ JΓ ` e : τK γ δ . (ξ, γ, δ′, y 7→ v) ∈ JΞ,Γ,∆, y:τ ψK .

93

5.4.3 Proof Rules

We define a formal system for deriving correctness specifications. The first rule is for deriving partial

correctness specifications from total correctness specifications.

•Rules for partial correctness from total correctness

Ξ . Γ `
{{{
φ
}}}
c ↓

{{{
y : τ | ψ

}}}
Ξ . Γ `

{{{
φ
}}}
c
{{{
y : τ | ψ

}}} Ξ . Γ; ∆
{{{
φ
}}}
c ↓

{{{
y : τ | ψ

}}}
Ξ . Γ; ∆

{{{
φ
}}}
c
{{{
y : τ | ψ

}}}
In order to simplify the presentation, when there are rules in a similar form where the only difference

is that one is for a partial correctness specification and the other is for a total correctness specification,

we write it as one rule with putting ‘?’ in the place of ‘↓’. Replacing every occurrence of ? with ↓ and

with the blank gives us two rules, though it is written only once.

•Rules for read-only-read-write

Ξ . Γ; ·
{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}}
Ξ . Γ `

{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}} Ξ . Γ,∆ `
{{{
φ
}}}
e ?
{{{
y : τ | ψ

}}}
Ξ . Γ; ∆

{{{
φ
}}}
e ?
{{{
y : τ | ψ

}}}
•Rules for extending context

Ξ ⊆ Ξ′ Γ ⊆ Γ′

Ξ . Γ `
{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}}
Ξ′ . Γ′ `

{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}}
Ξ ⊆ Ξ′ Γ ⊆ Γ′ ∆ ⊆ ∆′

Ξ . Γ; ∆
{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}}
Ξ′ . Γ′; ∆′

{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}}
Here, for two typing contexts Γ and ∆, Γ ⊆ ∆ denotes that Γ ` x : τ ⇒ ∆ ` x : τ for any variable x and

data type τ .

•Rules for read-only variables

Ξ,Γ θ

Ξ . Γ `
{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}}
Ξ′ . Γ `

{{{
φ ∧ θ

}}}
c ?
{{{
y : τ | ψ ∧ θ

}}}
Ξ,Γ θ

Ξ . Γ `
{{{
φ ∨ θ

}}}
c ?
{{{
y : τ | True

}}}
Ξ . Γ `

{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}}
Ξ′ . Γ

{{{
φ ∨ θ

}}}
c ?
{{{
y : τ | ψ ∨ θ

}}}
•Rules for precondition strengthening and postcondition weakening

Ξ,Γ ` φ⇒ φ′ Ξ,Γ, y:τ ` ψ′ ⇒ φ

Ξ . Γ `
{{{
φ′
}}}
c ?
{{{
y : τ | ψ′

}}}
Ξ . Γ `

{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}}
Ξ,Γ ` φ⇒ φ′ Ξ,Γ,∆, y:τ ` ψ′ ⇒ φ

Ξ . Γ; ∆
{{{
φ′
}}}
c ?
{{{
y : τ | ψ′

}}}
Ξ . Γ; ∆

{{{
φ
}}}
c ?
{{{
y : τ | ψ

}}}
•Rules for conjunctions of assertions

Ξ . Γ `
{{{
φ1

}}}
c ?
{{{
y : τ | ψ1

}}}
Ξ . Γ `

{{{
φ2

}}}
c ?
{{{
y : τ | ψ2

}}}
Ξ . Γ `

{{{
φ1 ∧ φ2

}}}
c ?
{{{
y : τ | ψ1 ∧ ψ2

}}}
Ξ . Γ; ∆

{{{
φ1

}}}
c ?
{{{
y : τ | ψ1

}}}
Ξ . Γ; ∆

{{{
φ2

}}}
c ?
{{{
y : τ | ψ2

}}}
Ξ . Γ; ∆

{{{
φ1 ∧ φ2

}}}
c ?
{{{
y : τ | ψ1 ∧ ψ2

}}}
•Rules for disjunctions of assertions

Ξ . Γ `
{{{
φ1

}}}
c ?
{{{
y : τ | ψ1

}}}
Ξ . Γ `

{{{
φ2

}}}
c ?
{{{
y : τ | ψ2

}}}
Ξ . Γ `

{{{
φ1 ∨ φ2

}}}
c ?
{{{
y : τ | ψ1 ∨ ψ2

}}}
Ξ . Γ; ∆

{{{
φ1

}}}
c ?
{{{
y : τ | ψ1

}}}
Ξ . Γ; ∆

{{{
φ1

}}}
c ?
{{{
y : τ | ψ1

}}}
Ξ . Γ; ∆

{{{
φ1 ∨ φ2

}}}
c ?
{{{
y : τ | ψ1 ∨ ψ2

}}}
94

The proof rules for variables and constants form axioms.

•Rule for variable

Ξ . x1:τ1, · · · , xn:τn `
{{{
θ(xi)

}}}
xi ↓

{{{
y : τn | θ(y)

}}}
•Rules for constants

Ξ . Γ `
{{{
θ[true/y]

}}}
true ↓

{{{
y : B | θ

}}}
Ξ . Γ `

{{{
θ[false/y]

}}}
false ↓

{{{
y : B | θ

}}}
Ξ . Γ `

{{{
θ[k/x]

}}}
k ↓

{{{
y : Z | θ

}}}
Ξ . Γ `

{{{
θ[skip/x]

}}}
skip ↓

{{{
y : U | θ

}}}
•Rule for coercion from Z to R

Ξ . Γ `
{{{
φ
}}}
e ?
{{{
y : Z | θ

}}}
Ξ . Γ `

{{{
φ
}}}
ι(e) ?

{{{
z : R | ∃y:R . θ ∧ z = ι(y)

}}}
•Rules for integer arithmetic � ∈ {+,−,×}

Ξ . Γ `
{{{
φ
}}}
e1 ?

{{{
y : Z | True

}}}
Ξ, x1:Z . Γ `

{{{
φ1

}}}
e1

{{{
y : Z | y 6= x1

}}}
Ξ . Γ `

{{{
φ
}}}
e2 ?

{{{
y : Z | True

}}}
Ξ, x2:Z . Γ `

{{{
φ2

}}}
e1

{{{
y : Z | y 6= x2

}}}
Ξ . Γ `

{{{
φ
}}}
e1 � e2 ?

{{{
y : R | θ

}}} ∀x1, x2:Z . φ ∧ ¬φ1 ∧ ¬φ2

⇒ ψ[(x1 � x2)/y]

•Rules for real arithmetic � ∈ {+,−,×}

Ξ . Γ `
{{{
φ
}}}
e1 ?

{{{
y : R | True

}}}
Ξ, x1:R . Γ `

{{{
φ1

}}}
e1

{{{
y : R | y 6= x1

}}}
Ξ . Γ `

{{{
φ
}}}
e2 ?

{{{
y : R | True

}}}
Ξ, x2:R . Γ `

{{{
φ2

}}}
e1

{{{
y : R | y 6= x2

}}}
Ξ . Γ `

{{{
φ
}}}
e1 � e2 ?

{{{
y : R | ψ

}}} ∀x1, x2:R . φ ∧ ¬φ1 ∧ ¬φ2

⇒ ψ[(x1 � x2)/y]

In the rules of real or integer arithmetic, the first premise Ξ .Γ,∆ `
{{{
φ
}}}
ei ?

{{{
y : τ | True

}}}
ensures

that when a state is in φ, the evaluations of e1 and e2 are well-defined and terminate in the case ? =↓.
The second premise Ξ;xi:τ . Γ,∆ `

{{{
φi
}}}
ei
{{{
y : τ | y 6= xi

}}}
uses an auxiliary variable xi to represent

the value of ei. It ensures that any state that makes the evaluation of ei contain a nondeterministic

branch which results xi is in ¬φi. And, the side-condition ensures that for any state in φ, if it makes e1

result in x1 and e2 result in x2, the state is in ψ[(x1 � x2)/y] or in ψ[(x1 � x2)/y].

Integer comparisons can be similarly dealt with.

•Rules for integer comparisons

Ξ . Γ `
{{{
φ
}}}
e1 ?

{{{
y : Z | True

}}}
Ξ, x1:Z . Γ `

{{{
φ1

}}}
e1

{{{
y : Z | y 6= x1

}}}
Ξ . Γ `

{{{
φ
}}}
e2 ?

{{{
y : Z | True

}}}
Ξ, x2:Z . Γ `

{{{
φ2

}}}
e1

{{{
y : Z | y 6= x2

}}}
Ξ . Γ `

{{{
φ
}}}
e1 < e2 ?

{{{
y : Z | ψ

}}} ∀x1, x2:Z . φ ∧ ¬φ1 ∧ ¬φ2

⇒
(
(x1 < x2 ⇒ ψ[true/y])

∧(x1 ≥ x2 ⇒ ψ[false/y])
)

Ξ . Γ `
{{{
φ
}}}
e1 ?

{{{
y : Z | True

}}}
Ξ, x1:Z . Γ `

{{{
φ1

}}}
e1

{{{
y : Z | y 6= x1

}}}
Ξ . Γ `

{{{
φ
}}}
e2 ?

{{{
y : Z | True

}}}
Ξ, x2:Z . Γ `

{{{
φ2

}}}
e1

{{{
y : Z | y 6= x2

}}}
Ξ . Γ `

{{{
φ
}}}
e1 = e2 ?

{{{
y : Z | ψ

}}} ∀x1, x2:Z . φ ∧ ¬φ1 ∧ ¬φ2

⇒
(
(x1 = x2 ⇒ ψ[true/y])

∧(x1 6= x2 ⇒ ψ[false/y])
)

Total correctness regarding the partial operations < and −1 are more tricky. We should ensure that

the input values of the operators that can make the result diverge are excluded using side-conditions.

95

•Rules for real number comparison

Ξ . Γ `
{{{
φ
}}}
e1

{{{
y : R | True

}}}
Ξ, x1:R . Γ `

{{{
φ1

}}}
e1

{{{
y : R | y 6= x1

}}}
Ξ . Γ `

{{{
φ
}}}
e2

{{{
y : R | True

}}}
Ξ, x2:R . Γ `

{{{
φ2

}}}
e1

{{{
y : R | y 6= x2

}}}
Ξ . Γ `

{{{
φ
}}}
e1 < e2

{{{
y : B | ψ

}}} ∀x1, x2:R . φ ∧ ¬φ1 ∧ ¬φ2

⇒
(
(x1 < x2 ⇒ ψ[true/y])

∧(x1 > x2 ⇒ ψ[false/y])
)

Ξ . Γ `
{{{
φ
}}}
e1 ↓

{{{
y : R | True

}}}
Ξ, x1:R . Γ `

{{{
φ1

}}}
e1

{{{
y : R | y 6= x1

}}}
Ξ . Γ `

{{{
φ
}}}
e2 ↓

{{{
y : R | True

}}}
Ξ, x2:R . Γ `

{{{
φ2

}}}
e1

{{{
y : R | y 6= x2

}}}
Ξ . Γ `

{{{
φ
}}}
e1 < e2 ↓

{{{
y : B | ψ

}}}
∀x1, x2:R . φ ∧ ¬φ1 ∧ ¬φ2

⇒
(
(x1 < x2 ⇒ ψ[true/y])

∧(x1 > x2 ⇒ ψ[false/y])
)

∧x1 6= x2

•Rules for multiplicative inversion

Ξ . Γ `
{{{
φ
}}}
e
{{{
y : Z | True

}}}
Ξ, x:Z . Γ `

{{{
φ′
}}}
e
{{{
y : R | y 6= x

}}}
Ξ . Γ `

{{{
φ
}}}
e−1

{{{
y : R | ψ

}}} ∀x:R . φ ∧ ¬φ′

⇒ ∧ψ[x−1/y]

Ξ . Γ `
{{{
φ
}}}
e ↓

{{{
y : Z | True

}}}
Ξ, x:Z . Γ `

{{{
φ′
}}}
e
{{{
y : R | y 6= x

}}}
Ξ . Γ `

{{{
φ
}}}
e−1 ↓

{{{
y : R | ψ

}}} ∀x:R . φ ∧ ¬φ′

⇒ x 6= 0 ∧ ψ[x−1/y]

•Rule for limit

Ξ, z : R . Γ, x : Z `
{{{
φ′
}}}
e ↓

{{{
y : R | ψ′

}}}
Ξ . Γ `

{{{
φ
}}}

lim x . e ↓
{{{
z : R | ψ

}}} φ⇒
∃z:R . (∀x:Z . x ≥ 0⇒ φ′ ∧ (∀y. ψ′ ⇒ |y − z| ≤ 2−x)) ∧ ψ

In the rule for limit, the premise Ξ, z:R . Γ, x:Z `
{{{
φ′
}}}
e ↓

{{{
y : R | ψ′

}}}
uses an auxiliary variable

z : R to represent the limit. The premise ensures that any states in φ′ makes the evaluation of e be

well-defined, terminate, and be in ψ′.

Suppose a state that satisfies the precondition φ. Then, the side-condition ensures that there is a

real number z where for any natural number x, the precondition of the premise φ′ holds. The premise

then says the evaluation of e results y, which is in ψ′. And, the premise says such y is 2−x approximation

of z.

Since the side condition ensures such z in ψ, the evaluation of the limit expression, which is z, is in

ψ.

•Rule for sequencing

Ξ . Γ; ∆
{{{
φ
}}}
c1 ?

{{{
y : U | ψ

}}}
Ξ . Γ; ∆

{{{
ψ[skip/y]

}}}
c2 ?

{{{
y : τ | θ

}}}
Ξ . Γ; ∆

{{{
φ
}}}
c1; c2 ?

{{{
y : τ | θ

}}}
•Rule for local variable

Ξ . Γ,∆ `
{{{
φ
}}}
e ?
{{{
x : σ | ψ

}}}
Ξ . x:σ,Γ; ∆

{{{
ψ
}}}
c ?
{{{
y : τ | θ

}}}
Ξ . Γ; ∆

{{{
φ
}}}

var x := e in c ?
{{{
y : τ | ∃x:σ . θ

}}}
•Rule for assignment

Ξ . Γ,∆ `
{{{
φ
}}}
e ?
{{{
y : τ | ψ

}}}
Ξ . Γ; ∆

{{{
φ ∧ ∀y : τ . (ψ ⇒ θ[y/x])

}}}
x := e ?

{{{
θ
}}}

96

•Rule for conditional

Ξ . Γ,∆ `
{{{
φ
}}}
e ?
{{{
y : B | True

}}}
Ξ . Γ,∆ `

{{{
φfalse

}}}
e
{{{
y : B | y = false

}}}
Ξ . Γ; ∆

{{{
φ ∧ ¬φfalse

}}}
c1 ?

{{{
y : τ | ψ

}}}
Ξ . Γ,∆ `

{{{
φtrue

}}}
e
{{{
y : B | y = true

}}}
Ξ . Γ; ∆

{{{
φ ∧ ¬φtrue

}}}
c2 ?

{{{
y : τ | ψ

}}}
Ξ . Γ; ∆

{{{
φ
}}}

if e then c1 else c2 end ?
{{{
y : τ | ψ

}}}
•Partial correctness rule for guarded cases

Ξ . Γ,∆ `
{{{
φ
}}}
ei
{{{
y : B | True

}}}
Ξ . Γ,∆ `

{{{
θi
}}}
ei
{{{
y : B | y = false

}}}
Ξ . Γ; ∆

{{{
φ ∧ ¬θi

}}}
ci
{{{
y : τ | ψ

}}}
(i = 1, · · · , n)

Ξ . Γ; ∆
{{{
φ
}}}

case e1 ⇒ c1 | · · · | en ⇒ cn end
{{{
y : τ | ψ

}}}
•Partial correctness rule for guarded cases

Ξ . Γ,∆ `
{{{
φ
}}}
ei
{{{
y : B | True

}}}
Ξ . Γ,∆ `

{{{
φi
}}}
ei ↓

{{{
y : B | y = true

}}}
Ξ . Γ,∆ `

{{{
θi
}}}
ei
{{{
y : B | y = false

}}}
Ξ . Γ; ∆

{{{
φ ∧ (φ1 ∨ · · · ∨ φn) ∧ ¬θi

}}}
ci ↓

{{{
y : τ | ψ

}}}
(i = 1, · · · , n)

Ξ . Γ; ∆
{{{
φ ∧ (φ1 ∨ · · · ∨ φn)

}}}
case e1 ⇒ c1 | · · · | en ⇒ cn end ↓

{{{
y : τ | ψ

}}}
The first premise Ξ .Γ,∆ `

{{{
φ
}}}
ei
{{{
y : B | True

}}}
ensures that any state in φ makes the evaluation

of e1 and e2 be well-defined. The second premise Ξ . Γ,∆ `
{{{
φi
}}}
ei ↓

{{{
y : B | y = true

}}}
ensures that

states in φ1 ∨ φ2 make either e1 or e2 evaluates only to true. Hence, any such state will not make the

evaluation of the case expression nonterminate due to having a branch which does not satisfy any of the

guards.

The third premise Ξ . Γ,∆ `
{{{
θi
}}}

ei
{{{
y : B | y = false

}}}
states that any state that may

make ei evaluate to true is in ¬θi. Hence any state in φ ∧ (φ1 ∨ φ2) that may make ei yield true is in

φ∧(φ1∨φ2)∧¬θi. And, for such states, the fourth premise Ξ.Γ; ∆
{{{
φ∧(φ1∨φ2)∧¬θi

}}}
ci ↓

{{{
y : τ | ψ

}}}
ensures that the evaluation of ci is well-defined, terminates, and the results in ψ.

•Partial correctness rule for loop

Ξ . Γ,∆ `
{{{
φinv

}}}
e
{{{
y : B | True

}}}
Ξ . Γ,∆ `

{{{
φfalse

}}}
e
{{{
y : B | y = false

}}}
Ξ . Γ,∆ `

{{{
φtrue

}}}
e
{{{
y : B | y = true

}}}
Ξ . Γ; ∆

{{{
¬φfalse ∧ φinv

}}}
c
{{{
φinv

}}}
Ξ . Γ; ∆

{{{
φinv

}}}
while e do c end

{{{
φinv ∧ ¬φtrue

}}}
The formula φinv is an loop invariant which represents a property that is preserved throughout the

iterations. The first premise Ξ .Γ,∆ `
{{{
φinv

}}}
e
{{{
y : B | True

}}}
ensures that any state in φinv makes the

loop condition e be well-defined.

The second premise Ξ . Γ,∆ `
{{{
φfalse

}}}
e
{{{
y : B | y = false

}}}
states that any state that yields a

nondeterministic branch that results true in the evaluation of the loop condition e is in ¬φfalse. Similarly,

the third premise Ξ . Γ,∆ `
{{{
φtrue

}}}
e
{{{
y : B | y = true

}}}
says that any state yields a nondeterministic

branch that results false in the evaluation of the loop condition e is in ¬φtrue.

The last premise Ξ . Γ; ∆
{{{
¬φfalse ∧ φinv

}}}
c
{{{
φinv

}}}
says that for any state that satisfies the loop

invariant and may result true in the evaluation of the loop condition, the execution of the loop body

is well-defined and results only states which satisfy the loop invariant. Hence, this premise ensures that

the loop invariant is really a loop invariant.

97

The consequence Ξ .Γ; ∆
{{{
φinv

}}}
while e do c end

{{{
φinv ∧¬φtrue

}}}
says when the loop is entered

with an state satisfying the loop invariant, when the loop is escaped, the resulting states still satisfy

the loop invariant. Since the loop can be escaped only if there is a nondeterministic branch that yields

false in the evaluation of e, it is obvious that the states are also in ¬φtrue

•Total correctness rule for loop

Ξ . Γ,∆ `
{{{
φinv

}}}
e ↓

{{{
y : B | True

}}}
Ξ . Γ,∆ `

{{{
φfalse

}}}
e
{{{
y : B | y = false

}}}
Ξ . Γ,∆ `

{{{
φtrue

}}}
e
{{{
y : B | y = true

}}}
Ξ . Γ,∆ `

{{{
φexit

}}}
e ↓

{{{
y : B | y = false

}}}
Ξ, z0 : Z . Γ; ∆

{{{
¬φfalse ∧ φinv ∧ ψ[z0/z]

}}}
c ↓

{{{
φinv ∧ ∀z : Z . ψ ⇒ z < z0

}}}
Ξ . Γ; ∆

{{{
φinv

}}}
while e do c end ↓

{{{
φinv ∧ ¬φtrue

}}}
The side-condition: ψ is a well-formed formula under Ξ,Γ,∆, z : Z such that

∀z : Z . (φinv ∧ ψ ∧ z < 0⇒ φexit) and φinv ⇒ ∃!z : Z . ψ

holds.

In addition to the partial correctness rule for while loops, now the first premise states that the loop

invariant to guarantee the evaluation of the loop condition to terminate.

The fourth premise Ξ . Γ,∆ `
{{{
φexit

}}}
e ↓

{{{
y : B | y = false

}}}
specifies φexit as a set of states that

make the evaluation of the loop condition only be false. When a state is in φexit, it is promised that

the loop terminates.

The side-condition ensures that the formula ψ represents a loop variant in the sense that for any

state, there is a unique z that validates ψ. And, the side-condition also guarantees that when such z is

negative, ψ implies ψexit. In other words, any state that the unique z is negative exits the loop.

The last premise Ξ . Γ; ∆
{{{
¬φfalse ∧ φinv ∧ ψ[z0]

}}}
c ↓

{{{
φinv,∀z. ψ → z < z0

}}}
, in addition to

the partial correctness rule, ensures that the unique z decreases throughout iterations. Hence, at some

point, ψexit gets validated.

The soundness of the proof rules

Theorem 5.1. The proof rules are sound. In other words. If a specification in any of the four forms is

derived, its semantics holds.

Proof. Believing that the explanation in the presentation of each rule is convincing enough, let us formally

prove the soundness of only the rules for loop and limit.

•The soundness of the partial correctness rule for loop

Ξ . Γ,∆ `
{{{
φinv

}}}
e
{{{
y : B | True

}}}
Ξ . Γ,∆ `

{{{
φfalse

}}}
e
{{{
y : B | y = false

}}}
Ξ . Γ,∆ `

{{{
φtrue

}}}
e
{{{
y : B | y = true

}}}
Ξ . Γ; ∆

{{{
¬φfalse ∧ φinv

}}}
c
{{{
φinv

}}}
Ξ . Γ; ∆

{{{
φinv

}}}
while e do c end

{{{
φinv ∧ ¬φtrue

}}}
Consider any state (ξ, γ, δ) in JΞ,Γ,∆ φinvK. The first premise ensures that JΓ,∆ ` e : BK(γ, δ) is not

empty. If tt ∈ JΓ,∆ ` e : BK(γ, δ), by the second premise, (ξ, γ, δ) ∈ JΞ,Γ,∆ ¬φfalseK holds. And, if

ff ∈ JΓ,∆ ` e : BK(γ, δ), by the third premise, (ξ, γ, δ) ∈ JΞ,Γ,∆ ¬φtrueK holds.

We first prove that JΓ; ∆ while e do c end : UKγ δ is not e. By Remark 5.1-6, it holds when

JΓ; ∆ Aie,c : UKγ δ is not e for any i ∈ N.

Statement: for any (ξ, γ, δ) ∈ JΞ,Γ,∆ φinvK, it holds that JΓ; ∆ Ane,c : UKγ δ 6= e for all n ∈ N.

98

Proof. 1. (Base case) By definition, JΓ; ∆ A0
e,c : UKγ δ = {⊥} 6= e holds.

2. (Induction step)

JΓ; ∆ An+1
e,c : UKγ δ =

⋃
b∈JΓ,∆`e:BK(γ,δ)

⋃
r∈JΓ;∆c:UKγ δ

JΓ; ∆ Ane,c : UKγ δ′ if r = (δ′, ∗),

{⊥} if r = ⊥,

e otherwise (if r = e),

if b = tt,

(δ, ∗) if b = ff,

{⊥} if b = ⊥,

e otherwise (if b = e).

is not e if (i) JΓ,∆ ` e : BK(γ, δ) is not e, (ii) if tt ∈ JΓ,∆ ` e : BK(γ, δ), then JΓ; ∆ c : UKγ δ is

not e, and for all (δ′, ∗) ∈ JΓ; ∆ c : UKγ δ, JΓ; ∆ Ane,c : UK(γ, δ′) is not e.

For the condition (i), since (ξ, γ, δ) ∈ JΞ,Γ,∆ φinvK, the first premise ensures that JΓ,∆ ` e : BK(γ, δ)
is not e. For the condition (ii), if tt ∈ JΓ,∆ ` e : BK(γ, δ), then by the second premise, (ξ, γ, δ) ∈
J¬φfalseK holds. Hence, by the last premise, JΓ; ∆ c : UKγ δ is not e and for all

(δ′, ∗) ∈ JΓ; ∆ c : UKγ δ, it holds that (ξ, γ, δ′) ∈ JΞ,Γ,∆ ` φinvK. Therefore, by the induction

hypothesis, JΓ; ∆ Ane,c : UKγ′ δ is not e.

Therefore, JΓ; ∆ An+1
e,c UKγ δ is not e.

Hence, by Remark 5.1-6 we only need to prove the following statement:

Statement: for any (ξ, γ, δ) ∈ JΞ,Γ,∆ φinvK and (δ′, ∗) ∈ JΓ; ∆ Ame,c : UKγ δ, it holds that (ξ, γ, δ′) ∈
JΞ,Γ,∆ φinv ∧ ¬φtrueK for all m ∈ N.

Proof. 1. (Base case) By the definition, JΓ; ∆ A0
e,c : UKγ δ = {⊥} holds.

2. (Induction step) We have seen that when tt ∈ JΓ,∆ ` e : BK(γ, δ), it holds that

(ξ, γ, δ′) ∈ JΞ,Γ,∆ φinvK where (δ′, ∗) ∈ JΓ; ∆ c : UKγ δ. Hence, by the induction hypothesis,

we only need to show that if ff ∈ JΓ,∆ ` e : BK(γ, δ), then (ξ, γ, δ) ∈ JΞ,Γ,∆ φinv ∧ ¬φtrueK holds.

It is trivial due to the observations made at the beginning of this proof.

•The soundness of the total correctness rule for loop

Ξ . Γ,∆ `
{{{
φinv

}}}
e ↓

{{{
y : B | True

}}}
Ξ . Γ,∆ `

{{{
φfalse

}}}
e
{{{
y : B | y = false

}}}
Ξ . Γ,∆ `

{{{
φtrue

}}}
e
{{{
y : B | y = true

}}}
Ξ . Γ,∆ `

{{{
φexit

}}}
e ↓

{{{
y : B | y = false

}}}
Ξ, z0 : Z . Γ; ∆

{{{
¬φfalse ∧ φinv ∧ ψ[z0/z]

}}}
c ↓

{{{
φinv ∧ ∀z : Z . ψ ⇒ z < z0

}}}
Ξ . Γ; ∆

{{{
φinv

}}}
while e do c end ↓

{{{
φinv ∧ ¬φtrue

}}}
ψ is a well-formed formula under Ξ,Γ,∆, z : Z such that

∀z : Z . (φinv ∧ ψ ∧ z < 0⇒ φexit) and φinv ⇒ ∃!z : Z . ψ

99

holds.

Consider any state (ξ, γ, δ) in JΞ,Γ,∆ φinvK. By the proof of the soundness of the partial correct-

ness rule, we only need to ensure that ⊥ is not in JΓ; ∆ while e do end : UKγ δ. It holds if and only if

there is m ∈ N such that ⊥ 6∈ JΓ; ∆ Ame,c : UKγ δ.
Let cξ,γ,δ ∈ Z be the unique integer which satisfies (ξ, γ, δ, z 7→ cξ,γ,δ) ∈ JΞ,Γ,∆, z:Z ψK. The side-

condition ensures that if cξ,γ,δ < 0, then (ξ, γ, δ) ∈ JΞ,Γ,∆ ψexitK; hence, JΓ,∆ ` e : BK(γ, δ) = {ff}
by the fourth premise. See that cξ,γ,δ < cξ,γ,δ′ if (ξ, γ, δ) ∈ JΞ,Γ,∆ φinvK, tt ∈ JΓ,∆ ` e : BK(γ, δ), and

(δ′, ∗) ∈ JΓ; ∆ c : UKγ δ. Hence, ⊥ 6∈ JΓ; ∆ A
cξ,γ,δ+1
e,c : UKγ δ.

•The soundness of the total correctness rule for limit

Ξ, z : R . Γ, x : Z `
{{{
φ′
}}}
e ↓

{{{
y : R | ψ′

}}}
Ξ . Γ `

{{{
φ
}}}

lim x . e ↓
{{{
z : R | ψ

}}} φ⇒
∃z : R . (∀x : Z . x ≥ 0⇒ φ′ ∧ (∀y : R . ψ′ ⇒ |y − z| ≤ 2−x)) ∧ ψ

Consider any (ξ, γ) ∈ JΞ,Γ φK. Then, by the side-condition, we have z0 ∈ R which makes (ξ, z 7→
z0, γ) be in JΞ, z:R,Γ ∀x : Z . φ′ ∧ (∀y : R . ψ′ ⇒ |y − z| ≤ 2−x)K and in JΞ, z:R,Γ ψK.

For any positive integer x0, we have (ξ, z 7→ z0, γ, x 7→ x0) ∈ JΞ, z:R,Γ, x:Z φ′K and for any real

number y0, we have (ξ, z 7→ z0, γ, δ, x 7→ x0, y 7→ y0) ∈ JΞ, z:R,Γ, x:Z, y:R ψ′ → |y − z| ≤ 2−xK. By the

induction hypothesis, we have that JΓ, x:Z ` e : RK(γ, x 7→ x0) (i) does not contain ⊥, and (ii) each y′

in JΓ, x:Z ` e : RK(γ, x 7→ x0) satisfies (ξ, z 7→ z0, γ, x 7→ x0, y 7→ y′) ∈ JΞ, z:R,Γ, x:Z, y:R ψ′K; hence,

(ξ, z 7→ z0, γ, x 7→ x0, y 7→ y′) ∈ JΞ, z:R,Γ, x:Z, y:R |y − z| ≤ 2−xK. Therefore, |y′ − z0| ≤ 2−x0 .

To summarize, if (ξ, γ) ∈ JΞ,Γ φK and the side-condition hold, there is a real number z0 where

for any positive integer x0, it holds that JΓ, x:Z ` e : RK(γ, x 7→ x0) (i) does not contain ⊥, and (ii) each

y′ in JΓ, x:Z ` e : RK(γ, x 7→ x0) satisfies |y′ − z0| ≤ 2−x0 . Therefore, JΓ ` lim x . e : RKγ = {z0} and

(ξ, z 7→ z0, γ) ∈ JΞ, z:R,Γ ψK.

5.5 Example Formal Verifications

5.5.1 Abbreviations of Derivations

We soon prove the correctness of a specification using the proof rules. In order to make the proof a

bit more readable, let us define the following abbreviations:

•
{{{
A
}}}
e1 ?

{{{
B
}}}
e2 ?

{{{
y : τ | C

}}}
denotes the specification

{{{
A
}}}
e1; e2 ?

{{{
y : τ | C

}}}
that is derived from{{{

A
}}}
e1 ?

{{{
B
}}}

and
{{{
B
}}}
e2 ?

{{{
y : τ | C

}}}
.

•
{{{
A
}}}

var x := e in ?
{{{
x : τ | B

}}}
c ?
{{{
y : τ | C

}}}
where x 6∈ FV (C) denotes the specification{{{

A
}}}
var x := e in c ?

{{{
y : τ | C

}}}
derived from

{{{
A
}}}
e ?
{{{
x : τ | B

}}}
and

{{{
B
}}}
c ?
{{{
y : τ | C

}}}
.

•
{{{
A
}}}
e ?
{{{
y : τ | B

}}}
?
{{{
y : τ | C

}}}
denotes the specification

{{{
A
}}}
e ?
{{{
y : τ | C

}}}
derived from{{{

A
}}}
e ?
{{{
y : τ | B

}}}
and B ⇒ C. Similarly,

{{{
A
}}} {{{

B
}}}
e ?
{{{
y : τ | C

}}}
denotes the specification{{{

A
}}}
e ?
{{{
y : τ | C

}}}
derived from

{{{
B
}}}
e ?
{{{
y : τ | C

}}}
and A⇒ B.

•
{{{
A
}}}
e ↓
{{{
B
}}} {{{

B
}}}

denotes the specification
{{{
A
}}}
e
{{{
B
}}}

derived from
{{{
A
}}}
e ↓
{{{
B
}}}

.

100

5.5.2 Simple Arithmetical Expressions

Lemma 5.8. To each well-typed read-only expression Γ ` e : τ which is composed only of (1) constants,

(2) coercions, (3) arithmetical operations, including −1, (4) order comparisons, (5) guarded nondeter-

minisms, (6) conditionals, and (7) variables, there are Γ φ, Γ φ↓, Γ ψi, and Γ ` ai : τ for i = 1 · · ·n
for some n such that Γ ` φ↓ ⇒ φ holds and

· . Γ `
{{{
φ?
}}}
e ?
{{{
y : τ | (ψ1 ∧ y = ai) ∨ · · · ∨ (ψn ∧ y = an)

}}}
is derivable. It can be recursively defined:

• · . Γ `
{{{

True
}}}

skip ?
{{{
y : U | y = skip

}}}
• · . Γ `

{{{
True

}}}
true ?

{{{
y : B | y = true

}}}
• · . Γ `

{{{
True

}}}
false ?

{{{
y : B | y = false

}}}
• · . Γ `

{{{
True

}}}
k ?
{{{
y : Z | y = k

}}}
Suppose

· . Γ `
{{{
φ?

1

}}}
e1 ?

{{{
y : τ | (ψ1 ∧ y = a1) ∨ · · · ∨ (ψn ∧ y = an)

}}}
· . Γ `

{{{
φ?

2

}}}
e2 ?

{{{
y : τ | (θ1 ∧ y = b1) ∨ · · · ∨ (θm ∧ y = bm)

}}}
• · . Γ `

{{{
φ?

1

}}}
ι(e1) ?

{{{
y : R | (ψ1 ∧ y = ι(a1)) ∨ · · · ∨ (ψn ∧ y = ι(an))

}}}
• · . Γ `

{{{
φ?

1 ∧ φ?
2

}}}
e1 � e2 ?

{{{
y : Z | ∨i,j(ψi ∧ θj ∧ y = ai � bj)

}}}
• · . Γ `

{{{
φ?

1 ∧ φ?
2

}}}
e1 � e2 ?

{{{
y : R | ∨i,j(ψi ∧ θj ∧ y = ai � bj)

}}}
• · . Γ `

{{{
φ
}}}
e1
−1 {{{y : R | (ψ1 ∧ y = a1

−1) ∨ · · · ∨ (ψn ∧ y = an
−1)
}}}

• · . Γ `
{{{
φ↓ ∧ a1 6= 0 ∧ · · · ∧ an 6= 0

}}}
e−1 ↓

{{{
y : R | (ψ1 ∧ y = a1

−1) ∨ · · · ∨ (ψn ∧ y = an
−1)
}}}

• ·.Γ `
{{{
φ1∧φ2

}}}
e1 <̂e2

{{{
y : B | ∨i,j(ψi∧θj ∧ai < bj ∧y = true)∨(ψi∧θj ∧ai > bj ∧y = false)

}}}
• · . Γ `

{{{
φ1 ∧ φ2 ∧ (∧i,jai 6= bj)

}}}
e1 <̂ e2

↓
{{{
y : B | ∨i,j((ψi ∧ θj ∧ ai < bj ∧ y = true) ∨ (ψi ∧ θj ∧ ai > bj ∧ y = false))

}}}
• ·.Γ `

{{{
φ?

1∧φ?
2

}}}
e1 < e2 ?

{{{
y : B | ∨i,j((ψi∧θj∧ai < bj∧y = true)∨(ψi∧θj∧ai ≥ bj∧y = false))

}}}
• ·.Γ `

{{{
φ?

1∧φ?
2

}}}
e1 = e2 ?

{{{
y : B | ∨i,j((ψi∧θj∧ai = bj∧y = true)∨(ψi∧θj∧ai 6= bj∧y = false))

}}}
• Suppose

· . Γ `
{{{
φ?

1

}}}
e1 ?

{{{
y : B | (ψtrue ∧ y = true) ∨ (ψfalse ∧ y = false)

}}}
· . Γ `

{{{
φ?

2

}}}
e2 ?

{{{
y : τ | (ψ1 ∧ y = a1) ∨ · · · ∨ (ψn ∧ y = an)

}}}
· . Γ `

{{{
φ?

3

}}}
e3 ?

{{{
y : τ | (θ1 ∧ y = b1) ∨ · · · ∨ (θm ∧ y = bm)

}}}

• · . Γ `

{{{
φ?

1 ∧ (ψtrue ⇒ φ?
2) ∧ (ψfalse ⇒ φ?

3)
}}}

if e1 then e2 else e3 end

?
{{{
y : τ | (∨i(ψtrue ∧ ψi ∧ y = ai)) ∨ (∨j(ψfalse ∧ θj ∧ y = bj))

}}}
• Suppose

· . Γ `
{{{
φ?
i

}}}
ei ?

{{{
y : B | (ψitrue ∧ y = true) ∨ (ψifalse ∧ y = false)

}}}
· . Γ `

{{{
φ′?i
}}}
e′i ?

{{{
y : τ | (ψi1 ∧ y = ai1) ∨ · · · ∨ (ψini ∧ y = aini)

}}}
101

• ·.Γ `
{{{
∧i (φi∧ (ψitrue ⇒ φ′i))

}}}
case e1 ⇒ e′1 | · · · | en ⇒ e′n end

{{{
y : τ | ∨i,j(ψitrue∧ψij ∧y = aij)

}}}

• · . Γ `

{{{
(∧i(φi ∧ (ψitrue ⇒ φ′↓i)) ∧ (∨iφ↓i ∧ ¬ψifalse))

}}}
case e1 ⇒ e′1 | · · · | en ⇒ e′n end

↓
{{{
y : τ | ∨i,j(ψitrue ∧ ψij ∧ y = aij)

}}}
Proof. We prove it constructively by induction on the well-typedness.

The cases of constants and variables are direct from the axioms.

• When the well-typedness is Γ ` e1 � e2 : Z, by the induction hypothesis, we can derive the following

specifications :

· . Γ `
{{{
φ?

1

}}}
e1 ?

{{{
y : Z | (ψ1 ∧ y = a1) ∨ · · · ∨ (ψn ∧ y = an)

}}}
· . Γ `

{{{
φ?

2

}}}
e2 ?

{{{
y : Z | (θ1 ∧ y = b1) ∨ · · · ∨ (θm ∧ y = bm)

}}}
By applying the rule for extending contexts, the rule of read-only variables, and the rule of postcon-

dition weakening, we can derive the specifications:

x1:Z . Γ `
{{{
φ1 ∧ (¬ψ1 ∨ x1 6= a1) ∧ · · · ∧ (¬ψn ∨ x1 6= an)

}}}
e1

{{{
y : Z | y 6= x1

}}}
,

x2:Z . Γ `
{{{
φ2 ∧ (¬θ1 ∨ x2 6= b1) ∧ · · · ∧ (¬θm ∨ x2 6= bm)

}}}
e2

{{{
y : Z | y 6= x2

}}}
.

Observe that φ?
1 ∧ φ?

2 ∧ ¬
(
φ1 ∧ (¬ψ1 ∨ x1 6= a1) ∧ · · · ∧ (¬ψn ∨ x1 6= an)

)
∧ ¬

(
φ2 ∧ (¬θ1 ∨ x2 6=

b1)∧· · ·∧(¬θm∨x2 6= bm)
)
⇒
(
(ψ1∧x1 = a1)∨· · ·∨(ψ1∧x1 = an)

)
∧
(
(θ1∧x2 = b1)∨· · ·∨(θ1∧x2 = bm)

)
holds. And,

(
(θ1 ∧ x2 = b1) ∨ · · · ∨ (θ1 ∧ x2 = bm)

)
⇒
(
∨i,j ψi ∧ θj ∧ y = ai � bj

)
[(x1 � x2)/y] holds.

By the rule of postcondition weakening, we can derive

· . Γ `
{{{
φ?

1

}}}
e1 ?

{{{
y : Z | True

}}}
and · . Γ `

{{{
φ?

2

}}}
e2 ?

{{{
y : Z | True

}}}
.

Therefore, using the rule for integer arithmetic, we get

· . Γ `
{{{
φ?

1 ∧ φ?
2

}}}
e1 � e2 ?

{{{
y : Z | ∨i,jψi ∧ θj ∧ y = ai � bj

}}}
.

• When the well-typedness is Γ ` e1 � e2 : R, Γ ` e1 < e2 : B, or Γ ` e1 = e2 : B, it can be done

identically.

• When the well-typedness is Γ ` e−1 : R, we can derive the specification:

x:R . Γ `
{{{
φ ∧ (¬ψ1 ∨ x 6= a1) ∧ · · · ∧ (¬ψn ∨ x 6= an)

}}}
e1

{{{
y : R | y 6= x

}}}
And, φ∧¬

(
φ∧ (¬ψ1∨x 6= a1)∧· · ·∧ (¬ψn∨x 6= an)

)
⇒
(
(ψ1∧y = a1

−1)∨· · ·∨ (ψn∧y = an
−1)
)
[x−1/y]

holds. As · . Γ `
{{{
φ?
}}}
e ?
{{{
y : R | True

}}}
is derivable by the rule of postcondition weakening, by the rule

for multiplicative inversions, we have

· . Γ `
{{{
φ
}}}
e−1

{{{
y : R | (ψ1 ∧ y = a1

−1) ∨ · · · ∨ (ψn ∧ y = an
−1)
}}}
.

For the total correctness, see that φ↓∧a1 6= 0∧· · ·∧an 6= 0∧¬
(
φ∧ (¬ψ1∨x 6= a1)∧· · ·∧ (¬ψn∨x 6=

an)
)
⇒ x 6= 0 ∧

(
(ψ1 ∧ y = a1

−1) ∨ · · · ∨ (ψn ∧ y = an
−1)
)
[x−1/y] holds.

Therefore, using the rule for multiplicative inversions, we have

· . Γ `
{{{
φ↓ ∧ a1 6= 0 ∧ · · · ∧ an 6= 0

}}}
e−1 ↓

{{{
y : R | (ψ1 ∧ y = a1

−1) ∨ · · · ∨ (ψn ∧ y = an
−1)
}}}
.

See that φ↓ ∧ a1 6= 0 ∧ · · · ∧ an 6= 0⇒ φ holds.

102

• When the well-typedness is Γ ` e1 <̂ e2 : B, it can be done similarly. • When the well-typedness is

Γ ` if e1 then e2 else e3 end : τ , we can derive the specifications:

· . Γ `
{{{
φ?

1

}}}
e1 ?

{{{
y : B | (ψtrue ∧ y = true) ∨ (ψfalse ∧ y = false)

}}}
,

· . Γ `
{{{
φ?

2

}}}
e2 ?

{{{
y : τ | (ψ1 ∧ y = a1) ∨ · · · ∨ (ψn ∧ y = an)

}}}
,

· . Γ `
{{{
φ?

3

}}}
e3 ?

{{{
y : τ | (θ1 ∧ y = b1) ∨ · · · ∨ (θm ∧ y = bm)

}}}
.

By the rule of read-only variables, we can derive specifications:

· . Γ `
{{{
φ1 ∧ ¬ψtrue

}}}
e1

{{{
y : B | y = false

}}}
· . Γ `

{{{
φ1 ∧ ¬ψfalse

}}}
e1

{{{
y : B | y = true

}}}
Let ψ := (ψtrue∧ψ1∧y = a1)∨· · ·∨(ψtrue∧ψn∧y = an)∨(ψfalse∧θ1∧y = b1)∨· · ·∨(ψfalse∧θm∧y = bm).

See that by the rule for read-only variables, and the rule for postcondition weakening, we can derive

· . Γ `
{{{
φ?

2 ∧ ψtrue

}}}
e2 ?

{{{
y : τ | ψ

}}}
and · . Γ `

{{{
φ?

3 ∧ ψfalse

}}}
e3 ?

{{{
y : τ | ψ

}}}
.

By the rule of precondition strengthening, we can derive the specifications:

· . Γ `
{{{

(φ?
1 ∧ (ψtrue ⇒ φ?

2) ∧ (ψfalse ⇒ φ?
3)) ∧ ¬(φ1 ∧ ¬ψtrue)

}}}
e2 ?

{{{
y : τ | ψ

}}}
· . Γ `

{{{
(φ?

1 ∧ (ψtrue ⇒ φ?
2) ∧ (ψfalse ⇒ φ?

3)) ∧ ¬(φ1 ∧ ¬ψfalse)
}}}
e3 ?

{{{
y : τ | ψ

}}}
,

Therefore, using the rule for conditional, we get

· . Γ `
{{{
φ?

1 ∧ (ψtrue ⇒ φ?
2) ∧ (ψfalse ⇒ φ?

3)
}}}

if e1 then e2 else e3 end ?
{{{
y : τ | ψ

}}}
Check that φ↓1 ∧ (ψtrue ⇒ φ↓2) ∧ (ψfalse ⇒ φ↓3)⇒ φ1 ∧ (ψtrue ⇒ φ2) ∧ (ψfalse ⇒ φ3) holds.

• When the well-typedness is Γ ` case e1 ⇒ e′1 | · · · | ed ⇒ e′d end : τ ,

· . Γ `
{{{
φ?
i

}}}
ei ?

{{{
y : B | (ψitrue ∧ y = true) ∨ (ψifalse ∧ y = false)

}}}
,

· . Γ `
{{{
φ′?i
}}}
e′i ?

{{{
y : τ | (ψi1 ∧ y = ai1) ∨ · · · ∨ (ψini ∧ y = aini)

}}}
Therefore, for all i, by the rule for read-only variables, we have

· . Γ `
{{{
φ?
i ∧ ¬ψitrue

}}}
ei ?

{{{
y : B | ψifalse ∧ y = false

}}}
,

Let us define ψ := ∨i,j(ψitrue ∧ ψij ∧ y = aij). By the rule for read-only variables and the rule for

precondition strengthening, we have

· . Γ `
{{{
φ′?i ∧ ψitrue

}}}
e′i ?

{{{
y : τ | ψ

}}}
Define φ? := ∧iφi ∧ (ψitrue ⇒ φ′?i). See that φ? ∧ ¬(φi ∧ ¬ψitrue) ⇒ φ′?i ∧ ψitrue holds. Hence, using the

rule of precondition strengthening, we get

· . Γ `
{{{
φ? ∧ ¬(φi ∧ ¬ψitrue)

}}}
e′i ?

{{{
y : τ | ψ

}}}
Finally, using the rule for guarded cases, we get

· . Γ `
{{{
∧i φi ∧ (ψitrue ⇒ φ′i)

}}}
case e1 ⇒ e′1 | · · · | en ⇒ e′n end

{{{
y : τ | ∨i,j(ψitrue ∧ ψij ∧ y = aij)

}}}
For the total correctness, see that we have the specification:

· . Γ `
{{{
φ↓i ∧ ¬ψ

i
false

}}}
ei ↓

{{{
y : B | y = true

}}}
103

By applying the rule for precondition strengthening, we can derive the specification:

· . Γ `
{{{
φ↓ ∧ (∨iφ↓i ∧ ¬ψ

i
false) ∧ ¬(φi ∧ ¬ψitrue)

}}}
e′i ↓

{{{
y : τ | ψ

}}}
Therefore, by the rule for guarded cases, we have

· . Γ ` {{{
∧i φi ∧ (ψitrue ⇒ φ′↓i) ∧ (∨iφ↓i ∧ ¬ψifalse)

}}}
case e1 ⇒ e′1 | · · · | en ⇒ e′n end

↓
{{{
y : τ | ∨i,j(ψitrue ∧ ψij ∧ y = aij)

}}}

When we further restrict expressions that are constructed only by (1) constants, (2) coercion, (3)

arithmetical operations including −1, and (4) variables, i.e., when Γ ` e : τ is also a term in the assertion

language, the following specifications are derivable:

· . Γ `
{{{

True
}}}
e
{{{
y : τ | y = e

}}}
and

· . Γ `
{{{
a1 6= 0 ∧ · · · ∧ an 6= 0

}}}
e ↓

{{{
y : τ | y = e

}}}
where ai are the subexpressions of e that appears in the form ai

−1.

And, when Γ ` e : τ is specified as

· . Γ,∆, x:τ `
{{{
φ?
}}}
e ?
{{{
y : τ | (ψ1 ∧ y = a1) ∨ · · · ∨ (ψn ∧ y = an)

}}}
,

where y does not appear free in ψi, the specification

· . Γ; ∆, x : τ
{{{
φ? ∧ (ψ1 ⇒ ψ[a1/x]) ∧ · · · ∧ (ψn ⇒ ψ[an/x])

}}}
x := e ?

{{{
ψ
}}}

is derivable.

5.5.3 Formal Verification of Computing π

The expression in Figure 5.4 which we abbreviate as pi computes π by searching for the root of the

sine function. In this section, we prove the correctness of the expression using our verification principles.

For this section, assume that our assertion language is strong enough to do basic mathematical analysis.

And, in order to simplify our presentation, let us hide explicit type distinctions in the assertion language

that we write Ξ .Γ `
{{{

True
}}}
y×ι(4 + 3) ↓

{{{
z : R | z = y× (4 + 3)

}}}
to refer to Ξ .Γ `

{{{
True

}}}
y×ι(4 + 3) ↓{{{

z : R | z = y×ι(4 + 3)
}}}

.

We also assume that the abbreviations abs(x) and prec(x) are correct without proving.

In order to prove the correctness of the program by parts, let us abbreviate the subexpressions as

follows:

• win: the inner while loop at Line 10-21

• ein: the loop condition of win at Line 10-15

• sine: the inner limit expression at Line 5-21

• sine approx: the expression of sine such that sine is lim p . sine approx

104

1 lim(q, var δ := prec(−q) in
2 var a := ι(3) in var b := ι(4) in

3 while case b− a >̂ δ/ι(2)⇒ true | b− a <̂ δ ⇒ false end do

4 var x := (b− a)/ι(2) in

5 if (lim p. var ε := prec(−p) in
6 var n := 0 in

7 var s := ι(1) in

8 var r := ι(0) in

9 var e := x in

10 while (if e >̂ ι(0)

11 then

12 case ι(2)× e >̂ ε⇒ true | e <̂ ε⇒ false end

13 else

14 case − ι(2)× e >̂ ε⇒ true | −e <̂ ε⇒ false end

15 end)

16 do

17 n := n+ 1;

18 r := r + e×s;

19 s := s×ι(−1);

20 e := e×x×x/ι(2× n+ 1)/ι(2× n)

21 end; r) >̂ ι(0) then a := x else b := x

22 end

23 end; a)

Figure 5.4: A Clerical expression for computing π.

105

• wout: the outer while loop at Line 3 - 23

• eout: the loop condition of wout

• bisect: the if-then-else at Line 5-22

• pi the entire limit expression

• pi approx the expression of pi such that pi is lim q . pi approx

We start the proof by verifying the correctness of sine. The sine function is computed using the fact

that the series can approximate the (mathematical) value sin(x):

|sin(x)− Σmn=0s(n) · q(n, x)| ≤ |q(m+ 1, x)| where q(n, x) :=
(−1)nx2n+1

(2n+ 1)!
and s(n) = (−1)n .

Let us denote the partial sum A(m,x) := Σmn=0s(n) · q(n, x) and let it be defined at A(−1, x) := 0.

First, we want to show that sine approx computes 2−p approximation to the sin(x). In order to prove

it, we need to reason on the while loop win.

In order to reason on the condition of the loop, let us define the three formulae

φtrue := ε > 0 ∧ |e| ≥ ε ein evaluates only to true

φfalse := ε > 0 ∧ 2× |e| ≤ ε ein evaluates only to false

φexit := φfalse ein terminates and evaluates only to false

Applying Lemma 5.8, we can easily verify{{{
φtrue

}}}
ein

{{{
y : B | y = true

}}}{{{
φfalse

}}}
ein

{{{
y : B | y = false

}}}{{{
φexit

}}}
ein ↓

{{{
y : B | y = false

}}}
Let us define

φinv := n ≥ 0 ∧ ε = 2−p ∧ e = q(n, x) ∧ s = s(n) ∧ r = A(n− 1, x) ∧ ε = 2−p

as a candidate for a loop-invariant. As the assigned expressions are simple arithmetical, we can keep

substituting the expressions backwards to get the specifications:

{{{
n+ 1 ≥ 0 ∧ ε = 2−p ∧ e× x2/

(
(2× n+ 3)× (2× n+ 2)

)
= q(n+ 1, x)

∧ − s = s(n+ 1) ∧ r + e× s = A(n, x) ∧ 2× n+ 3 6= 0 ∧ 2× n+ 2 6= 0
}}}

n := n+ 1

↓
{{{
n ≥ 0 ∧ ε = 2−p ∧ e× x2/

(
(2× n+ 1)× (2× n)

)
= q(n, x) ∧ −s = s(n) ∧ r + e× s = A(n− 1, x)

∧2× n+ 1 6= 0 ∧ 2× n 6= 0
}}}

r := r + e×s

↓!
{{{
n ≥ 0 ∧ ε = 2−p ∧ e× x2/

(
(2× n+ 1)× (2× n)

)
= q(n, x) ∧ −s = s(n) ∧ r = A(n− 1, x)

∧2× n+ 1 6= 0 ∧ 2× n 6= 0
}}}

s := s×ι(−1)

↓
{{{
n ≥ 0 ∧ ε = 2−p ∧ e× x2/

(
(2× n+ 1)× (2× n)

)
= q(n, x) ∧ s = s(n) ∧ r = A(n− 1, x)

∧2× n+ 1 6= 0 ∧ 2× n 6= 0
}}}

e := e×x×x/ι(2× n+ 1)/ι(2× n)

↓
{{{
φinv

}}}
106

By checking the implication φinv ⇒
(
n + 1 ≥ 0 ∧ ε = 2−p ∧ e × x2/

(
(2 × n + 3) × (2 × n + 2)

)
=

q(n+ 1, x)∧−s = s(n+ 1)∧ r+ e× s = A(n, x)∧∧2× n+ 3 6= 0∧ 2× n+ 2 6= 0
)
, we confirm that φinv

is indeed a loop-invariant.

For a formula θ, let us write

min(z, θ) := θ ∧ ∀z′. θ ⇒ z ≤ z′.

Namely, z satisfies min(z, θ) if and only if z is the smallest number that satisfies θ. Let us define

ψ := min(z,∀m. m ≥ z + n⇒ |q(m,x)| ≤ ε/2)

for our loop-invariant. I.e., z satisfies ψ if and only if z is the smallest distance to the index m where

all terms beyond the index |q(m′, x)|,m′ ≥ m satisfy the exit condition |q(m′, x)| ≤ ε/2. For any n, x,

the fact on the power series ensures the existence of such z and being “the smallest” guarantees the

uniqueness. For the other side-condition, when φinv ∧ ψ ∧ z < 0 holds, by ψ, |q(n, x)| ≤ ε/2 holds. And,

by φinv, e = q(n, x) holds. Hence, we have ε > 0 ∧ |e| ≤ ε/2 which is ψexit.

The only programming variable that ψ refers to and gets modified in the loop is n. Hence, we only

need to check the implication:

min(z0,∀m. m ≥ z0 + n⇒ |q(m,x)| ≤ ε/2)⇒
(
min(z,∀m. m ≥ z+ n+ 1⇒ |q(m,x)| ≤ ε/2)⇒ z < z0

)
.

Let m0 be the smallest index such that ∀m > m0. |q(m,x)| ≤ ε/2 holds. Assuming z s.t. min(z,∀m. m ≥
z+n+1⇒ |q(m,x)| ≤ ε/2) and z0 s.t. min(z0,∀m. m ≥ z0+n⇒ |q(m,x)| ≤ ε/2), we get m0 = z+n+1 =

z0+n. Hence, z < z0 holds. With the implication, we derive the triple to confirm that ψ is a loop-variant:{{{
min(z0,∀m. m ≥ z0 + n⇒ |q(m,x)| ≤ ε/2)

}}}{{{
∀z. min(z,∀m. m ≥ z + n+ 1⇒ |q(m,x)| ≤ ε/2)⇒ z < z0

}}}
n := n+ 1

↓
{{{
∀z. min(z,∀m. m ≥ z + n⇒ |q(m,x)| ≤ ε/2)⇒ z < z0

}}}
Therefore, using the rule for conjunctions of assertions, we get all the premises to apply the rule

for loops. Applying it with the rule for sequential composition, we derive the following specification:{{{
φinv

}}}
win; r ↓

{{{
y : R | | sin(x)− y| < 2−p

}}}
.

Again, since the expressions assigned to the variables before win at Line 5-9 are simple arithmetical,

by substituting backwards, we get the specifications derived.

107

{{{
True

}}}{{{
0 ≥ 0 ∧ 2−p = 2−p ∧ x = q(0, x) ∧ 1 = s(0) ∧ 0 = A(−1, x)

}}}
var ε := prec(p) in

↓
{{{
ε : R | 0 ≥ 0 ∧ ε = 2−p ∧ x = q(0, x) ∧ 1 = s(0) ∧ 0 = A(−1, x)

}}}
var n := 0 in

↓
{{{
n : Z | n ≥ 0 ∧ ε = 2−p ∧ x = q(n, x) ∧ 1 = s(n) ∧ 0 = A(n− 1, x)

}}}
var s := ι(1) in

↓
{{{
s : R | n ≥ 0 ∧ ε = 2−p ∧ x = q(n, x) ∧ s = s(n) ∧ 0 = A(n− 1, x)

}}}
var r := ι(0) in

↓
{{{
r : R | n ≥ 0 ∧ ε = 2−p ∧ x = q(n, x) ∧ s = s(n) ∧ r = A(n− 1, x)

}}}
var e := x in

↓
{{{
e : R | n ≥ 0 ∧ ε = 2−p ∧ e = q(n, x) ∧ s = s(n) ∧ r = A(n− 1, x)

}}}
win; r

↓
{{{
y : R | | sin(x)− y| < 2−p

}}}
In consequence, we can specify the expression in the limit expression at Line 5-21:

Ξ . p : Z, x : R `
{{{

True
}}}

sine approx ↓
{{{
y : R | |sin(x)− y| < 2−p

}}}
.

Now, we prove that the limit expression computes sin(x). Let ψ := z = sin(x) and ψ′ := |y−sin(x)| ≤
2−p. Since ∃z : R .∀p : Z . p > 0 ⇒ ∀y : R .

(
|sin(x) − y| < 2−p ⇒ |y − z| ≤ 2−p

)
∧ z = sin(x) holds by

simply letting z = sin(x), using the rule for limit, we can derive the specification:

Ξ . x : R `
{{{

True
}}}

sine ↓
{{{
z : R | z = sin(x)

}}}
.

The correctness of the entire expression is based on the fact that sin(x) is strictly decreasing in [3, 4]

admitting sin(x) = 0 at x = π, sin(3) > 0 > sin(4), and π 6∈ Q.

In order to prove a specification of the loop at Line 3-23, let us define

φtrue := a < b ∧ δ > 0 ∧ b− a ≥ δ eout evaluates only to true

φfalse := a < b ∧ δ > 0 ∧ 2× (b− a) ≤ δ eout evaluates only to false

φexit := φfalse eout terminates and evaluates only to false.

Again, by Lemma 5.8, we can easily derive{{{
φtrue

}}}
eout

{{{
y : B | y = true

}}}
.{{{

φfalse

}}}
eout

{{{
y : B | y = false

}}}
,{{{

φexit

}}}
eout ↓

{{{
y : B | y = false

}}}
.

Let

φinv := a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q

be the candidate for a loop-invariant and

ψ := min(z, b− a ≤ 2z−q−1)

be the candidate for a loop-variant. See that for any a, b, q such that b − a > 0, there exists unique z

that satisfies ψ. And, when such z is negative, 2× (b− a) < 2q holds, hence satisfies φexit.

108

Recall the specification: {{{
x′ = x

}}}
sine

{{{
y : R | y = sin(x) ∧ x′ = x

}}}
Since x1 6= sin(x′) does not refer to any programming variables, we can add it in the precondition and

postcondition and reduce it to the following specification:{{{
x1 6= sin(x)

}}}
sine

{{{
y : R | y 6= x1

}}}
Similarly, we have

{{{
x2 6= 0

}}}
0 ↓

{{{
y : R | y 6= x2

}}}
. Since sin(x) ≥ 0 ∧ x1 = sin(x) ∧ x2 = 0 ⇒ (x1 >

x2 ⇒ true = true) ∧ (x2 > x1 ⇒ false = true) and sin(x) ≤ 0 ∧ x1 = sin(x) ∧ x2 = 0 ⇒ (x1 > x2 ⇒
false = true) ∧ (x2 > x1 ⇒ true = true) hold, we can derive the specifications:{{{

sin(x) ≥ 0
}}}

sine >̂ 0
{{{
y : R | y = true

}}}
and

{{{
sin(x) ≤ 0

}}}
sine >̂ 0

{{{
y : R | y = false

}}}
.

Since a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ x = (a + b)/2 ∧ x1 = sin(x) ∧ x2 = 0 ⇒ x1 6= x2 by

the fact that π 6∈ Q is the unique root of sin(x) in [3, 4], we can derive{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ x = (a+ b)/2

}}}
sine ↓

{{{
True

}}}
.

By Intermediate Value Theorem, when sin(x) > 0, x = (a + b)/2, and 3 ≤ a < π < b ≤ 4, we can

refine 3 ≤ x < π < b ≤ 4. And, under the condition,

min(z0, b− a ≤ 2z0−q−1)⇒ ∀z. (min(z, b− x ≤ 2z−q−1))⇒ z < z0

holds. Hence, using the implications, we derive the following specification:{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ x = (a+ b)/2 ∧ sin(x) > 0 ∧min(z0, b− a ≤ 2z0−q−1)

}}}{{{
x, b ∈ Q ∧ 3 ≤ x < π < b ≤ 4 ∧ δ = 2q ∧ ∀z. (min(z, b− x ≤ 2z−q−1))⇒ z < z0

}}}
a := x

↓
{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ ∀z. (min(z, b− a ≤ 2z−q−1))⇒ z < z0

}}}
We can derive a similar specification for the other branch. And, using them for the rule for condi-

tional yields the specification:{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ x = (a+ b)/2 ∧min(z0, b− a ≤ 2z0−q−1)

}}}
bisect

↓
{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ ∀z. (min(z, b− a ≤ 2z−q−1))⇒ z < z0

}}}
Since the postcondition of the above specification does not refer to x, we can derive the following

specification:{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧min(z0, b− a ≤ 2z0−q−1)

}}}{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ (a+ b)/2 = (a+ b)/2 ∧min(z0, b− a ≤ 2z0−q−1)

}}}
var x := (a+ b)/ι(2) in

↓
{{{
x : R | a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ x = (a+ b)/2 ∧min(z0, b− a ≤ 2z0−q−1)

}}}
bisect

↓
{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ ∀z. (min(z, b− a ≤ 2z−q−1))⇒ z < z0

}}}
Consequently, we ensure that φinv is indeed a loop-invariant and ψ is indeed a loop-variant.

109

Using the rule for while loop, we derive the following specification:{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q

}}}
wout

↓
{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ b− a < δ

}}}
a

↓
{{{
y : R | y = a ∧ a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2q ∧ b− a < δ

}}}
↓
{{{
y : R | |y − π| ≤ 2−q

}}}
Since the postcondition of the above specification does not refer to a, b, or δ, we derive the following

specification:{{{
True

}}}{{{
3, 4 ∈ Q ∧ 3 ≤ 3 < π < 4 ≤ 4 ∧ 2−q = 2−q

}}}
var δ := prec(−q) in

↓
{{{

3, 4 ∈ Q ∧ 3 ≤ 3 < π < 4 ≤ 4 ∧ δ = 2−q
}}}

var a := ι(3) in

↓
{{{
a, 4 ∈ Q ∧ 3 ≤ a < π < 4 ≤ 4 ∧ δ = 2−q

}}}
var b := ι(4) in

↓
{{{
a, b ∈ Q ∧ 3 ≤ a < π < b ≤ 4 ∧ δ = 2−q

}}}
wout; a

↓
{{{
y : R | |y − π| ≤ 2−q

}}}
In conclusion, we have the specification derived:{{{

True
}}}

pi approx ↓
{{{
y : R | |y − π| ≤ 2−q

}}}
Let ψ := z = π and ψ′ := |y − π| ≤ 2−q. It holds that ∃z. (∀q > 0. ∀y. |y − π| ≤ 2−q ⇒ |y − z| ≤

2−q) ∧ z = π by simply letting z = π. Hence, the rule for limit yields{{{
True

}}}
lim(q, pi approx) ↓

{{{
y : R | y = π

}}}
which confirms that the denotation of pi is indeed π.

5.6 (Relative) Completeness

We want our verification calculus to be complete in that any correct specification is derivable using

the proof rules. However, we know that it is impossible as Clerical can express Peano arithmetic. Hence,

the formal system is not complete anyway. However, the question remains: is the failure due to the design

of the formal system, or is it due to the incompleteness of the underlying logic? The incompleteness of

the underlying logic is not what we can help for. Anyhow, we need to do our best and make the design

of our verification calculus not contribute to the incompleteness.

For a well-typed read-only expression Γ ` e : τ , a context of auxiliary variables Ξ, and a postcondition

Ξ,Γ, y:τ ψ, we say a precondition Ξ,Γ wpΞ,y(Γ `: τ, ψ) a weakest partial precondition, and Ξ,Γ

wp↓Ξ,y(Γ `: τ, ψ) a weakest total precondition if the following holds:

JΞ,Γ wpΞ,y(Γ ` e : τ, ψ)K =

{(ξ, γ) ∈ JΞ,ΓK | e 6∈ JΓ ` e : τKγ ∧ ∀v ∈ JΓ ` e : τKγ. (ξ, γ, y 7→ v) ∈ JΞ,Γ, y:τ ψK},
JΞ,Γ wp↓Ξ,y(Γ ` e : τ, ψ)K =

{(ξ, γ) ∈ JΞ,ΓK | ⊥ 6∈ JΓ ` e : τKγ ∧ ∀v ∈ JΓ ` e : τKγ. (ξ, γ, y 7→ v) ∈ JΞ,Γ, y:τ ψK} .

110

In words, JwpΞ,y(Γ ` e : τ, ψ)K is the set of states which makes the evaluation of e well-defined and

the results of every terminating branches satisfy ψ. And, Jwp↓Ξ,y(Γ ` e : τ, ψ)K is the set of states which

makes the evaluation of e well-defined and every branches terminate resulting in ψ.

Similarly, for a well-typed read-write expression Γ; ∆ c : τ , a context of auxiliary variables Ξ, and

a postcondition Ξ,Γ,∆, y:τ ψ, we say a precondition Ξ,Γ,∆ wpΞ,y(Γ; ∆ c : τ, ψ) a weakest partial

precondition and Ξ,Γ,∆ wp↓Ξ,y(Γ; ∆ c : τ, ψ) a weakest partial precondition if the following holds:

JΞ,Γ,∆ wpΞ,y(Γ; ∆ c : τ, ψ)K =

{(ξ, γ, δ) ∈ JΞ,Γ,∆K | e 6∈ JΓ; ∆ c : τKγ δ∧
∀(δ′, v) ∈ JΓ; ∆ c : τKγ δ. (ξ, γ, δ, y 7→ v) ∈ JΞ,Γ,∆, y:τ ψK},

JΞ,Γ,∆ wp↓Ξ,y(Γ ` e : τ, ψ)K =

{(ξ, γ, δ) ∈ JΞ,Γ,∆K | ⊥ 6∈ JΓ; ∆ c : τKγ δ∧
∀(δ′, v) ∈ JΓ; ∆ c : τKγ δ. (ξ, γ, δ, y 7→ v) ∈ JΞ,Γ,∆, y:τ ψK} .

Note that though the sets always exist, due to the expressiveness of the assertion language, they

may not be definable. In order to focus purely on the verification calculus, we pose two assumptions on

our assertion language. An assertion language is expressive complete if for any Γ and S ⊆ JΓK, there is

Γ φ such that S = JΓ φK. And, an assertion language is semantic complete if for any Γ φ, Γ ` φ
if and only if JΓ φK = JΓK.

Theorem 5.2. The proof rules of Clerical is complete assuming the assertion language is expressive and

semantic complete.

Proof. Since, we assumed expressive completeness, all weakest (partial) preconditions exist.

Consider any correct specifications:

Ξ . Γ `
{{{
φ?
}}}
e ?
{{{
y : τ | ψ

}}}
Ξ . Γ; ∆

{{{
φ?
}}}
c ?
{{{
y : τ | ψ

}}}
,

We first show that the specifications

Ξ . Γ `
{{{

wp?
Ξ,y(Γ ` c : τ, ψ)

}}}
e ?
{{{
y : τ | ψ

}}}
Ξ . Γ; ∆

{{{
wp?

Ξ,y(Γ; ∆ c : τ, ψ)
}}}
c ?
{{{
y : τ | ψ

}}}
,

are derivable. Since we have assumed that the assertion language is semantic complete, it holds that

Ξ,Γ ` φ? ⇒ wp?
Ξ,y(Γ ` c : τ, ψ) and Ξ,Γ,∆ ` φ? ⇒ wp?

Ξ,y(Γ; ∆ c : τ, ψ).

Hence, by using the rule for precondition strengthening, we get the desired specifications derived.

We prove it by induction on the well-typedness of e and c.

• The case when the well-typedness is Γ ` true : B:

Suppose any correct specification:

Ξ . Γ `
{{{
φ
}}}

true ?
{{{
y : B | ψ

}}}
From the rule for constants and the rule for partial correctness from total correctness, we can derive

Ξ . Γ `
{{{
ψ[true/y]

}}}
true ?

{{{
y : B | ψ

}}}
Suppose any (ξ, γ) ∈ JΞ,Γ φK. By the assumption, it holds that (ξ, γ, y 7→ tt) ∈ JΞ,Γ, y:B ψK.
Therefore, (ξ, γ) ∈ JΞ,Γ ψ[true/y]K holds, which implies Ξ,Γ ` φ ⇒ ψ[true/y]. Hence, by the rule

for precondition strengthening, we have

Ξ . Γ `
{{{
φ
}}}

true ?
{{{
y : B | ψ

}}}
111

• The case when the well-typedness is Γ ` false : B, Γ ` k : Z, Γ ` skip : U, or Γ ` x : τ , it can be done

identically to above.

• The case when the well-typedness is Γ ` ι(e) : R:

From the induction hypothesis, we can derive

Ξ . Γ `
{{{

wp?
Ξ,y(Γ ` e : Z,∃z : R . ψ ∧ z = ι(y))

}}}
e : Z ?

{{{
y : Z | ∃z : R . ψ ∧ z = ι(y)

}}}
Hence, applying the rule for coercion, we derive the specification:

Ξ . Γ `
{{{

wp?
Ξ,y(Γ ` e : Z,∃z : R . ψ ∧ z = ι(y))

}}}
ι(e) ?

{{{
z : R | ∃y : R .∃z : R . ψ ∧ z = ι(y) ∧ z = ι(y)

}}}
As ψ ⇒ ∃z : R . ψ ∧ z = ι(y) and ∃y : R .∃z : R . ψ ∧ z = ι(y) ∧ z = ι(y) ⇒ ψ, we have the desired

specification.

• The case when the well-typedness is Γ ` e1 � e2 : Z for � ∈ {+,−,×}:
Suppose any state (ξ, γ) ∈ Jwp?

Ξ,y(Γ ` e1 � e2 : Z, ψ)K. Then, clearly, it holds that

(ξ, γ) ∈ Jwp?
Ξ,y(Γ ` e1 : Z,True) ∧ wp?

Ξ,y(Γ ` e2 : Z,True)K.

And, using the induction hypothesis, we can derive the following specifications:

Ξ . Γ `
{{{

wp?
Ξ,y(Γ ` e1 � e2 : Z, ψ)

}}}
e1 ?

{{{
y : Z | True

}}}
Ξ . Γ `

{{{
wp?

Ξ,y(Γ ` e1 � e2 : Z, ψ)
}}}
e2 ?

{{{
y : Z | True

}}}
Ξ, x1:Z . Γ `

{{{
wp(Ξ,x1:Z),y(Γ ` e1 : Z, y 6= x1)

}}}
e1

{{{
y : Z | y 6= x1

}}}
Ξ, x2:Z . Γ `

{{{
wp(Ξ,x2:Z),y(Γ ` e2 : Z, y 6= x2)

}}}
e2

{{{
y : Z | y 6= x2

}}}
For any v1 ∈ Z, if (ξ, x1 7→ v1, γ) ∈ J¬wpΞ,x1:Z(Γ ` e1 : Z, y 6= x1)K holds, v1 ∈ JΓ ` e1 : ZKγ holds.

Therefore, for any v1, v2 ∈ Z such that

(ξ, x1 7→ v1, x2 7→ v2, γ) ∈

Jwp?
Ξ,y(Γ ` e1 � e2 : Z, ψ) ∧ ¬wpΞ,x1:Z(Γ ` e1 : Z, y 6= x1) ∧ ¬wpΞ,x2:Z(Γ ` e2 : Z, y 6= x2)K,

it holds that v1 ∈ JΓ ` e1 : ZKγ and v2 ∈ JΓ ` e2 : ZKγ. By the assumption, we have (ξ, x1 7→ v1, x2 7→
v2, γ) ∈ JΞ, x1:Z, x2:Z,Γ ψ[(x1 � x2)/y]K. Therefore, the side-condition of the rules for integer arith-

metic is provable (by the completeness). Hence, using the rule, we get the desired specification.

• The case when the well-typedness is Γ ` e1 � e2 : R for � ∈ {+,−,×}, Γ ` e1 < e2 : B, or

Γ ` e1 = e2 : B, it can be done very similarly to above.

• The case when the well-typedness is Γ ` e1 <̂ e2 : B:

The partial correctness case can be done in a very similar way to the case of integer arithmetic.

Suppose any state (ξ, γ) in JΞ,Γ wp↓Ξ,y(Γ ` e1 <̂ e2 : B, ψ)K. Then, with the same argument used

in the case of integer arithmetic, it holds that (ξ, γ) ∈ JΞ,Γ wp↓Ξ,y(Γ ` e1 : R,True)K and (ξ, γ) ∈
JΞ,Γ wp↓Ξ,y(Γ ` e2 : R,True)K.

And, the induction hypothesis ensures that the following specifications are derivable:

Ξ . Γ `
{{{

wp↓Ξ,y(Γ ` e1 : R,True)
}}}
e1 ↓

{{{
y : R | True

}}}
Ξ . Γ `

{{{
wp↓Ξ,y(Γ ` e2 : R,True)

}}}
e2 ↓

{{{
y : R | True

}}}
Ξ, x1:R . Γ `

{{{
wp(Ξ,x1:R),y(Γ ` e1 : R, y 6= x1)

}}}
e1

{{{
y : R | y 6= x1

}}}
Ξ, x2:R . Γ `

{{{
wp(Ξ,x2:R),y(Γ ` e2 : R, y 6= x2)

}}}
e2

{{{
y : R | y 6= x2

}}}
112

Suppose any v1, v2 ∈ R such that

(ξ, x1 7→ v1, x2 7→ v2, γ) ∈

JΞ,Γ wp↓Ξ,y(Γ ` e1 <̂ e2 : B, ψ) ∧ ¬wpΞ,x1:R,y(Γ ` e1 : R, y 6= x1) ∧ ¬wpΞ,x2:R,y(Γ ` e2 : R, y 6= x2)K.

Then, it holds that v1 ∈ JΓ ` e1 : RKγ and v2 ∈ JΓ ` e2 : RKγ. If v1 < v2, it holds that tt ∈ JΓ ` e1 <̂ e2 : RKγ
and if v1 > v2, it holds that ff ∈ JΓ ` e1 <̂ e2 : RKγ. However, v1 = v2 does not hold, since (ξ, x1 7→
v1, x2 7→ v2, γ) ∈ JΞ,Γ wp↓Ξ,y(Γ ` e1 <̂ e2 : B, ψ)K. Therefore, the side-condition holds. And, using the

total correctness rule for real comparison, we get the desired specification.

• The case when the well-typedness is Γ ` e−1 : R is done very similarly.

• The case when the well-typedness is Γ ` lim x . e : R:

See that

wp↓Ξ,z(Γ ` lim x . e : R, ψ)⇒ ∃z : R . ψ ∧ ∀x : Z . x ≥ 0⇒ wp↓(Ξ,z:R),y(Γ, x:Z ` e : R, |y − z| ≤ 2−x).

By the induction hypothesis, we can derive the specification:

Ξ, z:R . Γ, x:Z `
{{{

wp↓(Ξ,z:R),y(Γ, x:Z ` e : R, |y − z| ≤ 2−x)
}}}
e ↓

{{{
y : R | |y − z| ≤ 2−x

}}}
See that the side-condition becomes(
∃z:R . ψ ∧ ∀x:Z . x ≥ 0⇒ wp↓(Ξ,z:R),y(Γ, x : Z ` e : R, |y − z| ≤ 2−x)

)
⇒

∃z:R .
(
∀x:Z . x ≥ 0⇒ (wp↓(Ξ,z:R),y(Γ, x:Z ` e:R, |y − z| ≤ 2−x) ∧ (∀y:R . |y − z| ≤ 2−x → |y − z| ≤ 2−z))

)
∧ ψ

which is trivially provable. The rule for limit derives the desired specification.

• The case when the well-typedness is Γ ` c1; c2 : τ :

See that

wp?
Ξ,y(Γ; ∆ c1; c2 : τ, ψ)⇒ wp?

Ξ,y(Γ; ∆ c1 : U,wp?
Ξ,y(Γ; ∆ c2, ψ))

By the induction hypothesis, we can derive the specification:

Ξ . Γ; ∆
{{{

wp?
Ξ,y(Γ; ∆ c2, ψ)

}}}
c2 ?

{{{
y : τ | ψ

}}}
Ξ . Γ; ∆

{{{
wp?

Ξ,y(Γ; ∆ c1 : U,wp?
Ξ,y(Γ; ∆ c2, ψ))

}}}
c1 ?

{{{
y : U | wp?

Ξ,y(Γ; ∆ c2, ψ)
}}}

Since, y does not appear free in wp?
Ξ,y(Γ; ∆ c2, ψ), we can apply the rules for sequencing to get

Ξ . Γ; ∆
{{{

wp?
Ξ,y(Γ; ∆ c1; c2 : τ, ψ)

}}}
c1; c2 ?

{{{
y : τ | ψ

}}}
• The case when the well-typedness is Γ; ∆ var x := e in c : τ :

The induction hypothesis says the specifications are derivable:

Ξ . Γ; ∆, x:σ
{{{

wp?
Ξ,y(Γ; ∆, x:σ c : τ, ψ)

}}}
c ?
{{{
ψ
}}}

Ξ . Γ; ∆
{{{

wp?
Ξ,y(Γ,∆ ` e : σ,wp?

Ξ,y(Γ; ∆, x:σ c:τ, ψ)[y/x])
}}}
e ?
{{{
y:τ | wp?

Ξ,y(Γ; ∆, x:σ c:τ, ψ)[y/x]
}}}

Hence, the rule for local variable yields

Ξ . Γ; ∆
{{{

wp?
Ξ,y(Γ,∆ ` e : σ,wp?

Ξ,y(Γ; ∆, x:σ c : τ, ψ)[y/x])
}}}

var x := e in c ?
{{{
y : τ | ∃x. ψ

}}}
113

Since x does not appear free in ψ, using the implication

wp?
Ξ,y(Γ; ∆ var x := e in c : τ, ψ)⇒ wp?

Ξ,y(Γ,∆ ` e : δ,wp?
Ξ,y(Γ,∆, x:σ c : τ, ψ)[y/x])

we can derive the desired spcification:

Ξ . Γ; ∆
{{{

wp?
Ξ,y(Γ; ∆ var x := e in c : τ, ψ)

}}}
var x := e in c ?

{{{
y : τ | ψ

}}}
• The case when the well-typedness is Γ; ∆ x := e : U:

The induction hypothesis derives the specification:

Ξ . Γ,∆ `
{{{

wp?
Ξ,y(Γ,∆ ` e : τ, ψ[y/x])

}}}
e ?
{{{
y : τ | ψ[y/x]

}}}
Letting θ := ψ in the rule for assignment derives

Ξ . Γ; ∆
{{{

wp?
Ξ,y(; Γ,∆ ` e : τ, ψ[y/x]) ∧ ∀y. (ψ[y/x]→ ψ[y/x])

}}}
x := e ?

{{{
ψ
}}}
.

Since the implication

wp?
Ξ, (Γ; ∆ x := e : U, ψ)⇒ wp?

Ξ,y(Γ,∆ ` e : τ, ψ[y/x])

and wp?
Ξ,y(Γ,∆ ` e : τ, ψ[y/x]) ⇒ wp?

Ξ,y(Γ,∆ ` e : τ, ψ[y/x]) ∧ ∀y. (ψ[y/x] ⇒ ψ[y/x]) hold, using the

rule of precondition weakening, we get the following desired specification:

Ξ . Γ; ∆
{{{

wp?
Ξ, (Γ; ∆ x := e : U, ψ)

}}}
x := e ?

{{{
ψ
}}}

This can be done very similarly to the case of guarded cases.

• The partial correctness of the case when the well-typedness is Γ; ∆ case e1 ⇒ c1 | · · · | en ⇒ cn end :

τ

Suppose any (ξ, γ, δ) ∈ JΞ,Γ,∆ wpΞ,y(Γ; ∆ case e1 ⇒ c1 | · · · | en ⇒ cn : τ, ψ)K. In order to

exclude e in the denotation, it holds that ∀i. e 6∈ JΓ,∆ ` ei : BK(γ, δ). Hence, (ξ, γ, δ) is in

JΞ,Γ,∆ wpΞ,y(Γ,∆ ` ei,True)K for all i.

Suppose (ξ, γ, δ) is in JΞ,Γ,∆ ¬wpΞ,y(Γ,∆ ` en : B, y = false)K. Then, tt ∈ JΓ,∆ ` ei : BK(γ, δ)
holds. Hence, in order to make e 6∈ JΓ; ∆ ci : τKγ δ and any (δ′, v) ∈ JΓ; ∆ ci : τK satisfy ψ with ξ, γ,

the state (ξ, γ, δ) is in JΞ,Γ,∆ wpΞ,y(Γ; ∆ c1 : τ, ψ)K.
Hence, the implication holds:

wpΞ,y(Γ; ∆ case e1 ⇒ c1 | · · · | en ⇒ cn : τ, ψ)⇒

wpΞ,y(Γ,∆ ` e1,True) ∧ · · · ∧ wpΞ,y(Γ,∆ ` en,True)

∧ (¬wpΞ,y(Γ,∆ ` e1 : B, y = false)⇒ wpΞ,y(Γ; ∆ c1 : τ, ψ))

...

∧ (¬wpΞ,y(Γ,∆ ` en : B, y = false)⇒ wpΞ,y(Γ; ∆ cn : τ, ψ))

Let us write Φ to denote the right-hand-side of the above implication.

By the induction hypothesis, we have the specifications derived:

Ξ . Γ,∆ `
{{{

wpΞ,y(Γ,∆ ` ei,True)
}}}
ei
{{{
y : B | True

}}}
Ξ . Γ,∆ `

{{{
wpΞ,y(Γ,∆ ` ei : B, y = false)

}}}
ei
{{{
y : B | y = false

}}}
Ξ . Γ; ∆

{{{
wpΞ,y(Γ; ∆ ci : τ, ψ)

}}}
ci
{{{
y : τ | ψ

}}}
114

See that Φ ⇒ wpΞ,y(Γ,∆ ` ei,True) and Φ ∧ ¬wpΞ,y(Γ,∆ ` ei : B, y = false) ⇒ wpΞ,y(Γ; ∆ ci :

τ, ψ) hold for all i. Hence, applying the rule for precondition strengthening, we get

Ξ . Γ,∆ `
{{{

wpΞ,y(Γ,∆ ` ei,True)
}}}
ei
{{{
y : B | True

}}}
Ξ . Γ; ∆

{{{
Φ ∧ ¬wpΞ,y(Γ,∆ ` ei : B, y = false)

}}}
ci
{{{
y : τ | ψ

}}}
Applying the rule for guarded cases and the rule for precondition strengthening, we get the desired

specification derived.

• The total correctness of the case when the well-typedness is Γ; ∆ case e1 ⇒ c1 | · · · | en ⇒ cn end : τ

Suppose (ξ, γ, δ) ∈ JΞ,Γ,∆ wp↓Ξ,y(Γ; ∆ case e1 ⇒ c1 | · · · | en ⇒ cn : τ, ψ)K. Then, in order to

ensure e 6∈ JΓ,∆ ` ei : BK(γ, δ) for all i, (ξ, γ, δ) ∈ JΞ,Γ,∆ wpΞ,y(Γ,∆ ` ei,True)K holds for all i.

Note that if there is no i where {tt} = JΓ,∆ ` ei : BK(γ, δ) holds, ⊥ is in the denotation under γ

and δ. Hence, there is i where (ξ, γ, δ) ∈ JΞ,Γ,∆ wp↓Ξ,y(Γ,∆ ` ei, y = true)K holds.

Therefore, we have the implication:

wp↓Ξ,y(Γ; ∆ case e1 ⇒ c1 | · · · | en ⇒ cn : τ, ψ)⇒

wpΞ,y(Γ,∆ ` e1,True) ∧ · · · ∧ wpΞ,y(Γ,∆ ` en,True)

∧
(
wp↓Ξ,y(Γ,∆ ` e1, y = true) ∨ · · · ∨ wp↓Ξ,y(Γ,∆ ` en, y = true)

)
∧ (¬wpΞ,y(Γ,∆ ` e1 : B, y = false)⇒ wp↓Ξ,y(Γ; ∆ c1 : τ, ψ))

...

∧ (¬wpΞ,y(Γ,∆ ` en : B, y = false)⇒ wp↓Ξ,y(Γ; ∆ cn : τ, ψ))

Let us write Φ to denote the right-hand-side of the above implication.

By the induction hypothesis, we have the specifications derived:

Ξ . Γ,∆ `
{{{

wpΞ,y(Γ,∆ ` ei,True)
}}}
ei
{{{
y : B | True

}}}
Ξ . Γ,∆ `

{{{
wp↓Ξ,y(Γ,∆ ` ei, y = true)

}}}
ei ↓

{{{
y : B | y = true

}}}
Ξ . Γ,∆ `

{{{
wpΞ,y(Γ,∆ ` ei : B, y = false)

}}}
ei
{{{
y : B | y = false

}}}
Ξ . Γ; ∆

{{{
wp↓Ξ,y(Γ; ∆ ci : τ, ψ)

}}}
ci ↓

{{{
y : τ | ψ

}}}
Let φi := wp↓Ξ,y(Γ,∆ ` ei, y = true) and θi := wpΞ,y(Γ,∆ ` ei : B, y = false). Note that

Φ⇒ wpΞ,y(Γ,∆ ` ei,True) holds and for any i, and (Φ∧ (φ1 ∨ · · · ∨ φn)∧¬θi)⇒ wp↓Ξ,y(Γ; ∆ ci : τ, ψ)

holds.

Therefore, by applying the rule for precondition strengthening and the total correctness rule for

guarded cases, we get

Ξ . Γ,∆
{{{

Φ ∧ (φ1 ∨ · · · ∨ φn)
}}}

case e1 ⇒ c1 | · · · | en ⇒ cn ↓
{{{
y : τ | ψ

}}}
As wp↓Ξ,y(Γ; ∆ case e1 ⇒ c1 | · · · | en ⇒ cn : τ, ψ)⇒ Φ and Φ⇒ Φ ∧ (φ1 ∨ · · · ∨ φn), by applying the

rule for precondition strengthening, we get the desired specification.

• The case when the well-typedness is Γ; ∆ if e then c1 else c2 end : τ is done very similarly.

• The partial correctness of the case when the well-typedness is Γ; ∆ while e do c end : U:

Define the sequence of formulae:

φ0 := wpΞ,y(Γ,∆ ` e : B,True)

φn+1 := (¬wpΞ,y(Γ,∆ ` e : B, y = false)⇒ wpΞ,y(Γ; ∆ c : τ, φn))

∧(¬wpΞ,y(Γ,∆ ` e : B, y = true)⇒ ψ)

115

Let us abbreviate W for wpΞ,y(Γ; ∆ while e do c end : U, ψ) and see that JWK =
⋂∞
n=0 JφnK.

Let W be a loop-invariant. By W⇒ wpΞ,y(Γ,∆ ` e : B,True), we have

Ξ . Γ,∆ `
{{{

W
}}}
e
{{{
y : B | True

}}}
.

Let φfalse := wpΞ,y(Γ,∆ ` e : B, y = false), and φtrue := wpΞ,y(Γ,∆ ` e : B, y = true). See that

¬φfalse ∧W⇒ wpΞ,y(Γ; ∆ c : τ, φn) holds for all n ∈ N. Hence, using the completeness assumption, we

have the derivation:

¬φfalse ∧W ⇒ wpΞ,y(Γ; ∆ c : τ, φn) for all n ∈ N
J¬φfalse ∧WK ⊆ JwpΞ,y(Γ; ∆ c : τ, φn)K for all n ∈ N
J¬φfalse ∧WK ⊆

⋂
n∈N JwpΞ,y(Γ; ∆ c : τ, φn)K

= JwpΞ,y(Γ; ∆ c : τ,W)K
¬φfalse ∧W ⇒ wpΞ,y(Γ; ∆ c : τ,W) .

By the implication, we have the specification

Ξ . Γ; ∆
{{{
¬φfalse ∧W

}}}
c
{{{

W
}}}
.

Hence, using the rule for loop, we the desired partial correctness specification derived:

Ξ . Γ; ∆
{{{

W
}}}

while e do c end
{{{

W ∧ ¬φtrue

}}}
.

Since W ∧ ¬φtrue ⇒ ψ, we have the desired specification derived.

• The total correctness of the case when the well-typedness is Γ; ∆ while e do c end : U:

Define the sequence of formulae:

φ0 := (wp↓Ξ,y(Γ,∆ ` e : B, y = false)) ∧ ψ
φn+1 := (¬wpΞ,y(Γ,∆ ` e : B, y = false)⇒ wp↓Ξ,y(Γ; ∆ c : U, φn))

∧wp↓Ξ,y(Γ,∆ ` e : B,True)

∧(¬wpΞ,y(Γ,∆ ` e : B, y = true)⇒ ψ)

Let us abbreviate W for wp↓Ξ,y(Γ; ∆ while e do c end : U, ψ) and see that JWK =
⋃∞
n=0 JφnK holds.

Let Ξ,Γ,∆, z:Z ψ be a formula that defines the set JψK such that (ξ, γ, δ, z 7→ v) ∈ JψK if and only

if (ξ, γ, δ) ∈ Jφv+1K and for any v′ < v, (ξ, γ, δ) ∈ J¬φv′+1K. In other words, z satisfies ψ if and only if z

is the smallest integer that satisfies φz+1.

Since W⇒ wp↓Ξ,y(e : B,True) holds, we have Ξ . Γ,∆ `
{{{

W
}}}
e ↓

{{{
y : B | True

}}}
.

Similarly to the case of partial correctness, let φfalse := wpΞ,y(Γ,∆ ` e : B, y = false), φtrue :=

wpΞ,y(Γ,∆ ` e : B, y = true), and φexit := wp↓Ξ,y(Γ,∆ ` e : B, y = false). See that ¬φfalse ∧W ⇒
wp↓Ξ,y(c,W). Hence, we have the specification:

Ξ . Γ; ∆
{{{
¬φfalse ∧W

}}}
c ↓

{{{
W
}}}

(5.1)

Now, consider the triple derived from the induction hypothesis:

Ξ, z0 : Z . Γ; ∆ `
{{{

wlp(Ξ,z0:Z), (c,∀z : Z . ψ ⇒ z < z0)
}}}
c ↓

{{{
∀z : Z . ψ ⇒ z < z0

}}}
If ¬φfalse ∧W ∧ ψ[z0/z] holds, by ψ[z0/z] and ¬φfalse, we get wpΞ, (c, φz0). By the definition of ψ,

since z0 is the smallest index where φz0+1 holds, it holds that φz0 ⇒ (∀z : Z . ψ ⇒ z < z0). By the

116

monotonicity, it holds that wpΞ, (c, φz0)⇒ wpΞ, (c,∀z. ψ ⇒ z < z0). Therefore, we have the implication

¬φfalse ∧W ∧ ψ[z0/z]⇒ wpΞ, (c,∀z : Z . ψ ⇒ z < z0). Therefore, by the rule of precondition weakening,

we have the specification:

Ξ, z0:Z . Γ; ∆ `
{{{
¬φfalse ∧W ∧ ψ[z0/z]

}}}
c ↓

{{{
∀z : Z . ψ ⇒ z < z0

}}}
Together with the specification at 5.1, we derive the specification:

Ξ, z0 : Z . Γ; ∆ `
{{{
¬φfalse ∧W ∧ ψ[z0/z]

}}}
c ↓

{{{
W ∧ ∀z : Z . ψ ⇒ z < z0

}}}
See that the side-condition is direct from the definition of ψ. Hence, we have the desired specification.

117

Chapter 6. Clerical in Asm(NN)

Similar to Chapter 4, in this chapter, we devise an interpretation of Clerical in Asm(NN). Since

the motivation and the general picture is already explained in Chapter 4, let us directly dive into the

business.

To each data type τ , we define

JUK := 1 JBK := 2 JZK := Z JRK := R

where R is any effective represented set of real numbers.

To each typing context Γ, we assume there is an assembly JΓKAsm(NN) of JΓK with the following

computable morphisms:

1. assignx : JΓKAsm(NN) × JΓ(x)KAsm(NN) → JΓKAsm(NN) such that assignx(γ, v) = γ[xi 7→ x],

2. extendx:τ : JΓKAsm(NN) × JτKAsm(NN) → JΓ, x : τKAsm(NN) such that extendx:τ (γ, v) = (γ, (x 7→ v)),

3. valuex : JΓKAsm(NN) → JΓ(τ)KAsm(NN) such that valuex(γ) = γ(x),

4. removex : JΓKAsm(NN) → JΓ �dom(Γ)\{x}KAsm(NN)
such that removex(γ, x 7→ w) = γ,

Moreover, we assume the empty state () of J·KAsm(NN) is computable.

To each typing context x1 : τ1, · · · , xn : τn, there is a morphism state : Jτ1KAsm(NN) × · · · ×
JτnKAsm(NN) → JΓKAsm(NN) such that state(v1, · · · , vn) = (x1 7→ v1, · · · , xn 7→ vn). It can be done by

repeatedly calling extend on the empty state. And, for any disjoint typing contexts Γ,∆, there is a

morhpism join : JΓKAsm(NN) × J∆KAsm(NN) → JΓ,∆KAsm(NN) such that join(γ, δ) = (γ, δ). It can be done by

repeatedly extending δ on γ.

6.1 Modified Powerdomain in Asm(NN)

For a set S, we want to define an endofunctor P?(�) : Asm(NN)→ Asm(NN) where for any assembly

A, the underlying set of P?(A) is P?(|A|).
For any assembly A, define P?(A) be the assembly induced from the injective function

ιA : P?(|A|) → |\M([A)|

: S 7→

\ if S = e,

S \ {⊥} ∪ {[} if ⊥ ∈ S,

S otherwise.

See that ι translate e to \ and ⊥ to [. By definition, the injective mapping appears as a morphism

ιA : P?(A)→ \M([A)

118

Also, the rectifying operation, which is a retraction of ιA, is computable:

rA : \M([A) → P?(A)

: S 7→

e if S = \,

S \ {[} ∪ {⊥} if [∈ S,

S ∪ {⊥} if S infinite,

S otherwise.

By defining the action on morphisms

P?(f : A→ B) := rB ◦ (\M([(f))) ◦ ιA,

the mapping P?(�) is an endofunctor in Asm(NN). Note that its definition is P?(f).

Also, see that the unit and the multiplication of P?() are computable. Hence, the triple (P?(�), η, µ)

is a monad that their definitions form a monad in Set.

Moreover, since

ζA,B : (A→ B) → (P?(A)→ P?(B))

: f 7→ S 7→
⋃
x∈S

e if x = e,

{⊥} if x = ⊥,

{f(x)} otherwise,

is computable, (by composing the extensions of \,M, [), we can confirm that the endofunctor is a strong

moand with the same α and β that of P?(�). That means the definitions of the liftings are the liftings

w.r.t. P?(�).

Note, however, that P?(�) fails to be a countably applicative functor.

For a morphism f : A→ [B, define f‡ : A→ P?(B) by

f‡(x) =

{⊥} if x = [.

{f(x)} otherwise,

which is computable by the realizer of η\ ◦ ηM ◦ f .

For the domain-theoretic properties, see that the chain completeness is effective.

Lemma 6.1. To each assembly A, there is a computable function LIMA : (N→ P?(A))→ P?(A) such

that it on chains returns the limit of the chain. For a non-chain input, it returns e.

Proof. Suppose 〈(φi)i∈N〉 is given where φi P?(A) Si and (Si)i∈N is a chain. Until we find an index

n iterating from 0 such that 〈(φi)i∈N〉(n) 6= 0, 1, we append 1 in the output tape. If there is m, k

such that 〈(φi)i∈N〉(〈m, k〉) 6= 0, 1, which means φm(k) 6= 0, 1, we stop the iteration and just append

φm(k), φm(k + 1), · · · in the output tape.

Now we need to argue that the above computation realizes LIMA. Suppose 〈(φi)i∈N〉 was a name of

an increasing chain. If there is no index n such that 〈(φi)i∈N〉(n) 6= 0, 1 holds, the computation prints

1N which is a name of e and any set containing ⊥. Also, if φi consists of only 0 or 1, it can represent

only e or a set with ⊥. If Si = e for some i, then the limit of the sequence is e. Hence, the computation

was correct. If Si 6= e for all i, then ⊥ ∈ Si for all i. Hence, the limit of the sequence contains ⊥ which

is represented by 1N. Hence, the computation was correct in this case as well.

119

When there is an index 〈m, k〉 such that 〈(φi)i∈N〉m, k〉 6= 0, 1 holds, (assume 〈m, k〉 is the smallest

such number), the computation produces 1〈m,k〉 :: φm(k), φm(k + 1), · · · . Since φm(k) 6= 0, 1, it is either

Sm = e or ⊥ 6= x ∈ S and φ<<m is a name of x ∈ A. If Sm = e, then the limit is e. Since any sequence

represents e, the computation is correct. If ⊥ 6= x ∈ S and φ<<m is a name of x ∈ A, it is either that the

limit contains x or the limit is e. Since 1〈m,k〉 :: φm(k), φm(k+1), · · · is a name of e or any set containing

x in P?(A), the computation is correct.

If the input was a name of a non-converging sequence, since the computation still produces an

infinite sequence, which is a name of e, the computation is correct.

Due to the fixed-point theorem, any morphism that is domain-theoretic-continuous f : P?(A) →
P?(A) has the least fixed-point in P?(A).

Lemma 6.2. For any assembly A and a continuously realizable function f : |P?(A)| → |P?(A)|, if f is

domain-theoretic-continuous, the least fixed-point is uniformly computable. I.e., there is a computable

function LFPA : (P?(A)→ P?(A))→ P?(A) that returns the least-fixed points of the domain-theoretic-

continuous functions. For functions that are not domain-theoretic-continuous, it returns e.

Proof. By the least fixed-point theorem, the least-fixed point is the limit of the chain (fn({⊥}))n∈N.

Hence, we can simply return LIMA(λ(n : N)fn({⊥})) where the repeated application can be done by a

primitive recursion.

Lemma 6.3. For any assembly A and a continuously realizable function f : (A → P?(A)) → (A →
P?(A)), if f is point-wise domain-theoretic-continuous, the least-fixed point of f is uniformly computable.

I.e., there is LFPA→P?(A) :
(
(A→ P?(A))→ A→ P?(A)

)
→ (A→ P?(A)) such that LFPA→P?(A)(f) is

the least fixed-point of f if f is continuous w.r.t. the point-wise ordering. Otherwise,LFPA→P?(A)(f)(x) =

e for any x.

Proof. For a domain-theoretic continuous function f : (A → F(A)) → (A → F(A)), by the fixed point

theorem, the least-fixed point of it is the limit of λn. fn(x 7→ {⊥}). Hence, we can define

LFPA→P?(A)(f)(x) = LIM(λn : N. (fn(λy. {⊥}))) x .

6.2 Computability of Clerical

To each well-typed read-only expression Γ ` e : τ , we interpret it as a morhpsim JΓ ` e : τKAsm(NN)

from JΓKAsm(NN) to P?(JτKAsm(NN)) such that

Γ(JΓ ` e : τKAsm(NN)) = JΓ ` e : τK

holds in Set. And, to each well-typed read-write expression Γ; ∆ c : τ , we interpret it as a morhpsim

JΓ; ∆ ` c : τKAsm(NN) from JΓKAsm(NN) to J∆KAsm(NN) → P?(JτKAsm(NN)) such that

Γ(JΓ; ∆ c : τKAsm(NN)) = JΓ; ∆ c : τK

holds in Set.

First, when the well-typedness Γ ` e : τ is from Γ; · e : τ , we do

JΓ ` e : τKAsm(NN) = λγ. π†1 ◦ JΓ; · e : τKAsm(NN)γ ·

120

And, when the well-typedness Γ; ∆ c : τ is from Γ,∆ ` c : τ , we define

JΓ; ∆ ` c : τKAsm(NN) = λγ. λδ.
(
δ,†2 JΓ; · e : τKAsm(NN)(γ, δ)

)
See that the atomic operations are clear:

JΓ ` true : BKAsm(NN) = (λγ. tt)† : JΓKAsm(NN) → P?(2)

JΓ ` true : BKAsm(NN) = (λγ.ff)† : JΓKAsm(NN) → P?(2)

JΓ ` k : ZKAsm(NN) = (λγ. k)† : JΓKAsm(NN) → P?(Z)

JΓ ` ι(e) : RKAsm(NN) = (λγ. ι†JΓ ` t : ZKAsm(NN)γ) : JΓKAsm(NN) → P?(R)

JΓ ` e1 � e2 : ZKAsm(NN) = (λγ. JΓ ` e1 : ZKAsm(NN)γ �
† JΓ ` e2 : ZKAsm(NN)γ) : JΓKAsm(NN) → P?(Z)

JΓ ` e1 < e2 : BKAsm(NN) = (λγ. JΓ ` e1 : ZKAsm(NN)γ <
† JΓ ` e2 : ZKAsm(NN)γ) : JΓKAsm(NN) → P?(Z)

JΓ ` e1 = e2 : ZKAsm(NN) = (λγ. JΓ ` e1 : ZKAsm(NN)γ =† JΓ ` e2 : ZKAsm(NN)γ) : JΓKAsm(NN) → P?(Z)

JΓ ` e1 � e2 : RKAsm(NN) = (λγ. JΓ ` e1 : RKAsm(NN)γ �
† JΓ ` e2 : RKAsm(NN)γ) : JΓKAsm(NN) → P?(R)

JΓ ` e−1 : RKAsm(NN) = (λγ. ((JΓ ` e : RKAsm(NN)γ)−1�‡†
[) : JΓKAsm(NN) → P?(R)

JΓ ` e1 <̂ e2 : BKAsm(NN) = (λγ. JΓ ` e1 : RKAsm(NN)γ<�‡†[JΓ ` e2 : RKAsm(NN)γ) : JΓKAsm(NN) → P?(B)

And, for a variable x, we have

JΓ ` x : τKAsm(NN) = λγ. value†x(γ)

Interpreting the limit operator is a little complicated that in the category of sets, P?(�) was count-

ably applicative but P?(�) is not in Asm(NN). Hence, we cannot use the same construction. Recall that

\M\ is countably applicative where we can lift the \ extended lim to

(lim�\)
† : (N→ \M(\R))→ \M(\R) .

For a mapping g : A → B, define gω := (λ(f : N → A). λ(n : N). g(f n)) : (N → A) → (N → B).

Precomposing (\M(κ[,\))ω yields

(lim�\)
† ◦ \M(κ[,\)ω : (N→ \M([R))→ \M(\R).

And, define an auxiliary mapping:

J : \M(\R) → \M([R)

: S 7→

\ if S = \ ∨ \ ∈ S,

S otherwise.

which identifies \ and [in S. Then, we have

rR ◦ J ◦ (κ],\ ◦ lim)† ◦ \M(κ[,\)ω ◦ (sR)ω : (N→ P?(R))→ P?(R)

Check that its definition coincides with the semantics used in Section 5.3.3. Let us denote ιN,Z : N→ Z

for the subset inclusion. Then, we can define

JΓ ` lim x . e : RK =

λγ. rR ◦ J ◦ (κ],\ ◦ lim)† ◦ \M(κ[,\)ω ◦ (sR)ω(λ(n : N). JΓ, x:Z ` e : RKAsm(NN)(extendx(γ, ιN,Z(n))))

121

For the guarded nondeterminism, let us define an extension of Cond function

CondnS : N× Sn → \S

: (k, x1, · · · , xn) 7→

x1 if n = 1,

x2 if n = 2,

...
...

xn if n = k.

\ otherwise

which is trivially computable. Define,

Jcase e1 ⇒ c1 | · · · | en ⇒ cn endKAsm(NN) =

λγ. λδ.(
CondnP?(S)

)†1
((choice�[)

†(Je1KAsm(NN)(γ, δ), · · · , JenKAsm(NN)(γ, δ)), Jc1KAsm(NN)γ δ, · · · , JcnKAsm(NN)γ δ)

For any assembly A, define jA : A × 1 → A for the projection map and kA : A → A × 1 for

the map x 7→ (x, ∗). Of course, they are computable isomorphisms. For any b : A → P?(2) and

c : A→ P?(A× 1), define

W(b, c) : λ(f : A→ P?(A× 1)). Cond†1P?(A×1) ◦ (b× (f† ◦ j† ◦ c)× k†)

From Lemma 5.7, we know that W(b, c) : (A → P?(A× 1)) → (A → P?(A× 1)) is a domain-

theoretic continuous function. Hence, LFPA→P?(A×1)(W(b, c)) is the least fixed-point of the mapping.

Hence, we can define

JΓ; ∆ while e do c endKAsm(NN) = λγ. LFPJ∆KAsm(NN)
→P?(J∆KAsm(NN)

×1)(W(λδ. JeKAsm(NN)(γ, δ), JcKAsm(NN)γ))

using Lemma 6.3

For an assignment, x := e, we can simply let

JΓ; ∆ x := e : UKAsm(NN) = λγ. λδ.
(
assign†2x (δ, JΓ,∆ ` e : τKAsm(NN)(γ, δ)),

†1 ∗
)

And, for a local variable creation,

JΓ; ∆ new var x := e in c : τKAsm(NN) =

λγ. λδ. (removex × id)† ◦
(
JcKAsm(NN)

†2γ (extend†
2

x (δ, JeKAsm(NN)(γ, δ)))
)

See that their definitions are the denotations of the expressions.

122

Chapter 7. Reliable Symmetric Matrix Eigenproblem

7.1 Introduction

The computational problem of matrix diagonalization plays important roles in many areas of science

and engineering: from quantum physics, artificial intelligence in computer science, to random matrix the-

ory in pure mathematics. The problem consists of two natural subproblems: computing each eigenvalue

with its multiplicity and computing the associated eigenspace of each eigenvalue. We are interested in

the task of solving the eigenproblem rigorously. That is, on all (even degenerate) inputs, within time

bounded by a guaranteed number of (bit) operations, produce output satisfying any given error bound.

Note that the general symmetric eigenspace problem is discontinuous/unstable already in the 2× 2 case:

A(ε) := exp(−1/ε2) ·

(
cos(2/ε) sin(2/ε)

sin(2/ε) − cos(2/ε)

)
, A(0) :=

(
0 0

0 0

)
The problem is known to become continuous when restricted to symmetric d×d matrices having, among

its d eigenvalues including multiplicities, precisely k pairwise distinct ones [ZB04, §3.5] for any fixed

k ∈ N. We establish:

Theorem 7.1. There exists an algorithm that, given any symmetric d×d interval matrix A of componen-

twise widths 2−m(A,p) having exactly k of its d eigenvalues distinct, outputs k pairwise disjoint intervals

of widths 2−p containing said eigenvalues; and outputs d interval vectors of componentwise widths 2−p

forming an eigenbasis, where m(A, p) ∈ O
(
d2(p + d2 + d log 1/∆(A) + |log ‖A‖F |)2

)
. In this case the

bit-cost of our algorithm is bounded by C(A,n) ∈ O
(
d2(
√
n/d+d2 + log ‖A‖F)M(d+n+ log ‖A‖F)

)
.

7.1.1 QR Algorithm and Wilkinson Shift

A symmetric matrix can be efficiently reduced to a similar symmetric tridiagonal matrix using

sequential Householder reflections. (Here, the similarity is a technical term; two matrices are similar if

they share identical eigenvalues counting the multiplicities.) For a tridiagonal matrix T , consider its QR

decomposition Q ·R := T . The matrix R ·Q is similar to T . The procedure of repeatedly performing this

similarity transformation is the well-known QR algorithm [Wat82]. We call a single step in the iterative

procedure, which is to compute T ′ from T , to be a QR step. When the algorithm makes the off-diagonal

entries small enough, Weyl’s inequality is used to obtain rigorous approximations to the eigenvalues.

However, it is not a total algorithm in that there are matrices which make it never converges.

To make the QR algorithm total and to speed up the rate of convergence, from linear to quadratic

or cubic, shifting is often used [GVL96, p. 456]. A shift λ is a real-valued function on the set of matrices.

Given a shift, the QR algorithm with the shift is defined as follows. From the usual QR algorithm, at

the beginning of each QR step, when T is the matrix to be processed, perform the QR decomposition

on the shifted matrix Q ·R := T − λ(T) instead. Then, compute T ′ := R ·Q+ λ(T). Again, T 7→ T ′ is

a similarity transformation.

In 1968, Wilkinson showed that when Wilkinson shift is used, the QR algorithm with the shift guar-

antees a quadratic rate of convergence for any symmetric tridiagonal matrices [Wil68]. The Wilkinson

123

shift λWilk is defined as follows:

λWilk(T) := the eigenvalue of Td−1:d,d−1:d which is closer to Td,d (7.1)

Here, T is a d × d dimensional matrix, Td−1:d,d−1:d is the 2 × 2 bottom-right submatrix of T and Td,d

is (d, d) entry of T . When the two eigenvalues are equally distanced from the last entry, any of the two

can be selected.

7.1.2 Reliable Computation using Intervals

A real number is an infinite object that cannot be represented exactly by using any finite represen-

tation. Hence, one must finitely approximate it to represent and compute with on a digital computer.

A common practice of approximating it with a finite precision floating point number often fails to be

reliable due to the inherent rounding errors in its computation [Rum88, LW02]. A tedious rounding error

analysis on a floating-point computation enables us to catch the magnitude of the rounding errors that

occur during the computation. Nonetheless, it is unavoidable to face a total erroneous result for input

sensitive cases.

Instead, interval computation can replace floating-point computation for the purpose of reliability

[MKC09, Moo14]; a finite approximation of a real number is an interval with dyadic endpoints that

contains the real number. Computing a real number is realized by computing an interval that is promised

to contain the real number. Hence, we get a rigorous bound on the real number. By forcing the endpoints

to be dyadic rational numbers, interval computation reduces to integer computation such that it can be

simulated on a digital computer exactly and its realistic run-time can be obtained by counting the number

of bit operations.

A side-effect of carrying out real number computation using interval computation is partiality. We

define the order of two intervals only when they are disjoint; seeing the two intervals as some finite

approximations of real numbers, when they are disjoint, we can, for sure, decide which of the real

numbers are greater. However, when the intervals overlap, we cannot decide which among the real

numbers are approximated by the intervals is greater. Hence, when we are comparing identical real

numbers, no matter how tight the intervals approximating the real number are, it always fails.

Let ID := {[a/2n, b/2m] : a, b, n,m ∈ Z} be the set of dyadic intervals. For vectors of intervals

x̃, ỹ ∈ IDd, the membership and inclusion relations are defined entry-wise: x ∈ x̃ :⇔ xi ∈ x̃i for all

i, and x̃ ⊆ ỹ :⇔ x̃i ⊆ ỹi for all i. For a set S, let us write S⊥ to denote S ∪ {⊥}. Let πj be the

canonical projection function on vectors that returns the jth entry. For the set IDd⊥, we extend the

inclusion relation to be x̃ ⊆ ⊥ for any x̃ ∈ IDd⊥. Furthermore, for an interval x̃ := [a, b] ∈ ID, we write

w(x̃) := b − a be the width of x̃. We extend it to x̃ ∈ IDd by defining w(x̃) := max{w(x̃i) : i ∈ [1, d]}.
The relations and the function w are again extended to matrices by treating a matrix as vector with any,

but a fixed, index traversal.

A function f̃ : IDdr × Zdz → IDer × Zez⊥ models an interval computation which receives dr intervals

and dz integers, and returns er intervals and ez integers. For any (x̃, y) ∈ IDdr×Zdz , the computation on

them yields f̃(x̃, y) where the case f̃(x̃, y) = ⊥ represents the computation failing. An interval function

f̃ : IDdr × Zdz → IDer × Zez⊥ realizes a real function f : Rdr × Zdz → Rer × Zez if (i) it is sound (as

an approximate computation): for any x ∈ x̃, πj(f(x, y)) ∈ πj(f̃(x̃, y)) holds for all 1 ≤ j ≤ dr and

πj(f(x, y)) = πj(f̃(x̃, y)) holds for all dr < j ≤ dr + dz; (ii) it is inclusion-monotone: if f(ỹ, z) 6= ⊥, then

πj(f(x̃, z)) ⊆ πj(f(ỹ, z)) for any 1 ≤ j ≤ dr, x̃ ⊆ ỹ and z; and (iii) it is (chain-)continuous: for each x, z

and p ∈ N, there is m ∈ N such that for any x̃ 3 x such that w(x̃) < 2−m, it holds that w(f̃(x̃, z)) < 2−p.

124

In other words, there is a monotone function m : Rdr × Zdz × N → N where for each x, z and p ∈ N, it

holds that for any x̃ 3 x where w(x̃) < 2−m(x,z,p), it holds that w(f̃(x̃, z)) < 2−p. We call the function

m to be a local modulus of continuity of f̃ .

The intuition behind the notion of realizing is as follows. The function f is what we want to

compute in the ideal world. Input real numbers x ∈ Rd will get approximated by some dyadic intervals

x̃ ∈ IDd where x ∈ x̃. Then, we run the computation for f̃ and get intervals f̃(x̃) when the computation

succeeds. Due to (i), we guarantee that the result of the computation f̃(x̃) contains f(x). Due to (ii),

the approximation is consistent; namely, when we redo the computation on better approximations, the

resulting approximations are also better. The continuity (iii) ensures that the computation is total in

the sense that when x is approximated with good enough precision, when w(x̃) is small enough, the

computation succeeds. Also, when we want arbitrarily good results, if we want the output intervals’

width to be less than 2−p for any natural number p, we can proceed with the computation with initial

intervals’ widths less than 2−m(x,p) where m is a modulus of continuity for the interval function.

Given an algorithm over real numbers, the trivial conversion of it to an interval algorithm via

changing reals to intervals and real arithmetic to interval arithmetic achieves (i) and (ii) automatically

but not (iii). (See Section 7.3.2.) In our context, when the real matrix we want to diagonalize has its

submatrix’s eigenvalues equally distanced from its last entry, then whichever precision we proceed, the

interval computation for obtaining the Wilkinson shift fails.

7.1.3 Related Works and Our Contributions

In order to overcome this infeasibility of Wilkinson shift in the context of reliable computing, we

devise a new shifting which we call fuzzy Wilkinson shift. (See Section 7.4.) It is fuzzy in the sense

that when the two distances (in Equation 7.1) are not strictly comparable (when the two intervals

representing the distances overlap) with some criteria, we let any of the two be the shift. We prove that

the QR algorithm with this fuzzy shift also obtains a similar convergence rate.

In the end, we devise an interval algorithm realizing matrix diagonalization problem which uses

the QR algorithm as its subprocedure. When an interval matrix is given as an approximation of a real

symmetric matrix, it computes intervals that rigorously contain real eigenvalues and orthogonal bases for

eigenspaces. A modulus of continuity is obtained, which says how small the widths of the intervals in the

input interval matrix should be in order to guarantee the output intervals width bounded by 2−p for any

natural number p. And, the computation’s realistic run-time is obtained by counting the number of bit

operations. It answers the question of how precise does an input real matrix should be approximated and

how many bit operations are needed to compute 2−p approximations of its eigenvalues and eigenvectors.

The approach of seeing an interval as a finite approximation of a real number and a real function as an

interval function with certain property can be found in domain theory [DG96, Eda97, Sco70] and interval

analysis [Moo66]. It is closely related to computable analysis [Wei00] and exact real number computation

[BCRO86, BC88] which studies computing over real number rigorously; e.g., an implementation [Mül00]

uses repeated interval computation to achieve errorless computation over reals. We follow this approach

in that we are interested in the case where the widths of input intervals can be arbitrarily small. Requiring

the number of distinct eigenvalues as additional input can be found in and is justified in [Zie12, ZB04].

This perspective produces major differences from the existing works from interval analysis. We use

interval computation to reliably realize real number computation, which only exists in an ideal world.

For example, solving the interval eigenvalue problem from [Dei91] requires a subroutine for computing

125

the exact eigenvalue of some real matrix Interval Gaussian algorithms are studied in [CM06] and in many

other works. However, without full pivot searching, it lacks the continuity (iii) property.

Before, the complexity of the eigenproblem has been obtained as a bound on the number of algebraic

operations in an algebraic model [PC99]. The number of bit operations has been counted in [SS18];

however, there, the problem is restricted to matrices with algebraic real entries. Our result applies to

any symmetric matrices, even with transcendental entries. Our work is based on integer computation,

hence it can be implemented as it is and achieves reliable computation. Being a small variant of the QR

algorithm, it can be practically used. By counting the number of bit operations, the obtained complexity

bound is realistic.

7.2 Problem Statement and Overview

We decompose our problem into the two subproblems:

Definition 7.1.

1. Given a pair (Ã, k) ∈ IDd×d ×N where the interval matrix Ã contains a symmetric matrix A with

exactly k distinct eigenvalues, compute k pairs (λ̃i, µi)i=1,··· ,k ∈ (ID× N)k such that the intervals

are disjoint and each interval λ̃i contains an eigenvalue λi of A whose multiplicity is µi.

2. Given a pair (Ã, k) ∈ IDd×d × N where the interval matrix Ã contains a diagonalizable matrix A

whose rank is k, compute k interval vectors x̃1, · · · , x̃k , such that ~0 6∈ x̃i for all i and each x̃i

contains a vector xi such that {x1, · · · , xk} span the kernel of A.

In Section 7.3, we define dyadic interval computation with correct rounding that is used throughout

this paper. In Section 7.4, the fuzzy Wilkinson shift is defined with a lemma stating that the shift is

sound. In Section 7.5, we define and analyze Algorithm separate eig for solving the first subproblem.

In Section 7.6, we analyze an interval Gaussian algorithm interval gaussian with fuzzy and full pivot

searching, which is for solving the second subproblem.

Combining the two algorithms, we get the following interval algorithm:

Algorithm 1: interval eig(Ã, k)

(λ̃1, µ1), · · · , (λ̃k, µk) := separate eig(Ã, k)

for i := 1→ k do (x̃1, · · · x̃µi) := interval gaussian(Ã− λ̃i, d− µi)
return (λ̃i, (x̃i1 , x̃i2 , · · · , x̃iµi))i=1,··· ,k

To analyze the behaviour of the algorithm, we need to pick a natural parameter of the problem. It

is promised that the ideal A in the input interval matrix has exactly k distinct eigenvalues. We devise a

quantitative measure on how strong the property is:

Notation 7.1. 1. For a real symmetric matrix A, let Λ(A) be the set of the eigenvalues of A and

‖A‖F be the Frobenius norm of A. Let us write ∆(A) to denote the relative eigenvalue separation

of A: ∆(A) := minλ1 6=λ2{|λ1 − λ2| : λ1, λ2 ∈ Λ(A)}/ ‖A‖F .

2. For a natural number `, let us write M(`) be the number of bit operations for multiplying two ` bit

integers. Recall that M(`) can be regarded as O(` log `) [HVDH20].

3. For n ∈ N, let IDn := {[a/2n, b/2n] | a, b ∈ Z, a < b} be the set of intervals whose endpoints are

dyadic numbers of exponent n. Defining it to be closed under operations (in Section 7.3), n can

be seen as a computation precision.

126

Theorem 7.2. Consider an interval matrix Ã ∈ IDd×dn and a natural number k where Ã contains a

symmetric matrix A that admits exactly k distinct eigenvalues.

1. The interval algorithm separate eig on (Ã, k) for separating distinct eigenvalues admits the following

modulus of continuity:

m1(A, p) ∈ O
(
d2(p+ log 1/∆(A) + log d+ |log ‖A‖F |)

2
)

I.e., the algorithm succeeds and returns intervals whose widths are bounded by 2−p when the width

of the interval matrix Ã is less than 2−m1(A,p). Under this condition, the number of bit operations

is bounded by C1 where C1(A,n) ∈ O
(
d2(
√
n/d+ d+ log ‖A‖F) · M(log d+ log ‖A‖F + n)

)
.

2. The interval algorithm interval gaussian on (Ã − λ̃, µ) for computing a basis of the µ-dimensional

eigenspace of A associated with λ ∈ λ̃ admits the following modulus of continuity:

m2(A, p) ∈ p+O(d2 + d log 1/∆(A) + |log ‖A‖F |).

I.e., the algorithm succeeds when the widths of the interval matrix Ã and the interval λ̃ are less

than 2−m2(A,p) and returns intervals whose widths are bounded by 2−p. Under this condition, the

number of bit operations is bounded by C2 where C2(A,n) ∈ O
(
d3 · M(d+ n+ log ‖A‖F)

)
.

Note that the conditions on the widths of intervals are automatically imposed to n as well; the unit

width 2−n in IDn should be smaller than the required widths of intervals.

Theorem 7.2-2 suggests that when the interval eigenvalues have their widths less than 2−m2(A,p),

the eigenvectors will be computed with their widths bounded by 2−p. And, Theorem 7.2-1 suggests

that when the width of the input interval matrix’s entries are less than 2−m1(A,m2(A,p)), the condition

is satisfied. Considering the interval Gaussian algorithm should be applied for k ≤ d times, the overall

bit-cost can be composed easily as Theorem 7.1.

Remark 7.1. The formulation of our problem follows from our motivation to solve the eigenproblem of

an ideal matrix A ∈ Rd×d when it is given to us by Ã ∈ IDd×dn such that A ∈ Ã. It can be rearranged

in such a way that k is the minimum number of distinct eigenvalues of symmetric matrices in Ã and A

is any symmetric matrix in Ã that admits exactly k distinct eigenvalues, which is more similar to the

setting of [Dei91].

7.3 Interval Computation and Fuzziness

7.3.1 Dyadic Intervals

We consider computations on intervals whose endpoints are dyadic numbers, which works as the

standard interval computation as in [AH84] but with correct rounding. When x̃ := [a1/2
n, a2/2

n] and

127

ỹ := [b1/2
n, b2/2

n], we define the primitive operations as follows:

x̃ + ỹ := [(a1 + b1)/2n, (a2 + b2)/2n]

x̃ − ỹ := [(a1 − b2)/2n, (a2 − b1)/2n]

x̃ ∗ ỹ := [bmin
i,j

(aibj)/2
nc/2n, dmax

i,j
(aibj)/2

ne/2n]

x̃ / ỹ :=

[mini,j(bai · 2n/bjc)/2n,maxi,j(dai · 2n/bje)/2n] if 0 6∈ [b1, b2]

⊥ otherwise,

√
x̃ :=

[⌊√

a1 · 2n
⌋
/2n,

⌈√
a2 · 2n

⌉
/2n
]

if a1 ≥ 0

⊥ otherwise.

The absolute value operator |x̃| and the squaring operator x̃2 are expected to make the resulting

intervals’ lower endpoints greater than or equal to 0. When it is not ambiguous, we often write x̃ ỹ orx̃ · ỹ
for x̃ ∗ ỹ. Considering the partiality in the order comparisons, when we have an instruction of the form

if x̃ > ỹ then C1 else C2, we let C1 execute only when a1 > b1. And, otherwise, we let C2 execute.

Note that the operations, can be computed exactly using integer computations; we can count the

number of bit operations of each interval operation; the number of bit operations of x̃ op ỹ is bounded

by O
(
Cop(max(logm(x̃), logm(ỹ)) + n)

)
where op ∈ {+,−, ∗, /} is an operation on integers or intervals,

m(x̃) := max(|a1|, |a2|)/2n is the magnitude of x̃, and Cop(`) is the number of bit operations for per-

forming op on ` bit integers. We take C+(`) = C−(`) ≤ C∗(`) = M(`) ≤ C/(`) ∈ O(M(`) log M(`)) for our

analysis [BZ98].

7.3.2 Fuzzy Sign

Consider the function of computing the sign of a real number: sign : R 3 x 7→ 1 if x ≥ 0 and −1

if x < 0. There is no interval function sign : ID → {0, 1} that realizes the function. It is because when

x = 0, any interval approximation of x contains 0. Hence, it cannot be distinguished whether x is greater

than or less than 0.

One alternative approach is to let sign be fuzzy in that we give up to compute the sign of a real

number exactly but let there be some tolerance factor such that when the real number is close to 0 w.r.t.

the factor, we let the function returns any of 0 or 1 (nondeterministically). Namely, the fuzzy variant of

the sign function [YSS13]:

sign : (x, ε) 7→

1 if x > −ε,

−1 if x < ε.

Observe that the above fuzzy sign is realizable by the interval function:

sign : (x̃, ε̃) 7→ if x̃ > − ε̃ then 1 else if x̃ < ε̃ then − 1 else abort

When the widths of x̃ and ε̃ get small enough, provided that ε ∈ ε̃ is positive, it succeeds eventually.

7.4 Fuzzy Wilkinson Shift

For a tridiagonal matrix T , the Wilkinson shift in Equation 7.1 can be directly obtained as follows

[GVL96, § 8.3.3]:

λWILK = Td,d + δ − sign(δ)
√
δ2 + T 2

d,d−1

128

where δ = (Td−1,d−1 − Td,d)/2. The Wilkinson shift fails due to the computation of sign(δ) (which

happens precisely when the shift candidates, two eigenvalues of the bottom-right 2 × 2 submatrix, are

equally distanced from Td,d). The natural relaxation is to make sign(δ) fuzzy thus that when δ is close to

0 with some formal tolerance factor, let the sign(δ) return any number among −1 and 1. The intuition

is that when the distances between the last entry and the two eigenvalues are close enough, then it will

not matter whichever is picked; nonetheless, there should be a quantitative criterion: what does it mean

to be close enough? Fuzzy Wilkinson shift is the relaxed choice of the eigenvalue:

Definition 7.2. Let λ1 and λ2 be the eigenvalues of the bottom-right 2×2 submatrix

[
Td−1,d−1 Td−1,d

Td,d−1 Td,d

]
of an unreduced real symmetric tridiagonal matrix T . Fuzzy Wilkinson shift λ̄

(κ)
WILK with 0 < κ ≤ 2−3

of the matrix is either λ1 or λ2 which satisfies the inequalities: |Td,d − λ̄(κ)
WILK| < |Td,d − λi|+ κ · |Td,d−1|

for i = 1, 2. The shift λ̄
(κ)
WILK can be computed directly, with δ := (Td−1,d−1 − Td,d)/2, by the following

formula:

λ̄
(κ)
WILK = Td,d − sign (δ, κ · |Td,d−1| /2)

√
δ2 + T 2

d,d−1. (7.2)

Note that the fuzzy shift becomes more like the Wilkinson shift as κ→ 0. Fuzzy Wilkinson shift can

be understood to be a good approximation to the exact Wilkinson shift relative to the factor κ · |Td,d−1|.
The following lemma confirms that the relaxation is indeed safe:

Lemma 7.1. The QR algorithm on any real symmetric tridiagonal matrix T using the fuzzy Wilkinson

shift converges. Moreover, when κ = 2−5, the rate of convergence becomes |T (j)
d,d−1| < 2−j/2+2 ‖T‖2F

where T (j) denotes the tridiagonal matrix at j’th iteration.

7.5 Separating Eigenvalues

7.5.1 Interval Tridiagonal Reduction

Algorithm 2: interval trig(Ã, q)

for j = 1→ d− 2 do

if |Ãi,j | < 2−q for all i > j then

return {Ã1:j,1:j} ∪ interval trig(Ãj+1:d,j+1:d, q)

else if |Ãi,j | > 2−q−1 for some i > j then
proceed

else
abort

end

s̃1 :=
√∑d

i=j+1(Ãi,j)2 and s̃2 := s̃1 + signT (Ãj+1,j) · Ãj+1,j ;

Ãj+1:d,j := [s̃1, 0, · · · , 0] and Ãj,j+1:d := [s̃1, 0, · · · , 0]T ;

ũ1 := [signT (Ãj+1,j) + Ãj+1,j / s̃1, Ãj+2,j / s̃1, · · · , Ãd,j / s̃1] ;

ũ2 := [1, Ãj+2,j / s̃2, · · · , Ãd,j / s̃2];

Ãj+1:d,j+1:d := Ãj+1:d,j+1:d − ũ1 ∗ (ũT2 ∗ Ãj+1:d,j+1:d);

Ãj+1:d,j+1:d := Ãj+1:d,j+1:d − (Ãj+1:d,j+1:d ∗ ũ2) ∗ ũT1
end

return {Ã}

129

A symmetric matrix is efficiently reduced to a tridiagonal matrix via a similarity transformations

using Householder reflections [GVL96, § 8.3.1]. For any index i, define a householder reflector H =

I−2uuT where u is the normalized vector of [Ai+1,i+sign(Ai+1,i) ‖Ai:d,i‖2 , Ai+2,i, · · · , Ad,i] with regards

to the 2-norm. Then, the similarity transformation A′ :=

[
I 0

0 H

]
A

[
I 0

0 H

]
satisfies A′i,j = A′j,i = 0 for

all j > i + 1. Repeating this from i = 1 to i = d − 2, we get a similar tridiagonal matrix. We explain

how the interval variant (Algoritm 2) differs.

Line 2-3: In the classical algorithm, for an index i, when the entries below (i, i) are all 0, it is

instructed to split the matrix into the two submatrices A1:i,1:i and Ai+1:d,i+1:d. It not only reduces

the complexity of the eigenvalue finding but also ensures that each input matrix to the QR algorithm

does not have repeated eigenvalues. However, when the entries are intervals, we cannot decide if the

ideal real number represented by an interval is identical to zero. Thereby, we require an additional

parameter q ∈ N, instead of checking if the entries are precisely zero, we test if the magnitudes of the

intervals are bounded above by 2−q. More precisely, if |Ãj,i| < 2−q for all j > i, the we simply regard

Ãj,j+1:d = ÃTj+1:d,j = 0, and split the matrix. The consequence of this neglecting is analyzed later.

Line 4-8: Additionally, in order to bound the width growths of divisions in the construction of

Householder reflectors, the algorithm proceeds only when there is an entry that is bounded away from

zero by 2−q−1. Note that when the widths of the interval entries in a column are less than 2−q−1, it

can be decided either an entry’s absolute interval is bounded above by 2−q or bounded below by 2−q−1.

Hence, Line 2-9 succeeds (does not abort) when the widths of the interval entries are less than 2−q−1.

Line 9-14: The sign(Ai+1,i) in the construction of the Householder reflector is only for numerical

stability. Hence, if we cannot decide the sign of the interval entry, when Ãi+1,i contains 0, we let it be −1.

The interval operator signT in Line 9,11 denotes the operation; i.e., signT (x̃) ≡ if x̃ > 0 then 1 else −1.

See that u1u
T
2 in Line 13-14 is 2uuT .

Note that neglecting only happens when |Ãi,j | < 2−q for all i > j in j’th iteration. Neglecting

is the operation of perturbing a matrix A ∈ Ã by some P where ‖P‖1 ≤ d · 2−q. For a symmetric A,

Weyl’s inequality ensures that its eigenvalues get perturbed by at most d2 · 2−q, considering that there

can be at most d perturbations. Therefore, reducing A ∈ Ã to a tridiagonal matrix with this splitting

strategy will result in interval matrices {T̃1, · · · , T̃m} each containing an unreduced tridiagonal matrix

Ti ∈ T̃i whose eigenvalues approximate the eigenvalues of the original matrix as follows. Each eigenvalue

of A is contained in at least one interval of ∪i{[λ− d2 · 2−q, λ+ d2 · 2−q] : λ ∈ Λ(Ti)}.

Lemma 7.2. Consider a symmetric matrix A and an interval matrix Ã such that A ∈ Ã ∈ IDd×dn .

Algorithm interval trig succeeds and produces a list of interval matrices whose entries’ widths are bounded

by 2−p when w(Ã) < 2−m(A,q,p) and q > | log ‖A‖F | where m(A, q, p) ∈ p+O
(
d(q + log d+ log ‖A‖F)

)
.

Under this condition, including that n should be large enough to enable w(Ã) < 2−m(A,q,p), the number

of bit operations is bounded by C(A,n) ∈ O
(
d3 · M(log d+ log ‖A‖F + n)

)
Proof. (Sketch) We need to analyze how much the interval widths grow in each iteration. Suppose at the

beginning of an iteration, there is an off-diagonal entry bounded away from zero by 2−q−1 (otherwise,

the iteration is skipped anyway), and the widths of all entries are smaller than 2−q−2. The square

sum at Line 9 has its width bounded by 1/2 and is bounded away from zero by 2−q−1. Bounding the

denominator away from zero, we can bound the width and magnitude growths in that the magnitudes

of ũ1, ũ2 are bounded above by 4 and their widths are bounded above by w2O(q+log(md)). Here, m is a

magnitude bound, and w is a width bound of Ã at the beginning of the iteration. Further doing a tedious

calculation, we get that at the end of the iteration, the width of Ã is bounded by w2O(q+log(mw)).

130

See that m ≤ ‖A‖F + w < 2‖A‖F due to w < 2−q−2 and q > | log‖A‖F |. Hence, when the initial

width w is smaller than 2−O(q log(d‖A‖F), the widths of the entries in the next iteration again satisfies

the condition being smaller than 2−q−2. Therefore, if the initial intervals’ widths are smaller than

2−O(q log(d‖A‖F). And, when the initial widths are smaller than 2−p−O(q log(d‖A‖F), the final widths are

smaller than 2−p.

Since the Frobenius norm is rotation invariant, at the beginning and the end of each iteration, the

magnitudes of entries are bounded by 2‖A‖F .

The bit-cost is bounded by the O(d3) multiplications in Line 13-14 on intervals whose magnitudes

are bounded by O(d ‖A‖F).

7.5.2 Interval QR Step with Fuzzy Shift

Lemma 7.1 guarantees that the QR algorithm using the relaxed fuzzy Wilkinson shift converges.

The fuzzy Wilkinson shift can be applied to the interval version of QR algorithm.

Algorithm 3: QR step(T̃)

ω̃ := T̃d,d + δ̃ − sign
(
δ̃, 2−7 ∗

∣∣∣β̃d−1

∣∣∣) ∗
√
δ̃2 + β̃2

d−1;

for i := 1→ d do T̃j,j := T̃j,j − ω̃;

for j := 1→ d− 1 do

G̃j :=

[
T̃j,j T̃j+1,j

−T̃j+1,j T̃j,j

]
/
√
T̃ 2
j,j + T̃ 2

j+1,j ;

T̃j:j+1,max(1,j−1):min(d,j+1) := G̃j ∗ T̃j:j+1,max(1,j−1):min(d,j+1)

end

for j := 1→ d− 1 do

T̃max(1,j−1):min(d,j+1),j:j+1 := T̃max(1,j−1):min(d,j+1),j:j+1 ∗ G̃Tj

end

for i := 1→ d do T̃j,j := T̃j,j + ω̃;

return T̃

Here, β̃d−1 := T̃d,d−1 and δ̃ :=
(
T̃d−1,d−1 − T̃d,d

)
/2. In Line 2, we shift the input matrix with

the interval fuzzy Wilkinson shift that is computed in Line 1. In Line 3-9, we apply implicit QR step

using Givens rotations. (See [GVL96, § 8.3.3].) In Line 10, we shift the resulting matrix back. The

off-diagonal terms of the input interval matrix are expected to be bounded away from zero by 2−q−1.

The QR algorithm introduced later, which repeatedly calls the interval QR step will only feed those

matrices. The condition which makes Algorithm 3 correct can be analyzed as follows:

Lemma 7.3. Consider an unreduced symmetric tridiagonal matrix T and an interval matrix T̃ such

that T ∈ T̃ ∈ IDd×dn . Suppose the off-diagonal entries of T̃ are bounded away from zero by 2−q−1. Then,

Algorithm QR step on T̃ succeeds and returns an interval matrix whose entries’ widths are bounded

by 2−p when w(T̃) < 2−m(T,q,p) and q > |log ‖T‖F | where m(T, q, p) ∈ p +O
(
d(q + log d + log ‖A‖F)

)
.

Under this condition, including that n should be large enough to enable w(T̃) < 2−m(T,q,p), the number

of bit operations is bounded by C(T, q, n) ∈ O(d · M(log d+ log ‖T‖F + n)).

Proof. The fuzzy Wilkinson shift of the tridiagonal T is bounded by ‖T‖F . Hence, after shifting, ‖T −
ωκI‖F ≤ ‖T‖F +

√
d‖T‖F < 4

√
d‖T‖F .

131

Let w be the width of the interval matrix at the beginning of the first iteration of Line 4. Sup-

pose w < 2−q−2. Then, the magnitude is bounded by 4
√
d‖T‖F similarly to the proof of Lemma 2.

The denominator being bounded away from zero by 2−q−1 ensures that the widths of G̃1 is less than

w2O(q+log‖T‖F+log d). And, after the rotation by G̃1, the width growth is bounded by w′ < w2O(q+log‖T‖F+log d).

Hence, repeating this for 2(d− 1) iterations, when w < 2−m(T,q,p), we get the resulting intervals’ widths

bounded by 2−p.

The overall bit-cost is bounded by O(d) integer multiplications on operands whose magnitudes are

bounded by O(
√
d ‖T‖F).

7.5.3 Interval QR Algorithm Fuzzy Shift

Algorithm 4: interval QR(T̃ , q)

if d = 1 then return {T̃1,1} ;

for j = 1→ d− 1 do

if T̃j,j+1 < 2−q then

return interval QR(T̃1:j,1:j , q) ∪ interval QR(T̃j+1:d,j+1:d, q)

else if T̃j,j+1 > 2−q−1 then
proceed

else
abort

end

end

return interval QR(QR step(T̃), q)

Using the parameter q, in Line 2-10, the interval QR algorithm inspects the input interval matrix

going through all off-diagonal entries. If there is an index j such that |T̃j+1,j | < 2−q holds, it split the

matrix and recursively feeds the two matrices T̃1:j,1:j and T̃j+1:d,j+1:d to the interval QR algorithm; see

Line 3-4. Otherwise, only when all off-diagonal entries are bounded away from zero by 2−q−1, the QR

step applied; see Line 5-9. Note that when the widths of the interval entries are smaller than 2−q−1, at

least one of the two holds; i.e., Line 8 will not be reached in that case.

This splitting is equivalent to a perturbation by a matrix P which has only the two possibly nonzero

entries which are |Pj+1,j | = |Pj,j+1| < 2−q. Since ‖P‖1 < 2−q, deflation causes eigenvalues to be

perturbed by at most 2−q. The interval QR algorithm goes on until it deflates all the off-diagonal

entries.

Let T ∈ T̃ . Lemma 7.1 guarantees that when the QR algorithm is applied to T with fuzzy Wilkinson

shift, q+2 log ‖T‖F +1 iterations are enough in order to ensure |Td,d−1| < 2−q−1. When |Td,d−1| < 2−q−1

and w(T̃d,d−1) < 2−q−1 both hold, deflation happens as T̃d,d−1 < 2−q. Since deflation can only decrease

‖T‖F and ‖T‖F is preserved throughout the QR steps, the total number of iterations is bounded by

d ·(q+2 log ‖T‖F +1) assuming that the widths stay tight enough. When the preconditions in Lemma 7.3

hold throughout the iterations, the interval QR steps do not fail throughout the iterations. Hence, the

interval QR algorithm succeeds:

Lemma 7.4. Consider an unreduced symmetric tridiagonal matrix T and an interval matrix T̃ such

that T ∈ T̃ ∈ IDd×dn . Algorithm interval QR on (T̃ , q) succeeds and returns a list of intervals whose

widths are bounded by 2−p when w(T̃) < 2−m(T,q,p) and q > |log ‖T‖F | where m(T, q, p) ∈ p+O
(
d2(q+

132

log d + log ‖T‖F)(q + log ‖T‖F)
)
. Under this condition, including that n should be large enough to

express w(T̃) < 2−m(T,q,p), the number of bit operations is bounded by C(T, q, n) ∈ O(d2(q+ log ‖T‖F) ·
M(log d+ log ‖T‖F + n)).

7.5.4 Separating Eigenvalues

λ̃′1 λ̃′2

λ̃2
λ̃1 λ̃3

Figure 7.1: Classifying on λ̃1, λ̃2 and λ̃3, the three enlarged intervals, yields the pairs (λ̃′1, 2) and (λ̃′2, 1)

where λ̃′1 := λ̃1∩ λ̃2. If the distance between the actual eigenvalues (the two filled circles) is greater than

some ε and the widths of the intervals are less than ε/2, the procedure succeeds.

Applying Algorithm 2 to an interval matrix Ã, which contains a symmetric matrix A with k distinct

eigenvalues, results in a list of interval matrices. Further application of Algorithm 4 to each interval

matrix yields a list of intervals (Ĩi)i=1,··· ,d which approximate the eigenvalues of A; according to the

bounds we obtained, each of the expanded intervals (λ̃i)i=1,··· ,d, where λ̃i := Ĩi + [−(d2 + d) · 2−q, (d2 +

d) · 2−q], contains each eigenvalue of A respecting multiplicities. It remains to classify (λ̃i) into distinct

eigenvalues of A: let us name filter(q, k, Ĩ1, · · · , Ĩn) to be the procedure that (1) enlarges all the intervals

by (d2 + d) · 2−q, (2) when there are intersecting intervals, keeps the intersection and counts the number

of the intersecting intervals, and after that, (3) if there are exactly k disjoint intervals, returns the list of

pairs of an interval and the corresponding multiplicity; otherwise, it aborts. Note that the classification

does not increase the widths of intervals; see Figure 7.1. Combining all the contents in this section yields

the following algorithm to classify all the distinct eigenvalues:

Algorithm 5: separate eig(Ã, k)

try with q := 20, 21, · · · , 2b 12 log log 1/w(Ã)−log de in

{T̃1, · · · , T̃m} := interval trig(A, q);

for j := 1→ m do Λj := interval QR(T̃j , q) ;

{(λ̃1, µ1), · · · , (λ̃k, µk)} := filter(q, k,Λ1, · · · ,Λm)

end

return {(λ̃1, µ1), · · · , (λ̃k, µk)}

The algorithm computes the interval eigenvalues with increasing q. Even when we have intervals

that approximate the eigenvalues (in Line 3), we need to expand those with proportional to 2−q and

classify k disjoint intervals among those (in Line 4). When q is not small enough to separate distinct

eigenvalues, it fails in Line 4. Hence, we repeatedly run the overall procedure with increasing q in an

exponential increment.

Proof of Theorem 7.2-1. Let Ã be an input that contains A and suppose w(Ã) < 2−m for some m.

Taking p := q + 2 log d + 1 in Lemma 7.4 yields that when w(T̃i) < 2−O
(
d2(q+log d+log‖T‖F)2

)
, the

widths of the intervals computed by Line 3 are bounded by 2d22−q. Hence, the intervals after enlarging

at Line 4 are bounded by 2−q+2 log d+3. Lemma 7.2 implies that the assumption can be met when

m ∈ O
(
d2(q + log d+ log ‖A‖F)2

)
.

133

Therefore, in the case where m ∈ O
(
d2(p+ log d+ log ‖A‖F)2

)
and q reaches

√
m/d ' O

(
p+ log d+

log ‖A‖F)
)
, the return intervals’ widths are bounded by 2−p.

See that Line 4 of classifying intervals succeeds when 2−q+2 log d+2 < ∆λ where ∆λ := ∆(A) · ‖A‖F ;

hence, when q > 2 log d + log 1/∆λ + 2 and q > |log ‖A‖F |, the procedure succeeds which is the case

when q > O(log d+log 1/∆+ |log‖A‖F |). Therefore, when m ∈ O
(
d2(p+log 1/∆+log d+ |log ‖A‖F |)2

)
,

the overall procedure succeeds and returns disjoint intervals whose widths are bounded by 2−p. Since

the cost is polynomial in q, with the exponential increments of q, the last iteration with q =
√
m/d

dominates.

7.6 Interval Kernel Problem

This section considers the interval eigenspace problem, which can be solved by computing a basis

of the kernel of a singular interval matrix: when an interval matrix which contains a singular matrix

is given, it is required to compute a set of interval vectors where each contains such a vector that the

vectors span the singular matrix’s kernel.

7.6.1 Interval Gaussian Algorithm

We consider an interval Gaussian algorithm to solve the problem. The classical Gaussian algorithm

on real numbers conventionally searches for a pivot element whose magnitude is the greatest. In order

to achieve the continuity property (iii), we consider complete pivot searching that searches for a pivot

element whose magnitude is greater than the half of the greatest magnitude [BCK+16, § 2.7]; see that

when the widths of intervals approximating the real entries are small enough, eventually, it succeeds in

locating an interval pivot element. It is fuzzy in the sense that when there are multiple such entries, any

of those can be chosen to be a pivot.

It is well known that an interval Gaussian algorithm does not preserve the regularity of a matrix

and indeed this is the case for the above interval Gaussian algorithm that the rank of an interval matrix

will not be preserved throughout the iterations; e.g., see the famous example of [Rei79]. Algorithm 6 on

(Ã, k), where Ã 3 A and rank(A) = k, is correct if Phase 1 runs all its k iterations.

Throughout the iterations in Phase 1, the interval matrices always contain a matrix whose kernel

is ker(A) and whose rank is k. Hence, throughout the iterations of Phase 1, there always is an interval

entry in the submatrix where the pivot searching happens containing a nonzero number r; otherwise, the

kernel of A is not preserved. Note that when the widths of the interval entries are sufficiently small, the

interval containing r can be picked as a pivot element. This gives evidence that success depends on the

widths of the interval entries which is bounded by Lemma 7.5.

Lemma 7.5.

1. Let (Ã, k) be an input to Algorithm 6. Then, the widths of the entries of the interval matrices

constructed throughout Phase 1 are bounded by 60k(1 + m(Ã))w(Ã) and the magnitudes of the

entries are bounded by 5km(Ã).

2. Consider a variant algorithm of Algorithm 6 which works on real intervals using standard interval

computations in [AH84] instead. Then, the entries of the interval matrices, constructed throughout

the iterations in Phase 1, of the variant algorithm have widths bounded by 11kw(Ã).

134

Algorithm 6: interval gaussian(Ã, k)

for j := 1→ k do // Phase 1

compute b := maxj≤`,m≤dm(Ã`,m);

find (`,m) s.t. |Ã`,m| > b/2 for j ≤ `,m ≤ d abort if fail;

swap rows indexed j and ` and swap columns indexed j and m;

record the column permutations in Π;

for ` := j + 1→ d do s̃` := Ãj,` / Ãj,j ;

for ` := j + 1→ d and m := j → d do

if m = j then Ã`,m := 0 else Ã`,m := Ã`,m − Ã`,j ∗ s̃`;

end

end

for i := 1→ k do // Phase 2

s̃i := Ãi,i;

for j := i→ d do if i = j then Ãi,j := 1 else Ãi,j := Ãi,j / s̃i;

;

end

for j := 2→ k and ` := 1→ j − 1 do

s̃` := Ã`,j ;

for m := j → d do Ã`,m := Ã`,m − Ãj,m ∗ s̃`;

end

for i := k + 1→ d and j := k + 1→ d do

if i = j then Ãi,j := −1 else Ãi,j := 0;

end

return (Π · Ã)1≤i<d,k<j≤d

We defer the proof of this lemma to the appendix. The bounds are obtainable mainly because

we force the pivots to be bounded away from zero by b/2; the interval over-estimations are bounded

accordingly.

7.6.2 Pseudo-regularity

Consider the case when the algorithm is applied to an interval matrix Ã which contains A and whose

rank is k = rank(A). Suppose that the algorithm succeeds and yields the k pivot elements p̃1, · · · , p̃k at

the end of the first phase. Then, there are nonzero real numbers p1, · · · , pk such that pi ∈ p̃i for all i and

Πi|pi| is the magnitude of a nonzero k’th principal minor of A. Now, let us take a look at the pivoting

strategy.

Suppose pi is chosen to be the pivot element at i’th iteration, and bi is the greatest magnitude of all

entries in the being-searched submatrix. Note that |bi|/2 < |pi| ≤ |bi| holds for all i. After eliminating

all rows below by the row led by pi, the magnitudes of the entries in the resulting submatrix are bounded

above by 3|bi|.
Since |bi|/2 < |pi| holds, it holds that |pi+1| ≤ 3|bi| < 6|pi|. Due to ‖A‖max /2 < |p1| ≤ ‖A‖max,

we have |pi| ≤ 6i−1 ‖A‖max for all i. Therefore, if m is the smallest magnitude of nonzero k’th principal

minors of A, the inequality m < Πi|pi| < |pi|60+···+(i−1)+(i+1)+···+k−1 ‖A‖k−1
max holds for all i.

135

µ1

µ2

µ3µ4

ε

Figure 7.2: Changes in eigenvalues to the perturbation with ε in the proof of Lemma 7.6. Shifting with

small enough ε on a singular diagonalizable matrix makes it regular and its eigenvalues are shifted by ε.

Thus, the magnitudes of the pivot elements of A are bounded from below by m · ‖A‖−k+1
max ·6k(k−1)/2,

which means, throughout the iterations in the interval Gaussian algorithm, the computed maximum

magnitudes are greater than or equal to the bound. Together with Lemma 7.5, a condition for success

can be obtained related to the quantity m.

However, though the quantity m catches the notion of pseudo-regularity and the intuition that

the condition for success depends on it, it is not satisfying as it does not have a clear connection to

the geometric distribution of eigenvalues which we used as a parameter in the eigenvalue computation.

Instead, we propose the quantitative measure:

Definition 7.3. For a diagonalizable real matrix A with rank k, let |λ|min(A) := min{|λ| ∈ Λ(A)} be the

minimum nonzero magnitude of its eigenvalues. Then, the pseudo-regularity, a quantitive measure saying

how far away the matrix A is from having rank less than k, is defined to be δλ(A) := |λ|min(A)/ ‖A‖F .

Let A be a diagonalizable real matrix whose rank is k. Consider A′ := A− ε · I to be a perturbation

on A by ε ∈ R; see Figure 7.2. When ε is in (0, |λ|min(A)), the perturbed matrix A′ is regular. Consider

an interval matrix Ã := [A′, A] ∈ IRd×d. If ε is small enough, then Phase 1 of the variant interval

Gaussian algorithm, which works on IR, on Ã will result in an interval matrix which contains H and H ′

such that kerH = kerA and kerH ′ = kerA′:

H =

p1 · · · ∗ ∗ · · · ∗
...

. . .
...

...
. . .

...

0 · · · pk ∗ · · · ∗
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0

H ′ =

p′1 · · · ∗ ∗ · · · ∗
...

. . .
...

...
. . .

...

0 · · · p′k ∗ · · · ∗
0 · · · 0 ε1,1 · · · ε1,n−k
...

. . .
...

...
. . .

...

0 · · · 0 εn−k,1 · · · εn−k,n−k

By the second part of Lemma 7.5, the entry-wise difference between two matrices is less than 11kε.

Therefore, |εi,j | < 11kε. By Hadamard’s bound, it holds that |det(H ′)| < |p′1p′2 · · · pk|′ · (11kε)d−k · (d−
k)(d−k)/2. On the other hand, as |det(H ′)| = |det(A+ε)| =

∏
|λi−ε| > εd−k · (|λ|min−ε)k, the following

inequality is obtained:

εd−k · (|λ|min − ε)k < |p′1p′2 · · · p′k| · (11kε)d−k · (d− k)(d−k)/2

< (|p1|+ 11kε) · · · (|pk|+ 11kε) · (11kε)d−k · (d− k)(d−k)/2

Therefore, the bound (|λ|min − ε)k < (|p1|+ 11kε) · · · (|pk|+ 11kε) · 11k(d−k) · (d− k)(d−k)/2 holds for any

small enough ε. Considering that the algorithm only can make pivot values grow by a factor of at most

6 in each iteration, |pi| ≤ 6i−1 ‖A‖max ≤ 6i−1 ‖A‖F holds. Hence, |p1 · · · pk| ≤ pj · 6k(k−1)/2 · ‖A‖k−1
F for

any j. Therefore, for any j, the following holds:

|λ|kmin < |p1p2 · · · pk| · 11k(d−k) · (d− k)(d−k)/2

136

≤ pj · 6k(k−1)/2 ‖A‖k−1
F · 11k(d−k) · (d− k)(d−k)/2

Since any choice of a pivot element made by Algorithm 6 is valid in the variant algorithm, an algorithm

in IR, the inequality is still valid for Algorithm 6:

Lemma 7.6. Consider a diagonalizable matrix A ∈ Rd×d with k := rank(A). For any interval matrix

containing A when the interval Gaussian algorithm searches for a pivot element, there always exists an

entry whose absolute interval contains a real number greater than 2−4d2δkλ(A) ‖A‖F .

bj

≤ wjbj/2

Figure 7.3: When the width wj is smaller than bj/2, the interval can be selected as a pivot element.

This gives a straightforward condition succeeding on finding pivot element. The widths of intervals

staying smaller than 2−4d2δkλ(A) ‖A‖F throughout the iterations:

Lemma 7.7. Consider a diagonalizable matrix A whose rank is k and an interval matrix Ã such that

A ∈ Ã ∈ IDd×dn . Algorithm interval gaussian on (Ã, k) succeeds and returns interval vectors whose entries’

widths are bounded by 2−p when w(Ã) < 2−m(p,A) where m(p,A) ∈ p+O(d2+d log 1/δλ(A)+|log‖A‖F |).
Under this condition, including that n should be large enough to enable w(Ã) < 2−m(p,A), the number

of bit operations is bounded by O(d3 · M(d+ n+ log‖A‖F)).

Proof. Lemma 7.6 says that throughout the iterations in Phase 1, when a pivot element is searched,

there is an interval b̃j whose magnitude is the computed maximum magnitude in Line 2 such that

bj := m(b̃j) > 2−4d2δkλ(A) ‖A‖F . If E is an upper bound on the widths of the interval entries, then if

E < b/2 the interval b̃ can be chosen as a pivot element; see Figure 7.3. The overall bit-cost is bounded

by O(d3) multiplications on operands whose magnitudes are less than O(5d‖A‖F) from Lemma 7.5.

Now, we can give the proof of the second part of our main result:

Proof of Theorem 7.2-2. We run the Gaussian algorithm on the interval matrix Ã− λ̃ where Ã contains a

diagonalizable A and λ̃ contains an eigenvalue λ of A. See that log 1/δλ(A) = log‖A−λ‖F /|λ|min(A−λ) =

log‖A − λ‖F /‖A‖F + log‖A‖F /|λ|min(A − λ) < log(1 +
√
d) + log 1/∆(A) where ∆(A) is the smallest

distance among distinct eigenvalues of A relative to ‖A‖F . Using the bounds obtained in Lemma 7.7

yields the desired result.

137

Chapter 8. Conclusion

In the earlier part of this dissertation, we have defined an imperative language that supports the

functionality of real number computation based on computable analysis. The foundation of the language

is sound that for any real number expression e, if the expression is well-defined, the real number expression

really does evaluate to the number that the expression mathematically represents. In consequence,

the users of the language can program real number computation assuming real numbers as abstract

mathematical entities, and reason on the behaviours of their programs relying on their mathematical

knowledge without considering artificial roundoff errors.

We wanted the languages to be imperative not only because imperative programming is com-

monly used paradigm in scientific computing practices. Imperative programming admits well-studied

precondition-postcondition-style program specification and Hoare-style program verification methodolo-

gies. In addition to defining the formal semantics of the language, in this dissertation, we also devised the

Hoare-style verification calculus that can be used to formally verify programs written in the languages.

Consequently, the users of the language can easily specify the expected behaviours of their programs

and either prove of disprove the correctness of the specifications such that verified computation over real

numbers is obtained conveniently.

We suggested a way to formally extend the language with other continuous data such as real matrices

and continuous real functions alongside with extending the verification calculus. However, there is a

limitation that the language itself does not support construction of higher-oder objects. For example,

we could program a functional that finds the root of input continuous real functions. However, it is

not possible to construct arbitrary functions within a program. This leads to a natural and essential

future work that is to extend the language with general higher-order data that often appear in scientific

computing such as Sobolev functions, analytic functions, operators, functionals, and so on [KST18,

TKZ18, SS17, Col20]. Of course, the goal is also to extend the verification calculus accordingly [DJ83,

YHB07]

In the later part of this dissertation, when an interval matrix Ã and a natural number k are given

with a promise that Ã contains a symmetric matrix A which has k distinct eigenvalues, we consider

the computational problem of approximating all the eigenvalues and associated eigenspace of A using

interval computations. We devised an interval QR algorithm and used an interval Gaussian algorithm to

solve the problem and analyzed a condition that guarantees the computation to produce intervals whose

widths are bounded by 2−p, for any natural number p. The condition is parametrized by the relative

eigenvalue separation of A, which we suggest to be a natural parameter of the problem. Having the

explicit condition, an analysis is applied to obtain a bound for the bit-cost of the matrix eigenproblem

for degenerate real symmetric matrices for reliable computing.

138

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.

[ABS18] Sewon Park Andrej Bauer and Alex Simpson. Command-like Expressions for Real Infinite-

precision Calculations. Dagstuhl Reports (Dagstuhl Seminar 17481), 7(11):149–150, 2018.

[AH84] Gotz Alefeld and Jurgen Herzberger. Introduction to interval computation. 1984.

[AO19] Krzysztof R Apt and Ernst-Rüdiger Olderog. Fifty years of hoare’s logic. Formal Aspects of

Computing, 31(6):751–807, 2019.

[AP86] Krzysztof R Apt and Gordon D Plotkin. Countable nondeterminism and random assignment.

Journal of the ACM (JACM), 33(4):724–767, 1986.

[Apt81] Krzysztof R Apt. Ten years of hoare’s logic: A survey—part i. ACM Transactions on

Programming Languages and Systems (TOPLAS), 3(4):431–483, 1981.

[Apt83] Krzysztof R Apt. Ten years of hoare’s logic: A survey—part ii: Nondeterminism. Theoretical

Computer Science, 28(1-2):83–109, 1983.

[AY07] Jeremy Avigad and Yimu Yin. Quantifier elimination for the reals with a predicate for the

powers of two. Theor. Comput. Sci., 370(1-3):48–59, 2007.

[Bau05] Andrej Bauer. Realizability as the connection between computable and constructive mathe-

matics. In Proceedings of CCA, 2005.

[BC88] Hans-Juergen Karl Hermann Boehm and Robert Cartwright. Exact real arithmetic: Formu-

lating real numbers as functions. Rice University, Department of Computer Science, 1988.

[BCC+06] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa, and A.L. Sangiovanni-Vincentelli.

Ariadne: a framework for reachability analysis of hybrid automata. In Proc. 17th Int. Symp.

on Mathematical Theory of Networks and Systems, Kyoto, 2006.

[BCK+16] Franz Brauße, Pieter Collins, Johannes Kanig, SunYoung Kim, Michal Konečnỳ, Gyesik Lee,

Norbert Müller, Eike Neumann, Sewon Park, Norbert Preining, et al. Semantics, logic, and

verification of “exact real computation”. arXiv preprint arXiv:1608.05787, 2016.

[BCRO86] Hans-J Boehm, Robert Cartwright, Mark Riggle, and Michael J O’Donnell. Exact real

arithmetic: A case study in higher order programming. In Proceedings of the 1986 ACM

conference on LISP and functional programming, pages 162–173, 1986.

[BES02a] Andrej Bauer, Mart́ın Hötzel Escardó, and Alex Simpson. Comparing functional paradigms

for exact real-number computation. In Peter Widmayer, Stephan Eidenbenz, Francisco

Triguero, Rafael Morales, Ricardo Conejo, and Matthew Hennessy, editors, Automata, Lan-

guages and Programming, pages 488–500, Berlin, Heidelberg, 2002. Springer Berlin Heidel-

berg.

139

[Bés02b] Alexis Bés. A survey of arithmetical definability. Soc. Math. Belgique, A tribute to Maurice

Boffa:1–54, 2002.

[BH98] Vasco Brattka and Peter Hertling. Feasible real random access machines. Journal of Com-

plexity, 14(4):490–526, 1998.

[BHW08] Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In

New computational paradigms, pages 425–491. Springer, 2008.

[Bis67] Errett Bishop. Foundations of constructive analysis, volume 60. McGraw-Hill New York,

1967.

[Bra95] Vasco Brattka. Computable selection in analysis. In Proc. of the Workshop on Computability

and Complexity in Analysis, Informatik Berichte, FernUniversit at Hagen, volume 190, pages

125–138, 1995.

[Bra03] Vasco Brattka. The emperor’s new recursiveness: The epigraph of the exponential function

in two models of computability. In Words, Languages & Combinatorics III, pages 63–72.

World Scientific, 2003.

[BSS+89] Lenore Blum, Mike Shub, Steve Smale, et al. On a theory of computation and complexity

over the real numbers: np-completeness, recursive functions and universal machines. Bulletin

(New Series) of the American Mathematical Society, 21(1):1–46, 1989.

[BT82a] J.A. Bergstra and J.V. Tucker. Expressiveness and the completeness of hoare’s logic. Journal

of Computer and System Sciences, 25(3):267 – 284, 1982.

[BT82b] Jan A. Bergstra and John V Tucker. Some natural structures which fail to possess a sound

and decidable hoare-like logic for their while-programs. Theoretical Computer Science: the

journal of the EATCS, 17(3):303–315, 1982.

[BV99] Paolo Boldi and Sebastiano Vigna. Equality is a jump. Theoretical computer science, 219(1-

2):49–64, 1999.

[BVS93] Stephen Brookes and Kathryn Van Stone. Monads and comonads in intensional semantics.

Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER

SCIENCE, 1993.

[BZ98] Christoph Burnikel and Joachim Ziegler. Fast recursive division. 1998.

[CM06] Stefania Corsaro and Marina Marino. Interval linear systems: the state of the art. Compu-

tational Statistics, 21(2):365–384, 2006.

[CNR11] Pieter Collins, Milad Niqui, and Nathalie Revol. A validated real function calculus. Mathe-

matics in Computer Science, 5(4):437–467, 2011.

[Col20] Pieter Collins. Computable random variables and conditioning. arXiv preprint

arXiv:2101.00956, 2020.

[Coo78] Stephen A Cook. Soundness and completeness of an axiom system for program verification.

SIAM Journal on Computing, 7(1):70–90, 1978.

140

[Dei91] Assem Deif. The interval eigenvalue problem. ZAMM-Journal of Applied Mathematics and

Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 71(1):61–64, 1991.

[DG93] Pietro Di Gianantonio. A functional approach to computability on real numbers. Bulletin-

European Association For Theoretical Computer Science, 50:518–518, 1993.

[DG96] Pietro Di Gianantonio. Real number computability and domain theory. Information and

Computation, 127(1):11–25, 1996.

[Dij75] Edsger W Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM, 18(8):453–457, 1975.

[DJ83] Werner Damm and Bernhard Josko. A sound and relatively complete hoare-logic for a

language with higher type procedures. Acta Informatica, 20(1):59–101, 1983.

[Dri86] Lou van den Dries. The field of reals with a predicate for the powers of two. Manuscripta

mathematica, 54:187–196, 1986.

[Eda97] Abbas Edalat. Domains for computation in mathematics, physics and exact real arithmetic.

Bulletin of Symbolic Logic, 3(4):401–452, 1997.

[EE00] Abbas Edalat and Martın Hötzel Escardó. Integration in real pcf. Information and Compu-

tation, 160(1-2):128–166, 2000.

[EHS04] Mart́ın Escardó, Martin Hofmann, and Thomas Streicher. On the non-sequential nature of the

interval-domain model of real-number computation. Mathematical Structures in Computer

Science, 14(06):803–814, 2004.

[ES14] Mart́ın Hötzel Escardó and Alex Simpson. Abstract datatypes for real numbers in type

theory. In Rewriting and Typed Lambda Calculi, pages 208–223. Springer, 2014.

[Esc96] Mart́ın Hötzel Escardó. Pcf extended with real numbers. Theoretical Computer Science,

162(1):79–115, 1996.

[Gol91] David Goldberg. What every computer scientist should know about floating-point arithmetic.

ACM Comput. Surv., 23(1):5–48, March 1991.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University

Press, 3rd edition, 1996.

[Her96] Peter Hertling. Topological complexity with continuous operations. Journal of Complexity,

12:315–338, 1996.

[Her99] Peter Hertling. A real number structure that is effectively categorical. Math. Log. Q., 45:147–

182, 1999.

[Hol94] I. Holand. The loss of the sleipner condeep platform. In Ger M.A. Kusters and Max A.N.

Hendriks, editors, Proc. 1st International DIANA Conference on Computational Mechanics,

pages 25–36, Dordrecht, Netherlands, 1994. Springer Netherlands.

[HVDH20] David Harvey and Joris Van Der Hoeven. Integer multiplication in time O(n log n). Annals

of Mathematics, 2020.

141

[JM97] Jean-Marc Jézéquel and Bertrand Meyer. Design by contract: The lessons of ariane. Com-

puter, 30(1):129–130, January 1997.

[Kle99] Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Computing,

11(5):541–566, 1999.

[KMP+08] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee-Keng Yap. Classroom

examples of robustness problems in geometric computations. Comput. Geom., 40(1):61–78,

2008.

[KST18] Akitoshi Kawamura, Florian Steinberg, and Holger Thies. Parameterized complexity for

uniform operators on multidimensional analytic functions and ode solving. In International

Workshop on Logic, Language, Information, and Computation, pages 223–236. Springer,

2018.

[KTD+13] M. Konecny, W. Taha, J. Duracz, A. Duracz, and A. Ames. Enclosing the behavior of

a hybrid system up to and beyond a zeno point. In Proc. 1st IEEE Int. Conf. on Cyber-

Physical Systems, Networks, and Applications, pages 120–125, New York, NY, United States,

2013. Association for Computing Machinery.

[LP20] Donghyun Lim and Sewon Park. Topological aspects on nondetermistic computation. In

한국정보과학회 학술발표논문집, pages 1107–1108, 2020.

[Luc77] Horst Luckhardt. A fundamental effect in computations on real numbers. Theoretical Com-

puter Science, 5(3):321 – 324, 1977.

[LW02] Eugene Loh and G. William Walster. Rump’s example revisited. Reliable Computing,

8(3):245–248, 2002.

[MKC09] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction to interval analysis,

volume 110. Siam, 2009.

[Moo66] Ramon E Moore. Interval analysis, volume 4. Prentice-Hall Englewood Cliffs, NJ, 1966.

[Moo14] Ramon E Moore. Reliability in computing: the role of interval methods in scientific comput-

ing, volume 19. Elsevier, 2014.

[MRE07] J. Raymundo Marcial-Romero and Mart́ın H. Escardó. Semantics of a sequential language

for exact real-number computation. Theoretical Computer Science, 379(1):120–141, 2007.

[Mül00] Norbert Th Müller. The iRRAM: Exact arithmetic in C++. In International Workshop on

Computability and Complexity in Analysis, pages 222–252. Springer, 2000.

[Nel89] Greg Nelson. A generalization of dijkstra’s calculus. ACM Transactions on Programming

Languages and Systems (TOPLAS), 11(4):517–561, 1989.

[PC99] Victor Y Pan and Zhao Q Chen. The complexity of the matrix eigenproblem. In Proceedings

of the thirty-first annual ACM symposium on Theory of computing, pages 507–516. ACM,

1999.

[PER89] Marian B. Pour-El and J. Ian Richards. Computability in Analysis and Physics. Perspectives

in Mathematical Logic. Springer, Berlin, 1989.

142

[Plo76] Gordon D Plotkin. A powerdomain construction. SIAM Journal on Computing, 5(3):452–487,

1976.

[Rei79] Karl Reichmann. Abbruch beim Intervall-Gauß-Algorithmus breaking down of the interval

gauß algorithm. Computing, 22(4):355–361, 1979.

[Rum88] S.M. Rump. Algorithms for verified inclusions: Theory and practice. In R. E. Moore, editor,

Reliability in Computing: The Role of Interval Methods in Scientific Computing, chapter

chapter 1, Computer Arithmetic and Mathematical Software, page 109–126. Academic Press,

Boston, 1988.

[Sco70] Dana Scott. Outline of a mathematical theory of computation. Oxford University Computing

Laboratory, Programming Research Group Oxford, 1970.

[Sha78] Michael Ian Shamos. Computational geometry. Ph. D. thesis, Yale University, 1978.

[SS17] Matthias Schröder and Florian Steinberg. Bounded time computation on metric spaces and

banach spaces. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS), pages 1–12. IEEE, 2017.

[SS18] Svetlana V Selivanova and Victor L Selivanov. Bit complexity of computing solutions for

symmetric hyperbolic systems of pdes. In Conference on Computability in Europe, pages

376–385. Springer, 2018.

[TKZ18] Holger Thies, Akitoshi Kawamura, and Martin A Ziegler. Average-case polynomial-time

computability of hamiltonian dynamics. In 43rd International Symposium on Mathematical

Foundations of Computer Science. Schloss Dagstuhl–Leibniz Center for Informatics, 2018.

[TZ99] John V Tucker and Jeffery I Zucker. Computation by ‘while’programs on topological partial

algebras. Theoretical Computer Science, 219(1-2):379–420, 1999.

[TZ04] John V Tucker and Jeffery I Zucker. Abstract versus concrete computation on metric partial

algebras. ACM Transactions on Computational Logic (TOCL), 5(4):611–668, 2004.

[TZ15] JV Tucker and JI Zucker. Generalizing computability theory to abstract algebras. In Turing’s

Revolution, pages 127–160. Springer, 2015.

[vO01] David von Oheimb. Hoare logic for java in isabelle/hol. Concurrency and Computation:

Practice and Experience, 13(13):1173–1214, 2001.

[VO08] Jaap Van Oosten. Realizability: an introduction to its categorical side. Elsevier, 2008.

[Wat82] David S Watkins. Understanding the qr algorithm. SIAM review, 24(4):427–440, 1982.

[Wei00] Klaus Weihrauch. Computable analysis: An introduction (texts in theoretical computer

science. an EATCS series). 2000.

[Wil68] James Hardy Wilkinson. Global convergene of tridiagonal qr algorithm with origin shifts.

Linear Algebra and its Applications, 1(3):409–420, 1968.

[YHB07] Nobuko Yoshida, Kohei Honda, and Martin Berger. Logical reasoning for higher-order func-

tions with local state. In International Conference on Foundations of Software Science and

Computational Structures, pages 361–377. Springer, 2007.

143

[YSS13] Chee Yap, Michael Sagraloff, and Vikram Sharma. Analytic root clustering: A complete

algorithm using soft zero tests. In Conference on Computability in Europe, pages 434–444.

Springer, 2013.

[ZB04] Martin Ziegler and Vasco Brattka. Computability in linear algebra. Theoretical Computer

Science, 326(1-3):187–211, 2004.

[Zie05] Martin Ziegler. Computability and continuity on the real arithmetic hierarchy and the power

of type-2 nondeterminism. In S. Barry Cooper, Benedikt Löwe, and Leen Torenvliet, editors,

New Computational Paradigms, pages 562–571, Berlin, Heidelberg, 2005. Springer Berlin

Heidelberg.

[Zie12] Martin Ziegler. Real computation with least discrete advice: A complexity theory of nonuni-

form computability with applications to effective linear algebra. Annals of Pure and Applied

Logic, 163(8):1108–1139, 2012.

144

Index

Se
⊥, 80

A + B, 15, 30

A×B, 15, 30

A→ B, 16, 30

Aω, 34

BA, 16, 30

RCauchy, 15

Rdyadic, 26

N, 14

Q, 14

Z, 14

1, 14, 30

2, 14

0, 14, 30

Asm(NN), 29

Rep, 16

N, 10

Q, 10

R, 10

Z, 10

1, 10

2, 10

0, 10

e, 80

let xi � X in f , 86

Rnaive, 24

, 14, 29

αA,B, 21

ϕ̄n, 10

βA,B, 22⊎
x∈I f(x), 81

E = (D,F , I), 69

L, 54

P(X), 10

P?(X), 10

S, 54

T , 54

η, 13

], 19, 31

P?(A), 118

P(A⊥), 64

K, 44

R, 44

Z, 44

e, 80

η, 22

Γ, 30

J�KAsm(NN), 63

ιA, 15

ιB , 15

κ],\, 32

κ[,\, 32

〈(ϕi)i∈N〉, 13

〈ϕ1, ϕ2〉, 13

[, 19, 31

., 41

µ, 22

choiceN, 28, 33

choicen, 28, 33

∇, 30

\, 31

P?(S), 80

P(A⊥), 47∏
i∈N Ai, 34

M, 33

Cond, 15

Seq(A), 16

subB(A), 15

θAi
, 34

C↓(A,B), 16

LtM, 54

u, 13

ϕ<, 10

ϕ>, 10

ζA,B, 23

f + g, 15, 30

f : A⇒ B, 27

f : A ⇀ B, 10

145

f :⊆ A⇒ B, 27

f × g, 15, 30

f �c, 10

f†i , 22

f†, 22, 36

x :: ϕ, 10

x<k y, 34

x :: y, 10

xN, 10

assembly, 29

Clerical

computability of -, 120

denotational semantics of -, 79

specification of -, 93

syntax of -, 77

typing rule of -, 77

verification calculus of -, 94

the soundness of - , 98

computable function

in Asm(NN), 29

in Rep, 14

computable partial function NN ⇀ NN, 13

conditional, 15

continuously realizable function

in Asm(NN), 29

in Rep, 14

countable product, 34

effective representation of R, 26

ERC

assertion language of , 54

commands in -, 44

computability of -, 68

data types in -, 43

denotational semantics of commands, 51

denotational semantics of data types, 46

denotational semantics of terms, 49

extension structure of -, 69

logic of of , 54

realizes, 52

specification of, 56

structure of , 54

terms in -, 44

theory of , 54

Turing-completeness, 52

typing rules in -, 45

verification calculus of , 57

verification calculus of -

the soundness of -, 58

functor

applicative -, 23

countably applicative -, 34

extensible -, 23

lax monoidal -, 21

monad, 22

strong -, 23

lazy comparison, 41

lifting

by countably applicative functor, 36

by lax monoidal functor, 22

by tensorial strength, 22

multifunction, 27

computable -, 27

continuously realizable -, 27

in Asm(NN), 33

partial -, 27

name, 14

nondeterministic choice

- countable, 28

- finite, 28

in Asm(NN), 33

partial function, 10

strongly realize -, 18

weakly realizable -, 20

partiality lifting

colazy lifting

in Asm(NN), 31

in Rep, 19

general lifting in Asm(NN), 31

lazy lifting

in Asm(NN), 31

in Rep, 19

Plotkin powerdomain, 47

modified -, 79

146

realize, 14

representation, 14

standard - , 14

of N, 14

of 1, 14

of Q, 14

of R, 15

of 2, 14

of Z, 14

of 0, 14

of (set-theoretic) disjoint union, 15

of (set-theoretic) products, 15

of continuously realizable functions, 16

of sequences, 16

represented set, 14

coproduct of - , 16

exponent of - , 16

initial of - , 16

nc -, 24

product of - , 16

separated -, 24

sub-, 15

induced by, 16

terminal of - , 16

soft comparison, 34

tensorial strength, 22

the category of

assemblies, 29

represented sets, 16

The standard topology on NN, 13

track, 14

Turing machine

oracle -, 12

type-2 -, 12

147

Acknowledgment

(to be written)

148

	 Contents
	 List of Tables
	 List of Figures
	Introduction
	Notations
	Computable Analysis
	Discrete Computation
	Type-2 Computability
	Rep the Category of Represented Sets
	Representations
	Partial Functions

	Applicative Functors and Monads
	Real Number Computation
	With or Without Computational Content
	Effective Representation of Real Numbers

	Nondeterminism
	Asm(NN) the Category of Assemblies over NN
	Partial Functions in Asm(NN)
	Multifunctions in Asm(NN)
	Lifting Sequences

	Further Remarks on Multifunctions

	ERC: Simple Imperative Language with Real Numbers
	Overview of ERC with Example Programs
	Formal Syntax and Typing
	Formal Syntax
	Typing Rules

	Denotational Semantics
	Powerdomain for ERC
	Denotations of Terms
	Denotations of Commands
	Denotations of Programs

	The Logic of ERC
	Assertion Language L
	Reasoning Principles

	ERC in Asm(NN) and its Extension
	Interpretation of ERC in Asm(NN)
	Powerdomain in Asm(NN)
	Interpretation of Terms, Commands, and Programs

	Extending ERC
	Extension Structure
	Extended Reasoning Principles

	Root Finding in ERC Extended with Continuous Real Functions

	Clerical: Expression-based Language with Limit Operator
	Overview of Clerical with Example Programs
	Formal Syntax and Typing
	Formal Syntax
	Typing Rules

	Denotational Semantics
	Denotations of Data Types and Contexts
	Semantic Construction
	Denotations of Expressions

	Reasoning Principles
	Assertion Language
	Specifications
	Proof Rules

	Example Formal Verifications
	Abbreviations of Derivations
	Simple Arithmetical Expressions
	Formal Verification of Computing

	(Relative) Completeness

	Clerical in Asm(NN)
	Modified Powerdomain in Asm(NN)
	Computability of Clerical

	Reliable Symmetric Matrix Eigenproblem
	Introduction
	QR Algorithm and Wilkinson Shift
	Reliable Computation using Intervals
	Related Works and Our Contributions

	Problem Statement and Overview
	Interval Computation and Fuzziness
	Dyadic Intervals
	Fuzzy Sign

	Fuzzy Wilkinson Shift
	Separating Eigenvalues
	Interval Tridiagonal Reduction
	Interval QR Step with Fuzzy Shift
	Interval QR Algorithm Fuzzy Shift
	Separating Eigenvalues

	Interval Kernel Problem
	Interval Gaussian Algorithm
	Pseudo-regularity

	Conclusion
	Bibliography
	Index
	Acknowledgments

